
Fast and Intuitive Metamorphosis of 3D Polyhedral Models

Tong-Yee Lee*

tonylee@mail.ncku.edu.tw
Po-Hua Huang

bohaw@vision.csie.ncku.edu.tw

Han-Ying Lin
talor@vision.csie.ncku.edu.tw

Chao-Hung Lin
jendon@vision.csie.ncku.edu.tw

Department of Computer Science and Information Engineering
National Cheng-Kung University, ROC.

* Corresponding author

Abstract
In this paper, we present a very fast and

intuitive approach to generate the
metamorphosis of two genus 0 3D polyhedral
models. There are two levels of correspondence
specified by animators to control morphs. The
higher level requires the animators to specify
scatter features to decompose the input models
into several corresponding patches. The lower
level optionally allows the animators to specify
extra features on each corresponding patch for
the finer control of correspondence. Once these
two levels of correspondence are established, the
proposed schemes automatically and efficiently
establish a complete one-to-one correspondence
between the two models. The performance of the
proposed methods is comparable to or even
much better than the state-of-the-art in 3D
polyhedral metamorphosis. We demonstrate
several examples of aesthetically pleasing
morphs, which can be very fast and intuitively
created with little user interaction times.

Keywords: Polyhedral metamorphosis, em-
bedding, relaxation, warping, merging, SMCC

1. Introduction

Three-dimensional metamorphosis (or
morphing) is a widespread technique in
entertainment and animation to generate a
smooth transition from a source object to a target
object. In this paper, we focus on morphs
between two genus 0 3D polyhedra. In the
literature, most polyhedral morphing techniques
could consist of two main steps: one is to find
one-to-one correspondence between two
polyhedral meshes and the other is to define
interpolation paths for each pair of
corresponding vertices on the meshes to
calculate the in-between shapes. A lot of
previous work has been published in the area of
3D polyhedral morphing. There are two

excellent surveys of 3D morphing to be referred
to in [1,2].

In this paper, our design goal is to provide
animators the easy control of morphs and the
fast creation of morphs. There are two-level
controls for animators to intuitively establish
correspondence. First, animators specify scatter
features to decompose the models into the
corresponding patches, i.e., called morphing
patches in this paper. This higher-level control
provides the approximate correspondence
between two models. If the finer correspondence
is required on each patch, the lower-level control
allows the animators to specify extra feature
points on each patch. With the help of the
lower-level control, animators only need to
identify few corresponding morphing patches.
Therefore, in contrast to other methods such as
[3], manual interaction times can be reduced.
Afterwards, there are three techniques designed
to automatically and efficiently establish a
complete one-to-one correspondence between
models. In contrast to most other approaches, the
proposed methods are very fast and can be
computed within a few seconds. These proposed
schemes are the main contributions of this paper
and are listed below:

l An efficient relaxation method is proposed
to embed (i.e., map) 3D morphing patches
to 2D regular polygons. In contrast to other
relaxation methods such as in [4], our
method is computed within a few seconds
(usually less than 1 second for our
examples).

l A foldover-free warping method is used to
align corresponding feature vertices
between two embeddings of morphing
patches. This is a very essential part in the
lower-level control of correspondence.

l An efficient but simple merging method is
presented to create a merged embedding that
contains the faces, edges and vertices of two

given embeddings. The SMCC (structures
of minimal contour coverage) is designed to
speed up the merging process and the
merging is always computed in less a
second. In addition, there are several lookup
tables are used for easy and efficient
implementation.

The rest of our paper is organized as follows.
Section 2 reviews the related work of 3D
polyhedral metamorphosis. The proposed
techniques are presented in Section 3. We
experimentally evaluate the proposed schemes
and experimentally compare with other wok in
Section 4. Finally, the conclusion and future
work are given in Section 5.

2. Related Work

Lazarus and Verroust [1] give an excellent
survey of previous work on the 3D morphing
problem. There are two major classes of 3D
morphing technique: volume based approach and
surface based approach. In this paper, we focus
on surface based approach. For more related
work of volume-based approach, please refer to
[1]. The surface based approach works on
boundary representations such as polyhedral
meshes or patch complexes. Methods for this
approach usually create an interpolation mesh,
which is a common embedding of both source
and target meshes. This interpolation mesh is
then geometrically deformed to create morphed
shapes. This common embedding solves the
correspondence problem, associating the vertices
or triangles between the source mesh and target
mesh. This is a key issue of surface based
approach and will be the focus of our paper.

