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Abstract 

 The Hamiltonian property is one of major 
requirements in designing the topology of 
networks. Fault tolerance is also required for 
distributed systems. In this paper, we introduce 
the concepts of (node, edge) Hamiltonian- 
connectivity. Furthermore, we present 
construction schemes for fault-tolerant 
Hamiltonian and Hamiltonian-connected 
networks. 
Keywords: fault tolerance, Hamiltonian cycle, 
Hamiltonian-connectivity, edge-Hamiltonian- 
connectivity, node-Hamiltonian-connectivity. 
 

1、、、、Introduction 
 
The architecture of an interconnection 

network is always represented by a graph. We 
use graphs and networks interchangeably. The 
ring and linear array topologies have been used 
frequently due to their good properties such as 
simplicity, expandability and easiness of 
implementation. Fault tolerance is also important 
in parallel systems that have a relatively high 
probability of failure. The embedding of rings 
and linear arrays into known interconnection 
networks such as pancake graphs, faulty 
hypercubes, stars, arrangement graphs, and 
meshes and tori has been addressed in the 
literature[1-3, 6-7, 9, 11]. However, the longest 
rings or linear arrays embedding in hypercube or 
star networks with faulty nodes may not contain 
all fault-free nodes. Specially, the hypercube or 
star networks are not Hamiltonian networks with 
a faulty node. 

Let G=(V, E) be a graph where V denotes 
the node set and E denotes the edge set of G. A 
path is a sequence of nodes such that two 
consecutive nodes are adjacent. A Hamiltonian 
path of G is a path whose nodes are distinct and 
span V.  A graph is Hamiltonian-connected if 
there exist Hamiltonian paths between every two 
distinct nodes of this graph. A Hamiltonian- 
connected graph is equivalent a network which 
contains linear arrays for every distinct nodes. A 
Hamiltonian cycle is a cycle who traverses every 
node of V exactly once. A Hamiltonian graph is 
a graph that contains a Hamiltonian cycle. A 
graph G is k-Hamiltonian if G-F is Hamiltonian 
∀ F ⊂ (V ∪ E), |F| ≤ k. A graph G is 
k-node-Hamiltonian (k-edge-Hamiltonian) if 
G-Fn(G-Fe) is Hamiltonian ∀ Fn ⊂ V( ∀ Fe ⊂ E) 
and |Fn|(|Fe|) ≤ k. A k-Hamiltonian graph is 
equivalent to a network that contains a ring with 
k faults.  

 
In [12], Wang et al constructed a 3-regular, 

1-Hamiltonian graph. Hung et al presented 
another 3-regular, 1-Hamiltonian graph in [4].  
These graphs are both Hamiltonian-connected. A 
construction scheme for 1-Hamiltonian graph is 
introduced in [13]. In [5], the authors introduced 
a construction scheme for (k+2)-regular and 
k-Hamiltonian graphs. In this paper, we 
introduce Hamiltonian-connectivity for the fault 
tolerance of Hamiltonian-connected graph and 
present the construction scheme for graphs with 
fault tolerance for Hamiltonian-connected and 
Hamiltonian graph.  
 

The rest of this paper is organized as 
follows. In Section 2, we introduce concept and 
examples of Hamiltonian-connectivity, node- 
Hamiltonian-connectivity, and edge- 
Hamiltonian-connectivity. Section 3 is devoted 
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to the proofs of the fault tolerance Hamiltonian 
properties. Section 4 concludes this paper. 
 

2、、、、Hamiltonian-connectivity, 
node-Hamiltonian-connectivity and 

edge-Hamiltonian-connectivity 
 

In this section, we will define Hamiltonian- 
connectivity, node-Hamiltonian-connectivity, 
and edge-Hamiltonian-connectivity and illustrate 
these concepts with some examples. 

 
The node-Hamiltonian-connectivity of a 

graph G, denoted as )(Ghκ , is the minimum 
number of cardinality of Fn ⊂ V such that G-Fn is 
not Hamiltonian-connected. The edge- 
Hamiltonian-connectivity of G, denoted as 

)(Ghλ , is min {|Fe| | G – Fe is not Hamiltonian- 
connected ∀ Fe ⊂ E}. The Hamiltonian- 
connectivity of G, denoted by )(Ghσ , is the 
minimum cardinality of F ⊂ (V ∪ E) such that G- 
F is not Hamiltonian-connected. Obviously, 

)(Ghσ ≤ )(Ghκ  and )(Ghσ ≤ )(Ghλ  for 
every graph G. 

 
Let )(Gκ  and )(Gλ  be the 

node-connectivity and edge-connectivity of the 
graph G, respectively. Applying these definitions, 
we can obtain that )(Ghκ ≤ )(Gκ  and 

)(Ghλ ≤ )(Gλ  for any graph G. In [18], 
Whitney presents )(Gκ ≤ )(Gλ  for any graph 
G. But the relation )(Ghκ ≤ )(Ghλ  does not 
hold for every graph G. The complete graph Kn 
is a counter example. )( nh Kκ  = )( nKκ = n - 1 

> n - 3 = ).( nh Kλ  On the other hand, 

1)( 1 =Hhκ )(3 1Hhλ=≤  since H2 = H1 – 
{c} has no Hamiltonian path between nodes a 
and b as illustrated in Figure 1. 
 

c

ba

H
1 H2

ba

 
 

3. Construction schemes for fault 
tolerance of Hamiltonian and 

Hamiltonian-connected graphs 
 
In this section, we will prove some 

theorems about Cartesian product and 
Hamiltonian properties. Applying these 
theorems, we can obtain the construction 
schemes for the k-Hamiltonian (or k-node- 
Hamiltonian, k-edge-Hamiltonian) graph G that 

)(Ghσ  (or )(Ghκ , )(Ghλ ) = k.  
 
