
Fast and Intuitive Metamorphosis of 3D Polyhedral Models

Tong-Yee Lee*

tonylee@mail.ncku.edu.tw
Po-Hua Huang

bohaw@vision.csie.ncku.edu.tw

Han-Ying Lin
talor@vision.csie.ncku.edu.tw

Chao-Hung Lin
jendon@vision.csie.ncku.edu.tw

Department of Computer Science and Information Engineering
National Cheng-Kung University, ROC.

* Corresponding author

Abstract
In this paper, we present a very fast and 

intuitive approach to generate the 
metamorphosis of two genus 0 3D polyhedral 
models. There are two levels of correspondence 
specified by animators to control morphs. The 
higher level requires the animators to specify 
scatter features to decompose the input models 
into several corresponding patches. The lower 
level optionally allows the animators to specify 
extra features on each corresponding patch for 
the finer control of correspondence. Once these 
two levels of correspondence are established, the 
proposed schemes automatically and efficiently 
establish a complete one-to-one correspondence 
between the two models. The performance of the 
proposed methods is comparable to or even 
much better than the state-of-the-art in 3D 
polyhedral metamorphosis. We demonstrate 
several examples of aesthetically pleasing 
morphs, which can be very fast and intuitively 
created with little user interaction times.

Keywords: Polyhedral metamorphosis, em-
bedding, relaxation, warping, merging, SMCC

1. Introduction

Three-dimensional metamorphosis (or 
morphing) is a widespread technique in 
entertainment and animation to generate a 
smooth transition from a source object to a target 
object. In this paper, we focus on morphs 
between two genus 0 3D polyhedra. In the 
literature, most polyhedral morphing techniques 
could consist of two main steps: one is to find 
one-to-one correspondence between two 
polyhedral meshes and the other is to define 
interpolation paths for each pair of 
corresponding vertices on the meshes to 
calculate the in-between shapes. A lot of 
previous work has been published in the area of 
3D polyhedral morphing. There are two 

excellent surveys of 3D morphing to be referred 
to in [1,2].

In this paper, our design goal is to provide 
animators the easy control of morphs and the 
fast creation of morphs. There are two-level 
controls for animators to intuitively establish 
correspondence. First, animators specify scatter 
features to decompose the models into the 
corresponding patches, i.e., called morphing 
patches in this paper. This higher-level control 
provides the approximate correspondence 
between two models. If the finer correspondence
is required on each patch, the lower-level control 
allows the animators to specify extra feature 
points on each patch. With the help of the 
lower-level control, animators only need to 
identify few corresponding morphing patches. 
Therefore, in contrast to other methods such as 
[3], manual interaction times can be reduced. 
Afterwards, there are three techniques designed 
to automatically and efficiently establish a 
complete one-to-one correspondence between 
models. In contrast to most other approaches, the 
proposed methods are very fast and can be 
computed within a few seconds. These proposed 
schemes are the main contributions of this paper 
and are listed below:

l An efficient relaxation method is proposed 
to embed (i.e., map) 3D morphing patches 
to 2D regular polygons. In contrast to other 
relaxation methods such as in [4], our 
method is computed within a few seconds 
(usually less than 1 second for our 
examples).

l A foldover-free warping method is used to 
align corresponding feature vertices 
between two embeddings of morphing 
patches. This is a very essential part in the 
lower-level control of correspondence.

l An efficient but simple merging method is 
presented to create a merged embedding that 
contains the faces, edges and vertices of two 



given embeddings. The SMCC (structures
of minimal contour coverage) is designed to 
speed up the merging process and the 
merging is always computed in less a 
second. In addition, there are several lookup 
tables are used for easy and efficient 
implementation.

The rest of our paper is organized as follows. 
Section 2 reviews the related work of 3D 
polyhedral metamorphosis. The proposed 
techniques are presented in Section 3. We 
experimentally evaluate the proposed schemes 
and experimentally compare with other wok in 
Section 4. Finally, the conclusion and future 
work are given in Section 5.