A lot of work has been published in the
correspondence issue. Kent et al [6] introduce
parameterizations for solving the
correspondence problem. Their approach
projected star-shaped objects onto spheres to
accomplish parameterization. Similarly, Alexa [4]
employs a relaxation method to embed
polyhedral shapes on the spheres. Lazarus and
Verroust [7] introduce skeletons for cylinder-like
objects. This approach is an extension of [6] for
objects that are star-shaped around an axis.
Parent [8] presents a recursive algorithm that
automatically finds a correspondence between
the surfaces of two objects of equivalent
topologies. Decarlo et al. [9] present a method to
transform objects with different topologies. The
user must identify a sparse control mesh on each
surface of objects and this control mesh specifies
how to transform one surface to another.
Therefore, it will become very complicated and
difficult to transform complex shapes. Kanai et
al. [10] and Zockler et al. [5] utilize mesh

parameterization technique such as harmonic
mapping to embed a region of a mesh to a 2D
convex polygon. Gregory et al. [3] apply a
user-specified control mesh to decompose the
surface into a large number of disk-like patches.
However, this task is very slow and tedious. Lee
et al. [11] employ the MAPS algorithm [12] to
parameterize input meshes over simple base
domains and an additional harmonic map
bringing the latter into the correspondence. Their
approach can have fold-over problem and user
interaction is required to manually fix this
problem.

3. Methodology

3.1 Overview

In this paper, the inputs are genus 0 3D
polyhedral models that consist of 1-ring
structure triangular meshes. Our work is closest
in spirit to Gregory et al.’s [3] work and to
Alexa’s work [4]. Our overall system structure is
similar to their theme. However, we present
novel techniques in our design. The main
procedures of our design are listed below:

l Selection of Ver tex Pair s and
Decomposition into Morphing Patches:
For given two 3D polyhedral models,
animators select corresponding vertices on
each polyhedron to define correspondences
of regions and points in both models. The
algorithm automatically partitions the
surface of each polyhedron into the same
number of morphing patches by computing
a shortest path between the selected vertices.
The above is corresponding to the high-level
control of morphs in our design.

l 3D-to-2D Embedding: Each 3D morphing
patch is mapped onto a 2D regular polygon
by the proposed relaxation method.

l Aligning Feature Ver tices: The interior
vertices in the regular 2D polygons are
matched by using a foldover-free warping
technique. Users can specify extra feature
vertices to have a better control over
correspondence. This design corresponds to
the lower-level control of morphs.

l Merging, Re-meshing and Interpolation:
The algorithm merges the topological
connectivity of morphing patches in the
regular 2D polygon. Inserting additional
edges retriangulates the regions in the
merged regular 2D polygon. This step
reconstructs the facets for the new morphing
patch, i.e., a common interpolation mesh.
Finally, we compute exact interpolation
across the common interpolation meshes.

3.2 Specifying Corresponding Morphing Patches

Given two polyhedra A and B, animators
interactively design correspondence by
partitioning each polyhedron into the same
number of regions called morphing patches.
Each pair of morphing patches is denoted as
(A

iC , B
iC), where i is the corresponding patch

index. To define each pair of (A
iC , B

iC),
animators must specify the same number of
vertices (i.e., called extreme vertices [3]), too.
These selected vertices also form corresponding
point pairs in both models. The boundary of a
morphing patch consists of several consecutive
chains. Each chain is obtained by computing a
shortest path between two consecutive selected
vertices. Animators can partition two input
polyhedra into arbitrary number of morphing
patches, but each patch cannot cross or overlap
the other patches. Once the models are
partitioned into several corresponding morphing
patches, the next is to compute the
correspondence of interior vertices of (A

iC , B
iC).

3.3 Embedding 3D Morphing Patches on
Regular 2D Polygons

In the following, we will first describe the
basic idea of the proposed relaxation method to
compute 3D-to-2D embeddings. This initial
approach requires several iterations to be
finished. It can be computationally expensive.
Next, we propose to solve the linear system of
our relaxation method. In this manner, the
embedding can be computed very fast.

Given a pair of 3D morphing patches
(A

iC , B
iC) defined by n extreme vertices, we

embed each on an n-side regular 2D polygon
called Di by a relaxation method. Each n-regular
polygon is inscribed in the unit circle and its
center is at (0, 0). The relaxation algorithm
consists of three steps. First, the extreme vertices
of the morphing patches are mapped to the
vertices of Di. Next, each chain of the morphing
patch is mapped to an edge of Di. We need to
find the 2D coordinates of non-extreme vertices
along each chain. The 2D coordinates of these
non-extreme vertices are interpolated based on
the arc length of the chain. Third, we compute a
2D mapping for the interior vertices of A

iC
and B

iC by initially mapping them to the center
position (0,0). Then, these vertices are moved
step by step by the following relaxation equation
and this process will continue until all the
interior points are stable, i.e., not moved.