Let G=(V1,E1) and H=(V2,E2) be a graph. 

The graph G×H is the Cartesian product of the 
graphs G and H. The node set V(G×H) is 
{(u,i) ∀| u∈ V1 and i∈ V2}. The edge set E(G×H) 
is {((u,i),(v,j)) | if (u,v)∈ E1, i=j or u=v, (i,j)∈ E2}. 
Thus V(G×K2)={(v,i) ∀| v∈ V and i=1, 2} and 
E(G×K2)={((u,i),(v,j)) | if (u,v) ∈ E, i=j or u=v, 
i ≠ j}. Let the degree of v in G, denoted by 
degG(v), be the number of edges in G incident to 
v. Let Gi be a sub-graph of G×K2 and Gi 
isomorphic to G. To be specific, the node set of 
Gi is {(v,i) ∀| v∈ V} and the edge set of Gi is 
{((u,i),(v,i)) ∀| (u,v) ∈ E}. 

 
Let F, F1 and F2 denote sets of faulty 

components including faulty nodes and edges in 
G×K2, G1 and G2, respectively. F3 is a set of 
faulty components including faulty edges of two 
corresponding nodes. That is, F3 = ∩F  
{ }Vuuu ∈∀|))2,(),1,(( . And F = F1 ∪  F2 ∪  
F3. 
 

Let HC and HP be a Hamiltonian cycle and 
Hamiltonian path in G×K2, respectively. Let HCi 
be a Hamiltonian cycle and HPi((u,i),(v,i)) be a 
Hamiltonian path between (u,i) and (v,i) in Gi for 
i=1, 2. The distance between nodes u and v, 
denoted by d(u v), is the length of a shortest path 
from u to v. Let (u,1) and (u,2) be two 
corresponding nodes. Let (f,i) be a fault of Fi. 
Let <(v,i) → f (u,j) > denote the path <(v,i) 
→  f →  (u, j)> if f is a faulty node, or denote 
the path <(v, i) →  (u, j)> if f is a faulty edge.  
 
Theorem 1 Let G=(V, E) be a (k+2)-regular, 
k-Hamiltonian graph and )(Ghσ =k. The graph 
G×K2 is a (k+3)-regular, (k+1)-Hamiltonian 
graph and )( 2KGh ×σ =k+1. 
Proof: Since

2
deg KG× (v,i) = Gdeg (v)+1, G×K2 

is (k+3)-regular. We first prove that (G×K2)-F is 
a Hamiltonian graph in which F ⊂ G×K2 and Figure 1 1)( 1 =Hhκ   3)(, 1 =Hhλ . 
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|F|=k+1. We prove this theorem by the 
following cases. 
 
Case 1: |F1|=k+1 or |F2|=k+1, without loss of 
generality, we assume that |F1|=k+1. 
 
    Since G1 is a k-Hamiltonian graph, G1 - (F - 
{ f }) contains a Hamiltonian cycle HC1 for some 
f ∈ F. Thus G1-F contains a Hamiltonian path 
HP1((a,1),(b,1)) = HC1 - { f }, for some (a,1), 
(b,1)∈ V(G1). Since the )(G2hσ =k, there exists a 
Hamiltonian path HP2((a,2),(b,2)) in G2. Hence, 
we can construct a Hamiltonian cycle ＜

(a,1)  → (b,1))((a,1), HP1 (b,1) → (b,2) 
 → (a,2))((b,2), HP2 (a,2) → (a,1)＞of (G×K2)-F, 

as illustrated in Figure 2. 

11 += kF 02 =FG 1

(a,1)

(b,1)

( a,2)

(b,2)
G 2

C P

1.

 
 
 
 
Case 2: |F1|≤ k and |F2|≤ k 
 
 Since |V(G)| ≥ k+3,  there exist (a,1)∈  V(G1) 
and (a,2) ∈ V(G2) where (a,1),(a,2), and 
((a,1),(a,2))∉ F. Since Gi is k-Hamiltonian, there 
exist k+2-|Fi| edges incident to (a,i) on some 
Hamiltonian cycles of Gi for i=1, 2. Furthermore, 
(k+2-|F1|)+(k+2-|F2|)=2k+4-|F1|-|F2|=k+3+|F3|. 
Thus there exist 1+|F3| neighbors (vr,i) for 
1 ≤ r ≤ 1+|F3| , of (a,i) such that ((a,i),( vr,i)) is 
on some Hamiltonian cycles of Gi, for i=1, 2. 
Therefore, there exists a node (vr,2) for 
((vr,1),(vr,2)) ∉ F where ((a,1),(vr,1)) and 
((a,2),(vr,2)) are on some Hamiltonian cycles 
HC1 and HC2 of G1 and G2, respectively. Hence, 
a Hamiltonian cycle can be constructed as 
follows: HC1 ∪ HC2 ∪  {((a,1),(a,2)), 
((vr,1),(vr,2))}-{((a,1),(vr,1)),((a,2),(vr,2))} of 
(G×K2)-F, as illustrated in Figure 3. 

 

11 −≤ kF 12 −≤ kFG1

(a,1)

(vr,1)

(a,2)

(vr,2)

G2

2.
CC C

 
 
 
According to the above proof, we can obtain that 
G×K2 is (k+1)-Hamiltonian. 
 