2. Related Work

Lazarus and Verroust [1] give an excellent 
survey of previous work on the 3D morphing 
problem. There are two major classes of 3D 
morphing technique: volume based approach and 
surface based approach. In this paper, we focus 
on surface based approach. For more related 
work of volume-based approach, please refer to 
[1]. The surface based approach works on 
boundary representations such as polyhedral 
meshes or patch complexes. Methods for this 
approach usually create an interpolation mesh, 
which is a common embedding of both source 
and target meshes. This interpolation mesh is 
then geometrically deformed to create morphed 
shapes. This common embedding solves the 
correspondence problem, associating the vertices 
or triangles between the source mesh and target 
mesh. This is a key issue of surface based 
approach and will be the focus of our paper.

A lot of work has been published in the 
correspondence issue. Kent et al [6] introduce 
parameterizations for solving the 
correspondence problem. Their approach 
projected star-shaped objects onto spheres to 
accomplish parameterization. Similarly, Alexa [4] 
employs a relaxation method to embed 
polyhedral shapes on the spheres. Lazarus and 
Verroust [7] introduce skeletons for cylinder-like 
objects. This approach is an extension of [6] for 
objects that are star-shaped around an axis. 
Parent [8] presents a recursive algorithm that 
automatically finds a correspondence between 
the surfaces of two objects of equivalent 
topologies. Decarlo et al. [9] present a method to 
transform objects with different topologies. The 
user must identify a sparse control mesh on each 
surface of objects and this control mesh specifies 
how to transform one surface to another. 
Therefore, it will become very complicated and 
difficult to transform complex shapes. Kanai et 
al. [10] and Zockler et al. [5] utilize mesh 

parameterization technique such as harmonic 
mapping to embed a region of a mesh to a 2D 
convex polygon. Gregory et al. [3] apply a 
user-specified control mesh to decompose the 
surface into a large number of disk-like patches. 
However, this task is very slow and tedious. Lee 
et al. [11] employ the MAPS algorithm [12] to 
parameterize input meshes over simple base 
domains and an additional harmonic map 
bringing the latter into the correspondence. Their 
approach can have fold-over problem and user 
interaction is required to manually fix this 
problem.

3. Methodology

3.1 Overview

In this paper, the inputs are genus 0 3D 
polyhedral models that consist of 1-ring 
structure triangular meshes. Our work is closest 
in spirit to Gregory et al.’s [3] work and to 
Alexa’s work [4]. Our overall system structure is 
similar to their theme. However, we present 
novel techniques in our design. The main 
procedures of our design are listed below:

l Selection of Ver tex Pair s and 
Decomposition into Morphing Patches:
For given two 3D polyhedral models, 
animators select corresponding vertices on 
each polyhedron to define correspondences 
of regions and points in both models. The 
algorithm automatically partitions the 
surface of each polyhedron into the same 
number of morphing patches by computing 
a shortest path between the selected vertices.
The above is corresponding to the high-level 
control of morphs in our design.

l 3D-to-2D Embedding: Each 3D morphing 
patch is mapped onto a 2D regular polygon 
by the proposed relaxation method.

l Aligning Feature Ver tices: The interior 
vertices in the regular 2D polygons are 
matched by using a foldover-free warping 
technique. Users can specify extra feature 
vertices to have a better control over 
correspondence. This design corresponds to 
the lower-level control of morphs.

l Merging, Re-meshing and Interpolation:
The algorithm merges the topological 
connectivity of morphing patches in the 
regular 2D polygon. Inserting additional 
edges retriangulates the regions in the 
merged regular 2D polygon. This step 
reconstructs the facets for the new morphing 
patch, i.e., a common interpolation mesh.
Finally, we compute exact interpolation 
across the common interpolation meshes.