()

∑

∑

=

=+−=
i

i

k

j
j

k

j
jj

ii

p
pp

1

1')1(
ω

ω
λλ

(1)

In equation (1), there are several parameters
defined as follows:

l ip is an interior vertex and its initial
position is at (0,0). It represents the 2D
mapping of a 3D vertex P i interior to a
morphing patch.

l '
ip is a new position of ip according to

equation (1).

l jp is a 2D mapping of P j. P j is one of P i’s

neighbors and ik is the number of
neighbors of P i in 3D.

l
jw is a pulling weight for jp ,

and λ controls the moving speed and its
value is between 0 and 1.

We attempt to compute a good embedding
which preserves the aspect ratio of the original
triangle versus the mapped triangle and does not
cause too much distortion To determine

jw , our

idea is similar to Kanai et al.’s [10] weight
formula used in their harmonic mapping.
However, we use a different and a simpler
formula. For example, in Figure 1, 0=ip and
the weight of 2=jp is computed by the

following equation:

312 cotcot θθ +=w (2)

Fig. 1. The definition of a pulling weight

In equation (2), 1θ is the angle between

21edge and
01edge and

3θ is the angle
between

23edge and
03edge . These are 3D

edges of a morphing patch. In this manner, all

jw can be computed. In equation (2), we can

imagine that the whole system is a spring system.
During iterations, ip is pulled by several
springs connecting to all its neighbors jp . The

idea behind the equation (2) is that long edges
subtending to big angles are given relatively
small spring constants compared with short
edges that subtend to small angles. Based on the
equation (1), we can use iteration methods to
find all ip s and terminate iteration when all

ip s are stable. However, in this manner, the
computation time is not predictable and could be
expensive. Therefore, we will not find ip s by
iteration method and will solve it by the

following manner.

Using equation (1), as ip is stable, ideally,

ii pp =' . Thus, we will have the following.

()

∑

∑

=

=+−==
i

i

k

j
j

k

j
jj

iii

p
ppp

1

1')1(
ω

ω
λλ

=>
()

∑

∑

=

==
i

i

k

j
j

k

j
jj

i

p
p

1

1

ω

ω
(3)

Therefore, assume the number of ip s is N,
we can have the following linear system for the
proposed relaxation method.

()

∑

∑

=

===
1

1

1

1
1

'
1 k

j
j

k

j
jj p

pp
ω

ω

()

∑

∑

=

===
2

2

1

1
2

'
2 k

j
j

k

j
jj p

pp
ω

ω

M










()

∑

∑

=

===
N

N

k

j
j

k

j
jj

NN

p
pp

1

1'

ω

ω (4)

Let ∑
=

=
ik

j
ji

1

ωχ and Ni ..1= , the above

linear system can be represented as the following
form:

() 11
1

1

pp
k

j
jj χω =∑

=

() 22
1

2

pp
k

j
jj χω =∑

=

M
(5)

() NN

k

j
jj pp

N

χω =∑
=1

This linear system is not singular, so that it
has a unique solution. Furthermore, for each ip ,
the number of its neighbors is small compared to
N. Therefore it is a sparse system and can be
solved efficiently by using numerical method.

3.4 Aligning the Features and Foldover-Free
Warping

Given a pair of morphing patches (A
iC , B

iC),

),(B
i

A
i DD are their corresponding 2D

embeddings. Their extreme vertices are
automatically aligned by user specification.
Using this initial correspondence, we could
directly overlay two embeddings to get a merged
embedding for morphing. For example in Figure
2 (a), we select a corresponding morphing patch
on two given models and the number of extreme
vertices is five. There are two extra vertex
pairs),(BA and),(ba shown in both models,
respectively. These extra vertices represent eye
corners. In Figure 2(b), we show both

),(B
i

A
i DD after embedding. It is obvious to see

that vertex pairs),(BA and),(ba do not align if
we directly overlay),(B

i
A

i DD . Therefore, to
compute better correspondence, we usually
require animators to specify several extra
corresponding features such as vertex
pairs),(BA and),(ba on both),(B

i
A

i DD . Then
we employ a foldover-free warping function to
align),(BA and),(ba . Non-feature points will be
automatically moved by the warping function,
too. Like [5], to minimize distortion due to
warping, we first move these extra
corresponding feature points linearly to the point
halfway between them and then perform
warping.