In the following, we will show that for all 
((s,i),(d,j))∈ V(G×K2), 1 ≤≤ ji, 2, there exists a 
Hamiltonian path HP((s,i),(d,j)) from (s,i) to (d,j) 
in (G×K2)-F for F ⊂ G×K2 and |F|=k.  
 
Case 3: |F1|=k or |F2|=k, without loss of 
generality, we can assume |F1|=k. 
 
Case 3.1: i=1, j=1  
    Since the )( 1Ghσ =k, G1-(F-{( f )}) contains 
a Hamiltonian path ＜ (s,1) → …

→ (a,1) → f  (b,1) →…→ (d,1)＞ . Thus 
G1-F forms two paths P((s,1),(a,1)) and 
Q((b,1),(d,1)). Since G2 is Hamiltonian- 
connected, there exists a Hamiltonian path 
HP2((a,2),(b,2)) in G2. Hence, we can construct a 
Hamiltonian path ＜ (s,1)  → (a,1))((s,1), P  

(a,1) → (a,2)  → (b,2))((a,2), HP2  (b,2) →  
(b,1)  → (d,1))((b,1), Q (d,1)＞ of (G×K2)-F, as 
illustrated in Figure 4. 

02 =FkF =1
G 1 G 2

(a,2)

(b,2)

P
(a,1)

(b,1)

( s,1)

(d,1)

3.1

P

 
 
 
 
 
Case 3.2: i=1, j=2  
    Since G1 is k-Hamiltonian, there exists a 
Hamiltonian cycle HC1 in G1-F1. Let ((a,1),(s,1)) 
and ((b,1),(s,1)) be an edge of HC1. One of 
(a,1),(b,1) must not be identical to (d,1).Without 

Figure 2 The Hamiltonian cycle of (G×K2)-F. 

Figure 3 The Hamiltonian cycle of (G×K2)-F. 

Figure 4 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-F. 
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loss of generality, we may assume (a,1) ≠ (d,1). 
Since G2 is Hamiltonian-connected, there exists 
a Hamiltonian path HP2((a,2),(d,2)) in G2. Hence, 
a Hamiltonian path from (s,1) to (d,2) can be 
constructed as follows: HC1-{(a,1),(s,1)} ∪  
{((a,1),(a,2))} ∪ HP2((a,2),(d,2)) , as illustrated 
in Figure 5. 

G1

(a,1)

(b,1)

(a,2)

(d,2)
G2

C P
3.2

(s,1)

kF =1 02 =F
 

 
 
 
 
Case 3.3: i=2, j=2 
 
 Since G is simple graph, |V(G)| ≥ k+3. Thus, 
there exist (a,1) ∈ V(G1) and (a,2)∈ V(G2) where 
(a,1),(a,2), ((a,1),(a,2)) ∉ F and (a,2) ≠  (s,2) 
≠ (d,2). Since G1 is k-Hamiltonian, there exist 
k+2-|F1| edges incident to (a,1) on some 
Hamiltonian cycles. Since )( 2Ghσ =k, there exist 
k+1 edges incident to (a,2) on some Hamiltonian 
paths. Furthermore, (k+2-|F1|)+(k+1)=2k+3- 
|F1|=k+3. Therefore, there exists a fault-free 
neighbor (vr,i) of ((vr,1),(vr,i)) ∉ F where 
((a,1),(vr,1)) and ((a,2),(vr,i)) are on some 
Hamiltonian cycle HC1 of G1 and some 
Hamiltonian path HP2((s,2),(d,2)) of G2, 
respectively. Hence we can construct a 
Hamiltonian path from (s,2) to (d,2) 
HC1 ∪ HP2((s,2),(d,2)) ∪ {((a,1),(a,2)), 
((vr,1),(vr,2))}-{((a,1),(vr,1)),((a,2),(vr,2))} of 
(G×K2)-F, as illustrated in Figure 6. 

( s, 2)

( d,2)

P

(a,2)(a,1)

C

G 2G 1

3.3

(v r,1) (v r,2)

( s, 2)

( d,2)

P

(a,2)(a,1)

C

G 2G 1

(v r,1) (v r,2)

02 =FkF =1  
 
 
 
Case 4: |F1| ≤ k-1 and |F2| ≤ k-1  
 
Case 4.1 i=j, without loss of generality, we can 
assume i=1, j=1. 

    Let (a,1) be the vertex of V(G1) satisfying 
that (a,1),(a,2) and ((a,1),(a,2)) ∉ F and 
(a,1) ≠ (s,1),(a,1) ≠ (d,1). Since the )( 1Ghσ =k, 
there exist k+1-|F1| edges incident to (a,1) on 
some Hamiltonian path in G1. Since |F1|+|F2| ≤ k, 
there exist k+2-|F2| ≥ 2+|F1| neighbors of (a,2) 
are fault-free. Since k+1-|F1|+k+2-|F2| ≥ k+3, 
there exists a fault-free neighbor (vs,i) of (a,i) 
such that ((a,i),(vs,i)) is on some Hamiltonian 
path HP1((s,1),(d,1)) of G1-F1. Furthermore, 
G2-F2 is Hamiltonian-connected, there exists a 
Hamiltonian path HP2((a,2),(vs,2)). Thus, we can 
construct a Hamiltonian path from (s,1) to (d,1)  
HP1((s,1),(d,1))-{((a,1),(vs,1))} ∪ {((a,1),(a,2))}
∪ {((vs,1),(vs,2))} ∪ HP2((a,2),(vs,2)), as 
illustrated in Figure 7. 