3.2 Specifying Corresponding Morphing Patches

Given two polyhedra A and B, animators 
interactively design correspondence by 
partitioning each polyhedron into the same 
number of regions called morphing patches. 
Each pair of morphing patches is denoted as 
( A

iC , B
iC ), where i  is the corresponding patch 

index. To define each pair of ( A
iC , B

iC ), 
animators must specify the same number of 
vertices (i.e., called extreme vertices [3]), too. 
These selected vertices also form corresponding 
point pairs in both models. The boundary of a 
morphing patch consists of several consecutive 
chains. Each chain is obtained by computing a 
shortest path between two consecutive selected 
vertices. Animators can partition two input 
polyhedra into arbitrary number of morphing 
patches, but each patch cannot cross or overlap 
the other patches. Once the models are 
partitioned into several corresponding morphing 
patches, the next is to compute the 
correspondence of interior vertices of ( A

iC , B
iC ).

3.3 Embedding 3D Morphing Patches on 
Regular 2D Polygons

In the following, we will first describe the 
basic idea of the proposed relaxation method to 
compute 3D-to-2D embeddings. This initial 
approach requires several iterations to be 
finished. It can be computationally expensive. 
Next, we propose to solve the linear system of 
our relaxation method. In this manner, the 
embedding can be computed very fast.

Given a pair of 3D morphing patches 
( A

iC , B
iC ) defined by n extreme vertices, we 

embed each on an n-side regular 2D polygon 
called Di by a relaxation method. Each n-regular 
polygon is inscribed in the unit circle and its 
center is at (0, 0). The relaxation algorithm 
consists of three steps. First, the extreme vertices 
of the morphing patches are mapped to the 
vertices of Di. Next, each chain of the morphing 
patch is mapped to an edge of Di. We need to 
find the 2D coordinates of non-extreme vertices 
along each chain. The 2D coordinates of these 
non-extreme vertices are interpolated based on 
the arc length of the chain. Third, we compute a 
2D mapping for the interior vertices of A

iC
and B

iC  by initially mapping them to the center 
position (0,0). Then, these vertices are moved 
step by step by the following relaxation equation 
and this process will continue until all the 
interior points are stable, i.e., not moved.
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In equation (1), there are several parameters 
defined as follows:

l ip  is an interior vertex and its initial 
position is at (0,0). It represents the 2D 
mapping of a 3D vertex P i interior to a 
morphing patch.

l '
ip  is a new position of ip  according to 

equation (1).

l jp  is a 2D mapping of P j. P j is one of P i’s 

neighbors and ik  is the number of 
neighbors of P i in 3D.

l
jw  is a pulling weight for jp , 

and λ controls the moving speed and its 
value is between 0 and 1.

We attempt to compute a good embedding
which preserves the aspect ratio of the original 
triangle versus the mapped triangle and does not 
cause too much distortion To determine

jw , our 

idea is similar to Kanai et al.’s [10] weight 
formula used in their harmonic mapping. 
However, we use a different and a simpler 
formula. For example, in Figure 1, 0=ip  and 
the weight of 2=jp  is computed by the 

following equation:

312 cotcot θθ +=w (2)

Fig. 1. The definition of a pulling weight

In equation (2), 1θ  is the angle between 

21edge  and 
01edge  and 

3θ  is the angle 
between 

23edge  and 
03edge . These are 3D 

edges of a morphing patch. In this manner, all 

jw  can be computed. In equation (2), we can 

imagine that the whole system is a spring system. 
During iterations, ip  is pulled by several 
springs connecting to all its neighbors jp . The 

idea behind the equation (2) is that long edges 
subtending to big angles are given relatively 
small spring constants compared with short 
edges that subtend to small angles. Based on the 
equation (1), we can use iteration methods to 
find all ip s and terminate iteration when all 

ip s are stable. However, in this manner, the 
computation time is not predictable and could be 
expensive. Therefore, we will not find ip s by 
iteration method and will solve it by the 



following manner.

Using equation (1), as ip  is stable, ideally, 

ii pp =' . Thus, we will have the following.
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Therefore, assume the number of ip s is N, 
we can have the following linear system for the 
proposed relaxation method.
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linear system can be represented as the following 
form:
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This linear system is not singular, so that it 
has a unique solution. Furthermore, for each ip , 
the number of its neighbors is small compared to 
N. Therefore it is a sparse system and can be 
solved efficiently by using numerical method.