Our warping is simply computed as a
weighted sum of radial basis function (RBF).
Suppose there are n extra feature pairs.
Since),(B

i
A

i DD are both in 2D, the radial
function R consists of two components),(21 RR ,
where each component has the following form.

)()(
1

∑
=

−=
n

i
i

j
ij ppgapR , j = 1,2 (6)

In equation (6), j
ia are coefficients to be

computed, g is the radial function and ip is a
feature point. For each given p, we compute its
new position by))(),((21 pRpR using equation (6).
In total, there are 2n coefficients to compute. In
current implementation, the radial basis function
we use is a Gaussian function:

2

2

)(σ
t

etg
−

= (7)

In equation (7), the variance σ controls
the degree of locality of the transformation. In
Figure 2 (c), we show),(B

i
A

i DD with warping
by two extra feature points. This result is better
than that of Figure 2(b). Therefore, we can
overlay them now to get a merged embedding
for morphing. Sometimes, the warping can lead
to fold-over (self-intersections) on),(B

i
A

i DD .

We need foldover-free embeddings. To solve
foldover, we first check if self-intersections
occur on),(B

i
A

i DD after warping. If
self-intersections occur, we simply iterate
equation (1) instead of solving equation (5).
Usually, it requires a few iterations and
self-intersections will not occur. In the following,
we show how to check if self-intersections
occur.

Our inputs are genus 0 3D polyhedral
models with 1-ring structure. Therefore, if there
is no self-intersection on both),(B

i
A

i DD , each
interior point of both embeddings must have a
complete 1-ring structure in 2D. If any interior
point of an embedding has an incomplete 1-ring
structure, the self-intersection occurs. To check
if a point has a complete 1-ring structure, we
compute the following:

→−→−

⊗= pbpaM (⊗ : the right-hand vector cross
product)





<=
>

0
0

,
,

M
M

incomplete
complete (8)

In equation (8), we need to check all nodes
at p’s 1-ring structure. If any violation (i.e., M
<=0) occurs, it is an incomplete ring structure in
2D. Note that the vertices of a triangle are in
counterclockwise order. Figure 3 is used to
illustrate the equation (8). In Figure 3 (a), before
embedding, P (i.e., p’s corresponding vertex in
3D) has a complete 1-ring structure. After
embedding and warping, a self-intersection
occurs as shown in Figure 3 (b). In this case, we
simply check all nodes at p’s 1-ring structure and
find (a, b) violates equation (8).

3.5 Efficient Local Merging

Given two embeddings),(B
i

A
i DD , we

merge them to produce a common embedding
that contains the faces, edges and vertices. The
complexity of a brute-force merging algorithm is

2(nO +k), where n is the number of edges and k
is the number of intersections. This naïve
approach globally checks all edges to find the
possible intersections. We present a novel
method for checking edges locally and
efficiently computing the intersections. The
complexity of the proposed method is)(knO + .
Additionally, to efficiently implement our
method, a lookup table is created.

3.5.1 The Classification of the Corresponding
Positions

The merging algorithm wants to overlay
each edge B

E
B

S PP B
iD∈ on A

iD , where S and E
represent the starting and ending points of a
given edge. Since the correspondence of each

extreme vertex has been established before
embedding by animators, we perform the
overlay starting from a B

E
B

S PP B
iD∈ , where B

SP
is an extreme vertex. Since B

iD is a connected
planar graph, we can traverse all edges starting
from B

E
B

S PP and overlay them on A
iD edge by

edge. We can imagine that an edge
B

E
B

S PP consists of an infinite number of points.

As we overlay this edge on A
iD , the

corresponding positions of these points have
three kinds on A

iD as illustrated in Figure 4.
These three possibilities are:

(a) The user picks five extreme vertices (i.e.,
blue dots) and two extra feature vertices (i.e., red
dots).

(b) Embeddings without warping.

(c) Embedding with warping by two extra
features (i.e., red dots).

Figure 2. Embedding and warping.

(a) (b)

Figure 3 (a) prior to embedding and warping, P
has a complete 1-ring structure in 3D and (b) P
has an incomplete 1-ring structure in 2D after
embedding and warping.

1. Some point B
i

B DP ∈ (i.e., ∈BP B
E

B
S PP)

falls on a vertex AP of a triangle
AT A

iD∈ .