12 −≤ kF11 −≤ kF

(a,2)

(vs,2)

G2

p
(a,1)

(vs,1)

(s,1)

(d,1)

G1

4.1

p

(a,2)

(vs,2)

G2

p
(a,1)

(vs,1)

(s,1)

(d,1)

G1

p

 
 
 
 
Case 4.2 i ≠ j, without loss of generality, we can 
assume i=1, j=2. 
 
There exists a node (a,1) ∈ V(G1) in which 
(a,1) ≠ (s,1),(a,1) ≠ (d,1) and (a,1), (a,2) and 
((a,1),(a,2)) are fault-free. Since |F1|<k and |F2|< 
k, G1-F1 and G2-F2 are Hamiltonian-connected. 
Let HP1((s,1),(a,1)) and HP2 ((a,2),(d,2)) denote 
the Hamiltonian paths of G1 and G2, respectively. 
Therefore, G×K2-F has a Hamiltonian path from 
(s,1) to (d,2). ＜ (s,1)  → (a,1))((s,1), HP1  

(a,1) → (a,2)  → (d,2))((a,2), HP2 (d,2) ＞ of 
(G×K2)-F, as illustrated in Figure 8.  
This theorem is proved.       □ 

11 −≤ kF 12 −≤ kFG1

(s,1)

(a,1)

(d,2)

(a,2)

G2

P P

4.2

G1

(

(a,1)

(

(

G2

P P

 
 
 
 

Figure 5 The Hamiltonian path from (s,1) to 
(d,2) of (G×K2)-F. 

Figure 6 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-F.  

Figure 7 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-F.  

Figure 8 The Hamiltonian path from (s,1) to 
(d,2) of (G×K2)-F.  
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Theorem 2 Let G=(V, E) be a (k+2)-regular, 
k-edge-Hamiltonian graph and )(Ghλ =k. The 
graph G×K2 is a (k+3)-regular, (k+1)- 
node-Hamiltonian graph and )( 2KGh ×λ =k+1.  
 

The proof of Theorem 2 is very similar to 
Theorem 1. We skip the proof of this theorem. 

 
Let Fn, 1nF and

2nF denote sets of faulty nodes in 
G×K2, G1 and G2, respectively. Thus Fn = 

1nF ∪  
2nF .  

 
 
Theorem 3 Let G=(V, E) be a (k+2)-regular, 
k-node-Hamiltonian graph and )(Ghκ =k. The 
graph G×K2 is a (k+3)-regular, (k+1)- 
node-Hamiltonian graph and )( 2KGh ×κ =k+1.  
Proof: Since

2
deg KG× (v,i)=degG(v)+1, G×K2 is a 

(k+3)-regular. We first show that (G×K2)-Fn is a 
Hamiltonian graph in which Fn ⊂ V(G×K2) and 
|Fn|=k+1. We prove this by the following cases. 
 
Case 1: 

1nF =k+1 or 
2nF =k+1. Without loss 

of generality, we assume that
1nF =k+1. 

Since G1 is a k-node-Hamiltonian graph, 
G1-(Fn-{ f }) contains a Hamiltonian cycle HC1 
for f ∈ Fn. Thus G1-Fn contains a Hamiltonian 
path HP1((a,1),(b,1))=HC1-{ f }, for (a,1),(b,1) 
∈ V(G1). There exists a Hamiltonian path HP2 
((b,2),(a,2)) in G2 since G2 is Hamiltonian- 
connected. Hence, we can construct a 
Hamiltonian cycle ＜ (a,1)  → (b,1))((a,1), HP1  

(b,1) → (b,2)  → (a,2))((b,2), HP2 (a,2) → (a,1)＞
of (G×K2)-Fn, as illustrated in Figure 9.  

1
1

+= kFn 0
2

=nFG1 G2G1 G2

(a,1)

(b,1)

(a,2)

(b,2)

C P

1. (a,1)

(b,1)

(a,2)

(

C P

1.

 
 
 
 

Case 2: kFn ≤≤
1

1  and kFn ≤≤
2

1  

Case 2.1: k=1, that is 
1nF =1 and

2nF =1. 

Since both G1 and G2 are 1-node- Hamiltonian, 

there exist Hamiltonian cycle HC1 and HC2 of 
G1 and G2, respectively. Let (a,1)∈ V(G1) and 
(a,2)∈ V(G2) be two fault-free nodes. There exist 
edges ((a,i),(b,i)) ∈ E(Gi) on the Hamiltonian 
cycles HCi since 

iGdeg (a,i)=3 and two edges of 
Gi incident to (a,i) are on HCi, for i=1, 2. Let 
HP1((a,1),(b,1))=HC1-{((a,1),(b,1))} and 
HP2((b,2),(a,2))=HC2- {((a,2),(b,2))}. Hence, we 
can construct a Hamiltonian cycle ＜

(a,1)  → (b,1))((a,1), HP1  (b,1) →  
(b,2)  → (a,2))((b,2), HP2 (a,2) → (a,1) ＞  of 
(G×K2)-Fn , as illustrated in Figure 10.  

1
1

== kFn 1
2

=nFG1

(a,1)

(b,1)

(a,2)

(b,2)

G2

C C

(c,1) (e,2)

(e,1) (c,2)

2.1

 
 
 
 

Case 2.2: k>1 and 
inF =k, 

jnF =1, 1 ≠≤ i  

≤j 2. Without loss of generality, we assume 

that
1nF =k, 

2nF =1. 