3.4 Aligning the Features and Foldover-Free 
Warping

Given a pair of morphing patches ( A
iC , B

iC ), 

),( B
i

A
i DD are their corresponding 2D 

embeddings. Their extreme vertices are 
automatically aligned by user specification. 
Using this initial correspondence, we could 
directly overlay two embeddings to get a merged 
embedding for morphing. For example in Figure 
2 (a), we select a corresponding morphing patch 
on two given models and the number of extreme 
vertices is five. There are two extra vertex 
pairs ),( BA and ),( ba  shown in both models, 
respectively. These extra vertices represent eye 
corners. In Figure 2(b), we show both 

),( B
i

A
i DD  after embedding. It is obvious to see 

that vertex pairs ),( BA and ),( ba do not align if 
we directly overlay ),( B

i
A

i DD . Therefore, to 
compute better correspondence, we usually 
require animators to specify several extra 
corresponding features such as vertex 
pairs ),( BA and ),( ba on both ),( B

i
A

i DD . Then 
we employ a foldover-free warping function to 
align ),( BA and ),( ba . Non-feature points will be 
automatically moved by the warping function, 
too. Like [5], to minimize distortion due to 
warping, we first move these extra 
corresponding feature points linearly to the point 
halfway between them and then perform 
warping.

Our warping is simply computed as a 
weighted sum of radial basis function (RBF). 
Suppose there are n extra feature pairs. 
Since ),( B

i
A

i DD  are both in 2D, the radial 
function R consists of two components ),( 21 RR , 
where each component has the following form.
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1

∑
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i
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j
ij ppgapR  , j = 1,2 (6)

In equation (6), j
ia are coefficients to be 

computed, g is the radial function and ip  is a 
feature point. For each given p, we compute its 
new position by ))(),(( 21 pRpR using equation (6). 
In total, there are 2n coefficients to compute. In 
current implementation, the radial basis function 
we use is a Gaussian function:

2

2

)( σ
t

etg
−
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In equation (7), the variance σ  controls 
the degree of locality of the transformation. In 
Figure 2 (c), we show ),( B

i
A

i DD  with warping 
by two extra feature points. This result is better 
than that of Figure 2(b). Therefore, we can 
overlay them now to get a merged embedding 
for morphing. Sometimes, the warping can lead 
to fold-over (self-intersections) on ),( B

i
A

i DD . 



We need foldover-free embeddings. To solve 
foldover, we first check if self-intersections 
occur on ),( B

i
A

i DD  after warping. If 
self-intersections occur, we simply iterate 
equation (1) instead of solving equation (5). 
Usually, it requires a few iterations and 
self-intersections will not occur. In the following, 
we show how to check if self-intersections
occur.

Our inputs are genus 0 3D polyhedral 
models with 1-ring structure. Therefore, if there 
is no self-intersection on both ),( B

i
A

i DD , each 
interior point of both embeddings must have a 
complete 1-ring structure in 2D. If any interior 
point of an embedding has an incomplete 1-ring 
structure, the self-intersection occurs. To check 
if a point has a complete 1-ring structure, we 
compute the following:

→−→−

⊗= pbpaM  (⊗ : the right-hand vector cross 
product)





<=
>

0
0

,
,

M
M

incomplete
complete (8)

In equation (8), we need to check all nodes 
at p’s 1-ring structure. If any violation (i.e., M
<=0) occurs, it is an incomplete ring structure in 
2D. Note that the vertices of a triangle are in 
counterclockwise order. Figure 3 is used to 
illustrate the equation (8). In Figure 3 (a), before 
embedding, P (i.e., p’s corresponding vertex in 
3D) has a complete 1-ring structure. After 
embedding and warping, a self-intersection 
occurs as shown in Figure 3 (b). In this case, we 
simply check all nodes at p’s 1-ring structure and 
find (a, b) violates equation (8).

3.5 Efficient Local Merging

Given two embeddings ),( B
i

A
i DD , we 

merge them to produce a common embedding 
that contains the faces, edges and vertices. The 
complexity of a brute-force merging algorithm is 

2(nO +k), where n is the number of edges and k
is the number of intersections. This naïve 
approach globally checks all edges to find the
possible intersections. We present a novel 
method for checking edges locally and 
efficiently computing the intersections. The 
complexity of the proposed method is )( knO + .
Additionally, to efficiently implement our 
method, a lookup table is created.

3.5.1 The Classification of the Corresponding 
Positions

The merging algorithm wants to overlay 
each edge B

E
B

S PP B
iD∈  on A

iD , where S and E
represent the starting and ending points of a 
given edge. Since the correspondence of each 

extreme vertex has been established before 
embedding by animators, we perform the 
overlay starting from a B

E
B

S PP B
iD∈ , where B

SP
is an extreme vertex. Since B

iD  is a connected 
planar graph, we can traverse all edges starting 
from B

E
B

S PP  and overlay them on A
iD  edge by 

edge. We can imagine that an edge 
B

E
B

S PP consists of an infinite number of points.

As we overlay this edge on A
iD , the 

corresponding positions of these points have 
three kinds on A

iD  as illustrated in Figure 4. 
These three possibilities are:

(a) The user picks five extreme vertices (i.e., 
blue dots) and two extra feature vertices (i.e., red 
dots).

(b) Embeddings without warping.

(c) Embedding with warping by two extra 
features (i.e., red dots).

Figure 2. Embedding and warping.

(a)      (b)

Figure 3 (a) prior to embedding and warping, P
has a complete 1-ring structure in 3D and (b) P
has an incomplete 1-ring structure in 2D after 
embedding and warping.



1. Some point B
i

B DP ∈ (i.e., ∈BP B
E

B
S PP ) 

falls on a vertex AP  of a triangle 
AT A

iD∈ .

2. Some point B
i

B DP ∈  falls on an edge AE
of a triangle AT A

iD∈ .

3. Some point B
i

B DP ∈  falls on the interior 

of a triangle AT A
iD∈ .

Figure 4. There are three kinds of corresponding 
positions (i.e., red dot) on A

iD .

When an edge SE  (for simplicity, SE  is 
interchanged with B

E
B

S PP ) is overlaid on A
iD , 

this edge can be split into several line 
segments se by a triangle AT A

iD∈ . The 

relationship between se  and AT  can be 
classified into eighteen kinds of cases (as shown 
in Figure 5). For example in Figure 6, the edge 

B
iDSE ∈  could be split into the following cases 

(i.e., according to Figure 5) 15-2-2-6-9-2-2-3, 
14-15-2-6-9-2-2-3, or other sequences. But the 
former splitting sequence generates the 
minimum number of new points on A

iD . We 
shall call such splitting as the optimal splitting.

Figure 5. The relationship between a line 
segment se  and AT can be classified into
eighteen kinds of cases. The left-most column is 
classified based on Figure 4.

Figure 6. (a) The optimal splitting generates nine 
new points on A

iD . (b) The non-optimal 

splitting generates ten new points on A
iD . In (a) 

and (b), the label on each point is made 
according to Figure 5.

3.5.2 Structures of Minimal Contour Coverage 
(SMCC)

Whichever a new point generated by the 
optimal splitting can be found with the help of
structures of minimal contour coverage (SMCC) 
on A

iD . Based on the classification in Figure 4, 
there are three kinds of SMCC for the 
corresponding position (Figure 7) defined in the 
following.

1. For some point B
i

B DP ∈  falls on AP ,
BP ’s SMCC is AP ’s 1-ring structure.

2. For some point B
i

B DP ∈  falls on AE , its 

SMCC is a 4-sided polygon containing AE .

3. For some point B
i

B DP ∈  falls on AT , its 

SMCC is a triangle AT .

In above, AP , AE  and AT  are all 
defined in Figure 4.

Figure 7. There are three kinds of SMCC for 
BP  on A

iD : (1) 1-ring, (2) 4-sided polygon and 
(3) a triangle.