There exists a Hamiltonian cycle HC1 in 
G1- 1nF since G1 is k-node-Hamiltonian. Let 
((a,1),(b,1)) be an edge in HC1 such that (a,2) 
and (b,2) ∉ F and HP1((a,1),(b,1))= HC1- 
{((a,1),(b,1))}. And there is a Hamiltonian path 
HP2((a,2),(b,2)) in G2- 2nF  since G2- 2nF  is 
Hamiltonian-connected. Hence, we can construct 
a Hamiltonian cycle ＜(a,1)  → (b,1))((a,1), HP1  

(b,1) → (b,2)  → (a,2))((b,2), HP2 (a,2) → (a,1)＞
of (G×K2)-Fn, as illustrated in Figure 11.   

1
2

=nF1
1

>= kFn G2G1

(a,1)

(b,1)

(a,2)

(b,2)

C P

2.2

G2G1

(a,1)

(b,1)

(a,2)

(b,2)

C P

2.2

 
 
 
 
 

Figure 9 The Hamiltonian cycle of (G×K2)-Fn. 

Figure 10 The Hamiltonian cycle of (G×K2)-Fn. 

Figure 11 The Hamiltonian cycle of (G×K2)-Fn. 
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Case 2.3: 2 ≤
inF ≤ k-1, for i=1, 2 

    Since
1nF ≤ k-1 and

1nF ≤ k-1, G1 and G2 

are Hamiltonian-connected. There exist 
Hamiltonian paths of G1 and G2, respectively.  
That have the HP1((a,1),(b,1)) and HP2 
((a,2),(b,2)). Hence there exists a Hamiltonian 
cycle of G×K2 ＜ (a,1)  → (b,1))((a,1), HP1  

(b,1) → (b,2)  → (a,2))((b,2), HP2 (a,2) → (a,1)＞ 
of (G×K2)-Fn, as illustrated in Figure 12. 

≤ ≤11
1

−≤ kFn 11
2

−≤ kFn
G1

(a,1)

(b,1)

(a,2)

(b,2)
G2

P P

2.3

G1

(a,1)

(b,1)

(a,2)

(b,2)
G2

P P

2.3

 
 
 
 
According to the above proof, we can obtain that 
G×K2 is (k+1)-node-Hamiltonian. 
 

In the following, we will show that for all 
((s,i),(d,j))∈ V(G×K2), 1 ≤≤ ji, 2, there exists a 
Hamiltonian path HP((s,i),(d,j)) from (s,i) to (d,j) 
in (G×K2)-Fn for Fn ⊂ V(G×K2) and |Fn|=k, with 
the following cases. 
Case 3:

1nF =k or
2nF =k. Without loss of 

generality, we assume that when
1nF =k. 

 
Case 3.1: i=1, j=1. 

Since the )( 1Ghκ =k, G1-( 1nF -{(f,1)}) is 

Hamiltonian-connected for (f,1) ∈
1nF . Then 

G1-( 1nF -{(f,1)}) contains a Hamiltonian path 

HP1((s,1),(d,1))= ＜ (s,1) → … → (a,1) →  
(f,1) → (b,1) →…→ (d,1)＞. Thus HP1-{(f,1)} 
forms two paths P((s,1),(d,1))=＜ (s,1) → …

→ (a,1)＞  and Q((b,1),(d,1))=＜ (b,1) →…

→ (d,1)＞. Since G2 is Hamiltonian-connected, 
there exists a Hamiltonian path HP2((a,2),(b,2)). 
Hence, we can construct a Hamiltonian path (s,1) 
to (d,1) ＜ (s,1)  → (a,1))P((s,1), (a,1) →  

(a,2)  → (b,2))((a,2), HP2 (b,2) → (b,1)
 → (d,1))Q((b,1),  (d,1) ＞ of (G×K2)-Fn, as 

illustrated in Figure 13. 

0
2

=nFkFn =
1

(a,2)

(b,2)
G2

P(a,1)

(b,1)

P

(s,1)

(d,1)
G1

3.1

(f,1)

(a,2)

(b,2)
G2

P(a,1)

(b,1)

P

(s,1)

(d,1)
G1

(f,1)

 
 
 
 
 
Case 3.2: i=1, j=2  

Because G1 is k-node-Hamiltonian, we can 
find a Hamiltonian cycle HC1 in G1- 1nF . If 
(a,1) ≠ (d,1), we can construct a Hamiltonian 
path from (s,1) to (d,2) HC1-{((s,1),(a,1))} 
∪ {((a,1),(a,2))} ∪ HP2((a,2),(d,2)). On the 
other hand, if (a,1)=(d,1) then (b,1) ≠ (d,1). The 
similar Hamiltonian path from (s,1) to (d,2) can 
be constructed as follows: HC1-{((s,1),(b,1))} 
∪ {((b,1),(b,2))} ∪ HP2((b,2),(d,2)) of 
(G×K2)-Fn, as illustrated in Figure 14. 

kFn =
1 0

2
=nFG1

(a,1)

(b,1)

(a,2)

(d,2)
G2

C P

3.2

(s,1)

G1

(a,1)

(b,1)

(a,2)

(d,2)
G2

C P

(s,1)

 
 
 
 
 
 