Assume the starting point S  of an edge 
B
iDSE ∈  has established its SMCC on A

iD . If 

SE could generate new intersection points with 
some edges AE  outside S’s SMCC, SE  must 
generate a new intersection point with S’s SMCC. 
To the contrary, if SE does not intersect with 
S’s SMCC, it also will not intersect with other
edges AE  outside S’s SMCC (as shown in 
Figure 8). So the merging can be done locally 
with S’s SMCC.

Figure 8. The merging can be locally done with 
S’s SMCC.

The local merging can be further classified 
into two kinds of the merging conditions. One is 
called area condition at which the local case se
is not co-incident with any imaginary line that 
links s with the contour vertex of SMCC. If se
is co-incident with any imaginary line, this is 
called line condition (as shown in Figure 9). The 
determination of the local merging condition is 
evaluated by the following:
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Figure 9. There are two kinds of the local 
merging conditions.

Based on the above classifications, we can 
use different formulas (i.e., equation (10) and 
(11)) to determine whether se intersects with 
S’s SMCC or not.  The results of equation (10) 
and (11) lead to different conditions as showed 
in Figure 10.

1. Area Condition:

Let 
→−

+= setsV * , and suppose V on the ab , 

∴ 0=⊗
→−−→−−

abaV

Then 
→−−→−−→−→−−

+=−+= setasasetsaV **

∴ 0)*( =⊗+=⊗
→−−→−−→−−→−−→−−

absetasabaV

∴Let 
→−−→−−

⊗= abasZ1
→−−→−

⊗= abseZ2

21 / ΖΖ−=t (10)

2. Line Condition: (assume co-incident with sa )
→−

= seL1
→−

= saL2    2/1 LLt = (11)

Based on the analysis of Figure 10 (b), we 
can replace Figure 5 with Figure 10 (b). Figure 
10 (b) can provide us a lookup table to 
efficiently implement our merging algorithm.

Our merging algorithm needs to establish 
the SMCC structure prior to proceeding the local 
merging. In Figure 7, we have demonstrated how 
to find a SMCC structure. In our design, once a 
new intersection occurs, we will establish its 
SMCC immediately for further potential 
merging. For example, in Figure 11, an edge 

B
iDAB∈  and A’s SMCC has been created using 

Figure 7. Using Figure 10 (b), we find AB
intersects with A’s SMCC at C. Next, we create 

C’s SMCC using Figure 7 again. Again, with the 
help of Figure 10 (b), the edge CB  intersects 
with C’s SMCC at D. In this manner, we repeat 
the above steps until we reach at B. Of course, 
we need to create B’s SMCC, since B could be 
the starting point of the other edge (i.e., not yet 
overlaid) from B

iD . Finally, we recall that in 
Section 3.5.1 that we start the local merging 
from an extreme vertex. The SMCC of an 
extreme vertex is its 1-ring structure. Given two 
embeddings ),( B

i
A

i DD  in Figure 12, we show a 

complete sequence of overlaying B
iD  on A

iD
by the proposed method.

(a) The results of the equation (10) and (11).

(b) Local merging condition table.

Figure 10. Classifications of local merging 
conditions

Figure 11. The merging of ABcan be completed 
step by step.

Figure 12. An example of merging is completed 
step by step by our algorithm.



3.6 Re-triangulate the Merged Embeddings

Once the merging is completed, we produce 
a non-triangulated planar graph called MD . In 
order to re-triangulate the MD , we need to
insert additional edges to re-triangulate MD .
For simplicity, our approach is very 
straightforward and is described as follows. For 
each point MP  on MD , the algorithm must 
connect the neighboring points of MP  to 
establish MP ’s 1-ring cyclic structure. Our 
design principle (as shown in Figure 13) is that
the inserted edge (i.e., red line in Figure 13) 
connecting the neighboring points is not allowed 
to generate any new intersection point with other 
existing edges (i.e., green lines). It is very easy 
to check if an inserted edge intersects with other 
edges or not. We can easily adapt the equation 
(10) for this purpose.

Figure 13. (a) The inserted AB is not legal and 
(b) MP ’s 1-ring cyclic structure is established 
by inserting several legal edges.

3.7 Reconstructing the Source Models and 
Interpolation

Once we finish the preceding steps, we have 
established a complete correspondence between 
two models. Our merging algorithm produces 
new points in 2D due to intersections. For these 
new points, we need to find its corresponding 3D 
points in both models. We first compute the 
barycentric representation of a new point in the 
basis of three old points in 2D. Then, the 
barycentric representation is used to interpolate 
positions of these three old points in 3D. These 
old points are referred to the original vertices on 
the input models. In this manner we find 3D 
position of a new point. Similarly, for a new 
point, we can interpolate its other attributes such 
as color and texture coordinates if required.

Once the above step is finished, the 
morphing sequence can be easily generated by 
linearly moving each vertex from its position in 
model A to the corresponding position in model 
B in term of time t. Other authors mentioned this 
kind of linear interpolation can produces 
satisfying results in most cases. However, in 
some special case, the self-intersections can 
occur. Gregory et al. [3] propose the 
user-specified morphing trajectory by the cubic 
spline curves for an alternative to linear 
interpolation. This simple alternative can be 
included in near future.

4. Exper imental Results

Digital video clips of all morphs used in this 
paper can be found at http://couger.csie.ncku. 
edu.tw/~vr/fast_morph.html. Additionally, the 
friendly GUIs of our system are also 
demonstrated at this Web site.

4.1 Performance Evaluation and Morphing 
Examples

In Figure 14, we show an example of 
morphing from a baby head to a man head. In 
this example, the number of morphing patches is 
four and each patch is illustrated using a 
different color. In addition, there are seven extra 
feature points (i.e., 4 eye corners, 1 nose tip, 2 
mouth corners) used for warping. Figure 14 (c), 
we show some timing information and the 
geometric information of two models for this 
experiment. Times are average execution times. 
Our algorithm is performed on a PC with 
Pentium III 800 and 128MB. Note that our code 
is not fully optimized and more improvements 
can be done. All tasks are computed very fast. 
For this example, the user interaction time to 
specify the extreme vertices for patch 
decomposition is about 0.5-1 minute. Our results 
are very fast compared other recently reported 
timing information in [3,4]. Some experimental 
comparison is made in the end of this section.

(a) Input models are decomposed into four 
morphing patches.

(b) A morphing sequence from a bay head to a 
man head.
Model Vertices Triangles Embedding

Time
Warping

Time
Merging

Time
Baby head 570 1136 <1 sec. <1 sec.
Man head 1954 3904 <1 sec. <1 sec.

<1 sec.

(c) Timing information for morphs between a 
baby head to a man head.
Figure 14. Morphs between the models of a baby 
head to a man head.



In the following, we also show other
interesting examples in Figure 15 and 16.

(a) Both cow and pig are decomposed into two
morphing patches. It takes about 15 seconds for 
users to specify extreme vertices for 
decomposing each model.

(b) A morphing sequence from a cow to a pig.

Head Body

Cow

Pig

Merging

(c) Embedding results with warping. There are 
two embeddings (i.e., two morphing patches) per 
each model.

Model Vertices Triangles Embedding 
Time

Warping
Time

Merging 
Time

Cow 2903 5803 1.2 sec. <1 sec.
Pig 3584 7164 1.5 sec. <1 sec.

<1 sec.

(d) Timing information about morphs between a 
cow and a pig. 
Figure 15. Morphs between the models of a cow 
and a pig.

(a) Both baby and pig are decomposed into five
morphing patches. It takes about 80 seconds to 
specify extreme vertices for decomposing each 
model. Note that in this example, we explicitly 
show the extra features points used in warping.

(b) A morphing sequence (side-views) from a 
baby to a pig.

(c) The same morphing sequence rendered from
another view.
Model Vertices Triangles Embedding

Time
Warping

Time
Merging 

Time
Baby 2055 4106 <<1 sec. <1 sec.
Pig 3584 7164 <<1 sec. <1 sec.

<<1 sec.

(d) Timing information for morphing from the 
baby to a pig.
Figure 16. Morphs between the models of the 
baby and a pig.