Case 3.3: i=2, j=2 
 
Sub-case 3.3.1: k=1 
    When k=1, it implies there is a fault in G1. 
Since G1 is 1-node-Hamiltonian, there exists a 
Hamiltonian cycle in G1. Since G2 is 
Hamiltonian-connected, there is a Hamiltonian 
path HP2 ((s,2),(d,2)) in G2. Let (a,1) ∉ F and 
(a,2) ≠ (s,2) and (a,2) ≠ (d,2). Since two edges of 
G1 incident to (a,1) are on HC1 and two edges of 
G2 incident to (a,2) are on HP2((s,2),(d,2)), there 
exist ((b,1),(a,1)) and ((b,2),(a,2)) are on HC1 
and HP2((s,2),(d,2)), respectively. Therefore, we 
can construct a Hamiltonian path between (s,2) 
and (d,2) as HC1 ∪ HP2((s,2),(d,2))-{((a,1),(b,1)), 
((a,2),(b,2))} ∪ {((a,1),(a,2),(b,1),(b,2))} of 

Figure 12 The Hamiltonian cycle of (G×K2)-Fn. 

Figure 13 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-Fn. 

Figure 14 The Hamiltonian path from (s,1) to 
(d,2) of (G×K2)-Fn. 
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(G×K2)-Fn, as illustrated in Figure 15. 

0
2

=nF1
1

== kFn G2

(a,2)

(b,2)
P

(s,2)

(d,2)
G1

(a,1)

(b,1)

C

(e,1)

3.3.1 (c,2)
(e,2)

(c,1)

G2

(a,2)

(b,2)
P

(s,2)

(d,2)
G1

(a,1)

(b,1)

C

(e,1)

(c,2)
(e,2)

(c,1)

 
 
 
 
Sub-case 3.3.2: k=2 
 
Sub-case 3.3.2(1): (s,1) ∉ Fn or (d,1) ∉ Fn. 
Without loss of generality, we assume that 
(s,1) ∉ Fn. 

Since G1 is 2-node-Hamiltonian and the 
)(Ghκ =2, there exists a Hamiltonian cycle HC1 

in G1- 1nF and G2-{(s,2)} is Hamiltonian- 
connected. Let ((a,1),(s,1)) and ((b,1),(s,1)) be 
two edges of HC1. One of (a,1)and (b,1),say 
(b,1), is not (d,1). Let HP2((b,2),(d,2)) be a 
Hamiltonian path of G2-(s,2). Thus we can 
construct a Hamiltonian path from (s,2) to (d,2) 
as ＜ (s,2) → (s,1)  → (b,1))((s,1), HP1 (b,1) 

→ (b,2)  → (d,2))((b,2), HP2 (d,2)＞of (G×K2)-Fn, 
as illustrated in Figure 16. 

0
2

=nF2
1

== kFn G2

(b,2)

P

(s,2)

(d,2)
G1

(s,1)

(b,1)

C

3.3.2(1)
(a,1)

G2

(b,2)

P

(s,2)

(d,2)
G1

(s,1)

(b,1)

C

(a,1)

 
 
 
 
Sub case 3.3.2(2): (s,1)∈ Fn and (d,1)∈ Fn.  
 
    Since G2 is Hamiltonian-connected, there 
exists a Hamiltonian path from (s,2) to (d,2). 
There exists ((s,2),(a,2)) which is an edge in G2, 
but ((s,2),(a,2)) isn’t the edge on HP2((s,2),(d,2)). 
Hence the node (a,2) has other three edges and 
HP2((s,2),(d,2)) must pass through two of these 
three edges. Because

1nF = k, we can find a HC1 

of G1- 1nF . Since Fn={(s,1),(d,1)}, ((s,1),(d,1)) is 

an edge of HC1. Thus HC1 must pass through 
two of the three edges incident to (a,1). 
Consequently, there exist edges ((a,1),(b,1)) and 
((a,2),(b,2)) on HC1 and HP2 ((s,2),(d,2)), 
respectively. Hence, we can construct a 
Hamiltonian path from (s,2) to (d,2) HC1 ∪ HP2 
((s,2),(d,2))-{((a,1),(b,1)),((a,2),(b,2))} ∪ {((a,1), 
(a,2)),((b,1),(b,2))}of (G×K2)-Fn, as illustrated 
in Figure 17.  

0
2

=nF2
1

== kFn

(s,2)

(d,2)
P

(a,2)(a,1)C

(s,1)

(d,1)

G2G1

3.3.3(2)

(b,1)
(b,2)

(s,2)

(d,2)
P

(a,2)(a,1)C

(s,1)

(d,1)

G2G1

(b,1)
(b,2)

 
 
 
 
 
Sub case 3.3.3: k ≥ 3 
 
Sub case 3.3.3(1): (s,1) ∉ Fn or (d,1) ∉ Fn. 
Without loss of generality, we assume that 
(s,1) ∉ Fn. 
    Since G1 is k-node-Hamiltonian and the 

)(Ghκ =k, for k ≥ 3, there exists a Hamiltonian 
cycle HC1 in G1- 1nF and G2-{(s,2)} is 
Hamiltonian-connected. Let ((a,1),(s,1)) and 
((b,1),(s,1)) be two edges of HC1. One of (a,1) 
and (b,1), say (b,1) is not (d,1). Let HP2 
((s,2),(d,2)) be a Hamiltonian path of G2-(s,2). 
Thus we can construct a Hamiltonian path from 
(s,2) to (d,2) as ＜(s,2) → (s,1)  → (b,1))((s,1), HP1  

(b,1) → (b,2)  → (d,2))((b,2), HP2 (d,2) ＞ of 
(G×K2)-Fn, as illustrated in Figure 18. 