4.2 Performance Comparison with other Work

Recall that our work is closest in spirit to 
Gregory et al.’s [3] work and Alexa’s work [4]. 
The former was evaluated on SGI Onyx 2 and 
the latter was on a SUN Ultra 10. We test our 
method on a PC with Pentium III 800 and 
128MB. In [3], there is no detailed timing given 
for each task. Roughly, their algorithm takes 
about 1.5 minutes to compute merged 
embedding for models with number of triangles 



ranging from 5000 to 8000. However, animators 
require several hours to decompose models into 
more than 50 morphing patches. It seems not to
be very practical for daily use. Alexa’s work [4] 
embeds each model on a 3D sphere and 
computes the merged embedding on this sphere. 
To experimentally compare this work with ours, 
we decompose the model into a large patch and a 
small patch by our algorithm, and evaluate the 
performance for the large patch only. We should 
note that the timing spent on a small patch is 
very small and can be ignored in this experiment. 
This evaluation is shown in Figure 17.

(a) Both models are decomposed into a large 
patch (i.e., yellow color) and a small patch (i.e., 
orange color).

Cow (Large Patch) Pig (Large Patch)
Merged

(Large Patch)

(b) Embedding and merged embedding results of 
the large patch.

Model Vertices Triangles Embedding Time
(Large Patch)

Merging Time
(Large Patch)

Cow 2903 5803 1.8 sec.
Pig 3584 7164 1.9 sec.

1 sec.

(c) Timing information for the embedding and 
merging

Figure 17 shows the experiment to decompose a 
model into a large patch and a small patch.

For performance comparison, we give two 
performance tables reported in [4] for several 
models.

Table 1. The performance of the merging 
algorithm proposed by [4]. The timing 
information is given in the upper triangle matrix. 
The number of vertices of the merged model is 
given in the lower triangle matrix.

Table 2. The performance of the embedding
algorithm proposed by [4].

For our example in Figure 17, the sum of 
the vertices of the cow and the pig is 6487, and 
the sum of the triangles of the cow and the pig is 
12967. Our example can be roughly 
corresponding to the Pig-Horse case (the sum of 
vertices is 6418) in Table 1. The merging 
algorithm proposed by [4] takes 4.2 second, but 
our merging algorithm only takes about 1 second.
Furthermore, let us see the times of embedding 
in Table 2. For pig and piglet models, the 
embeddings take about 277.9 and 113.1 seconds, 
respectively. However, ours takes less than 2 
seconds. In this respect, ours performs 
significantly better than [4]. Finally, we should 
also mention another work [5] that was 
evaluated on SGI Onyx 2 with R10000 processor. 
Unfortunately, [5] does not provide detailed 
timing information for each task. However, in [5] 
the user interaction time ranges from 5 minutes 
up to 15 minutes to decompose models. For the 
most complex example with 11464 triangles, the 
embedding can be computed in less than 5 
seconds. The merging takes less than 3 seconds. 
In contrast, we do not require too much time in 
the user interaction time. As shown in Section 
4.1, both embedding and merging are computed 
very quickly (in less than 1 or 2 seconds). 
Finally, we conclude that our performance is 
comparable to or even much better than the 
above state-of-the-art.

5. Conclusion and Future Work

We have presented techniques for 
computing shape transitions between polygonal 
3D objects. These techniques have proven to be 
fast and intuitive methods for 3D polygon 
morphing. Our technique does not require too 
much user interaction time in contrast to other 
previous wok [3,5]. Furthermore, the proposed 
embedding and merging methods perform well 
to be comparable to or even much better than 
the-state-of-art. In the evaluated examples, both 
are computed very fast (less than 1 or 2 seconds). 
A number of researches can be done in near 
future. For example, we can replace the linear 
interpolation with other alternative to avoid 
self-intersection. The merged embedding usually 
has about 2 to 5 times as many triangles and 
vertices as the input models. We plan to design a 



new method of 3D morphing without the 
requirement of the embedding merging. The 
morphing shapes can automatically adjust the 
number of triangles and vertices in need.
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