0
2

=nF3
1

≥= kFn G2

(b,2)

P

(s,2)

(d,2)
G1

(s,1)

(b,1)

C

3.3.3(1) (a,1)

G2

(b,2)

P

(s,2)

(d,2)
G1

(s,1)

(b,1)

C

(a,1)

 
 
 
 
Sub case 3.3.3(2): (s,1) ∈ Fn and (d,1) ∈ Fn. 
 

Figure 15 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-Fn. 

Figure 16 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-Fn. 

Figure 17 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-Fn. 

Figure 18 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-Fn. 
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    Since
2

degG (s,2)=k+2, there exists a 
neighbor (a,i) of (s,i) such that (a,i)∉ Fn for i=1, 
2. Let HC1 be a Hamiltonian cycle of G1-F1. Let 
((b,1),(a,1)) be an edge on HC1 and 
HP1((a,1),(b,1)). Since )( 2Ghκ ≥ 3, there exists a 
Hamiltonian path HP2((b,2),(d,2)) in G2- 
{(s,2)(a,2)}. Hence, we can construct a 
Hamiltonian cycle ＜ (s,2) → (a,2) → (a,1) 

 → 1)) (b,1), ((a, HP1 (b,1) → (b,2) 
 → 2)) (d,2), ((b, HP2 (d,2) ＞ of (G×K2)-Fn, as 

illustrated in Figure 19. 
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(d,2)
P
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(d,2)
P
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(d,1)

G2
G1

(b,1) (b,2)

 
 
 
 
Case 4: 1 ≤

1nF ≤ k-1 and 1 ≤
2nF ≤ k-1 

 
Sub case 4.1: i=j, without loss of generality, we 
assume i=1, j=1. 
 
Sub case 4.1.1: 

1nF = k-1, 
2nF =1 

    Since the faults are not all included in G1 or 
G2, G1- 1nF and G2- 2nF are both Hamiltonian- 
connected. Let HP1((s,1),(d,1)) be a Hamiltonian 
path of G-

1nF . Let (a,1) and (a,2) be fault-free 
nodes of G1 and G2, for (a,1) ≠ (s,1) or (d,1), 
respectively. There are two edges ((x,1),(a,1)) 
and ((a,1),(y,1)) on HP1((s,1),(d,1)). There exist 
one of (x,1) and (y,1), say (x,1), such that (x,2) 
are fault-free since 

2nF =1. Furthermore, there 

exists a Hamiltonian path HP2((x,2),(a,2)) in 
G2- 2nF . Hence, we can construct a Hamiltonian 

path from (s,1) to (d,1) HP1((s,1),(d,1))- 
{((a,1),(x,1))} ∪ {((a,1),(a,2)),((x,1),(x,2))} ∪ H
P2((x,2),(a,2)) of (G×K2)-Fn, as illustrated in 
Figure 20. 

1
2

=nF1
1

−= kFn

(a,2)

(b,2)
G2

P(a,1)

(b,1)

P

(s,1)

(d,1)
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4.1.1
(a,2)

(b,2)
G2

P(a,1)

(b,1)

P

(s,1)

(d,1)

G1
 

 
 
 
Sub case 4.1.2: 

1nF =k-2 and 
2nF =2. 

 
Sub case 4.1.2(1): (s,2) ∉ Fn or (d,2) ∉ Fn. 
Without loss of generality, we assume that 
(s,2) ∉ Fn. 
    Let (b,1)∈ (V(G1)- 1nF ) and (b,2)∈  (V(G2)- 

2nF ) such that (b,1) ≠ (s,1) and (b,1) ≠ (d,1). Let 
HP1((b,1),(d,1)) and HP2((s,2),(b,2)) be the 
Hamiltonian paths of G1-F1-{(s,1)} and G2-F2, 
respectively. Hence, we can construct a 
Hamiltonian cycle ＜ (s,1) → (s,2) 

 → (b,2))((s,2), HP2 (b,2) → (b,1) 
 → (d,1))((b,1), HP1 (d,1) ＞ of (G×K2)-Fn, as 

illustrated in Figure 21. 
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=nF2
1

−= kFn
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(s,2)

(b,2)

P

G1

(b,1)

P

(s,1)

(d,1)

4.1.2(1)

G2
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P

G1

(b,1)

P

(s,1)

(d,1)

 
 
 
 
 
Sub case 4.1.2(2): (s,1) ∈ Fn and (d,1) ∈ Fn .   
 
   Since G1 is Hamiltonian-connected, there 
exists a Hamiltonian path HP1((s,1),(d,1)). Let 
((a,1),(b,1)) be an edge of HP1((s,1),(d,1)) such 
that {(a,1),(b,1)} ∩ {(s,1),(d,1)}=ø. Since 
K1(G2)>2, there exists a Hamiltonian path 
HP2((a,2),(b,2)) in G2-F2. Hence, we can 
construct a Hamiltonian path from (s,1) to (d,1) 
HP1((s,1),(d,1)) ∪ HP2((a,2),(b,2))-{(a,1),(b,1)} 

Figure 19 The Hamiltonian path from (s,2) to 
(d,2) of (G×K2)-Fn. 

Figure 20 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-Fn. 

Figure 21 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-Fn. 
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∪ {((a,1),(a,2)),((b,1),(b,2))} of (G×K2)-Fn, as 
illustrated in Figure 22. 
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P
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(s,2)
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Sub case 4.1.3: 1<

1nF ≤ k-3 and 3 ≤
2nF < k. 

Since Gi are k+2-regular, there exists a 
fault-free neighbor (a,i) of (s,i) for (a,i) ≠ (d,i), 
i=1, 2 .Let (b,i) a be fault-free node such that 
(b,i) ∉ {(s,i),(d,i),(a,i)} for i= 1, 2. Since 

1nF ≤  k-3,G1- 1nF -{(s,1),(a,1)} is Hamiltonian- 

connected. There exist Hamiltonian paths HP1 

((b,1),(d,1)) and HP2((a,2),(b,2)) in G1- 1nF - 
{(s,1),(a,1)} and G2-F2 , respectively. Hence, we 
can construct a Hamiltonian path ＜

(s,1) → (a,1) → (a,2)  → (b,2))((a,2), HP2 (b,2) →
(b,1)  → (d,1))((b,1), HP1 (d,1)＞of (G×K2)-Fn, as 
illustrated in Figure 23. 

kFn <≤
2

33F1
1n −≤< k

(a,2)

P

(b,2)P

(a,1)

G2G1

4.1.3

(b,1)

(a,2)

P

(b,2)P

(a,1)

G2G1

(b,1)

(s,1)(s,1)

(d,1)

 
 
 
 
 
Sub case 4.2: i ≠ j, without loss the generality, 
we assume i=1, j=2. 

There exists a node (a,1)∈ V(G1) in which 
(a,1) ≠ (s,1), (a,1) ≠ (d,1) and (a,1), (a,2) and 
((a,1),(a,2)) are fault-free. Since 

1nF <k and 

2nF < k, G1- 1nF and G2- 2nF are Hamiltonian- 

connected. Let HP1((s,1),(a,1)) and HP2 
((a,2),(d,2)) denote the Hamiltonian paths of G1 

and G2, respectively. Therefore, G×K2-Fn has a 
Hamiltonian path from (s,1) to (d,2) ＜(s,1) 

 → (a,1))((s,1), HP1 (a,1) → (a,2) →
 → (d,2))((a,2), HP2 (d,2) ＞ of (G×K2)-Fn, as 

illustrated in Figure 24.   
This theorem is proved.    □ 
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−≤< kFn 11
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−≤< kFnG1
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P P
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G1
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P P
(d,1)(s,1)(s,1)

 
 
 

 

Applying previous three theorems, we can 
construct a sequence of graphs which are 
(k+2)-regular, k-Hamiltonian (k-edge- 
Hamiltonian, k-node-Hamiltonian) and )(Ghσ = 
k ( kGh =)(λ , kGh =)(κ ). 

 
The complete graph Kn is a (n-1)-regular, 

(n-3)-Hamiltonian graph and .3)( −= nKnhσ  
Applying Theorem 1 to Kn, we can obtain a 
series graphs G which are (k+2)-regular, 
k-Hamiltonian and kGh =)(σ . The graph G1 in 
Figure 25 is 1-edge-Hamiltonian and 

1)( 1 =Ghλ . Applying Theorem 2 to the G1, we 
can construct a family of (k+2)-regular and 
k-edge-Hamiltonian graphs whose edge- 
Hamiltonian-connectivity is k. The graph G2 in 
Figure 25 is 1-node-Hamiltonian and )( 2Ghκ = 
1. Applying Theorem 3 to G2, we can construct a 
family of (k+2)-regular and k-node-Hamiltonian 
graphs whose node-Hamiltonian-connectivity is 
k. 

Figure 22 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-Fn. 

Figure 23 The Hamiltonian path from (s,1) to 
(d,1) of (G×K2)-Fn. 

Figure 24 The Hamiltonian path from (s,1) to 
(d,2) of (G×K2)-Fn. 



 

G 1

H
c
M
g
H
p

c
g
p
H

[

[

[

[4]  C. N. Hung, L. H. Hsu, and T. Y. Sung, 
“Christmas tree: a versatile 1-fault-tolerant 
design for token rings”, Information 
Processing Letters, 72, pp.55-63, 1999 

[5]  C. N. Hung, L. H. Hsu, and T. Y. Sung, “On 
the construction of combined k-fault- 
tolerant Hamiltonian graphs”, Networks, 
Vol. 37(3), pp.165-170, 2001. 

[6]  A. Kanevsky, and C. Feng, “On the 
embedding of cycles in pancake graphs”, 
Parallel Computing, 21, pp.923-936, 
(1995). 

[7]  J. S. Kim, S. R. Maeng, and H. Yoon, 
“Embedding of rings in 2-D meshes and 
tori with faulty nodes”, Journal of Systems 
Architecture, 43, pp.643-654, 1997 

[8]  F.T. Leighton, “Introduction to parallel 
algorithms and architectures: arrays．tree．  

 

G 2  

 
 

Figure 25 The 1-node-Hamitlonian graph G1 and 
1-node-Hamiltonian graph G2 
10

4. Conclusions 

In this paper we introduce the concepts of 
amiltonian-connectivity, edge-Hamiltonian- 

onnectivity and node-Hamiltonian-connectivity. 
oreover, we present a construction scheme for 

raphs containing fault tolerance for 
amiltonian and Hamiltonian-connected 
roperties. 

 
In the future, we hope to present more 

onstruction schemes for the graphs with these 
ood properties. The relationship about these 
roperties and other Hamiltonian properties (e.g. 
amiltonian-laceability) is worthy to studied. 
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