2. Some point B
i

B DP ∈ falls on an edge AE
of a triangle AT A

iD∈ .

3. Some point B
i

B DP ∈ falls on the interior

of a triangle AT A
iD∈ .

Figure 4. There are three kinds of corresponding
positions (i.e., red dot) on A

iD .

When an edge SE (for simplicity, SE is
interchanged with B

E
B

S PP) is overlaid on A
iD ,

this edge can be split into several line
segments se by a triangle AT A

iD∈ . The

relationship between se and AT can be
classified into eighteen kinds of cases (as shown
in Figure 5). For example in Figure 6, the edge

B
iDSE ∈ could be split into the following cases

(i.e., according to Figure 5) 15-2-2-6-9-2-2-3,
14-15-2-6-9-2-2-3, or other sequences. But the
former splitting sequence generates the
minimum number of new points on A

iD . We
shall call such splitting as the optimal splitting.

Figure 5. The relationship between a line
segment se and AT can be classified into
eighteen kinds of cases. The left-most column is
classified based on Figure 4.

Figure 6. (a) The optimal splitting generates nine
new points on A

iD . (b) The non-optimal

splitting generates ten new points on A
iD . In (a)

and (b), the label on each point is made
according to Figure 5.

3.5.2 Structures of Minimal Contour Coverage
(SMCC)

Whichever a new point generated by the
optimal splitting can be found with the help of
structures of minimal contour coverage (SMCC)
on A

iD . Based on the classification in Figure 4,
there are three kinds of SMCC for the
corresponding position (Figure 7) defined in the
following.

1. For some point B
i

B DP ∈ falls on AP ,
BP ’s SMCC is AP ’s 1-ring structure.

2. For some point B
i

B DP ∈ falls on AE , its

SMCC is a 4-sided polygon containing AE .

3. For some point B
i

B DP ∈ falls on AT , its

SMCC is a triangle AT .

In above, AP , AE and AT are all
defined in Figure 4.

Figure 7. There are three kinds of SMCC for
BP on A

iD : (1) 1-ring, (2) 4-sided polygon and
(3) a triangle.

Assume the starting point S of an edge
B
iDSE ∈ has established its SMCC on A

iD . If

SE could generate new intersection points with
some edges AE outside S’s SMCC, SE must
generate a new intersection point with S’s SMCC.
To the contrary, if SE does not intersect with
S’s SMCC, it also will not intersect with other
edges AE outside S’s SMCC (as shown in
Figure 8). So the merging can be done locally
with S’s SMCC.

Figure 8. The merging can be locally done with
S’s SMCC.

The local merging can be further classified
into two kinds of the merging conditions. One is
called area condition at which the local case se
is not co-incident with any imaginary line that
links s with the contour vertex of SMCC. If se
is co-incident with any imaginary line, this is
called line condition (as shown in Figure 9). The
determination of the local merging condition is
evaluated by the following:

M =
→−

se ⊗
→−

sa , N =
→−

se ⊗
→−

sb , where
→−

se ,
→−

sa

and
→−

sb 2R∈ .










=
=

><

other
N
M

NandM

pairssbsaotherforsearchingContinue
sbatConditionLine
saatConditionLine

ConditionArea

0
0

00

,
,
,
,

),(

(9)

Figure 9. There are two kinds of the local
merging conditions.

Based on the above classifications, we can
use different formulas (i.e., equation (10) and
(11)) to determine whether se intersects with
S’s SMCC or not. The results of equation (10)
and (11) lead to different conditions as showed
in Figure 10.

1. Area Condition:

Let
→−

+= setsV * , and suppose V on the ab ,

∴ 0=⊗
→−−→−−

abaV

Then
→−−→−−→−→−−

+=−+= setasasetsaV **

∴ 0)*(=⊗+=⊗
→−−→−−→−−→−−→−−

absetasabaV

∴Let
→−−→−−

⊗= abasZ1
→−−→−

⊗= abseZ2

21 / ΖΖ−=t (10)

2. Line Condition: (assume co-incident with sa)
→−

= seL1
→−

= saL2 2/1 LLt = (11)

Based on the analysis of Figure 10 (b), we
can replace Figure 5 with Figure 10 (b). Figure
10 (b) can provide us a lookup table to
efficiently implement our merging algorithm.

Our merging algorithm needs to establish
the SMCC structure prior to proceeding the local
merging. In Figure 7, we have demonstrated how
to find a SMCC structure. In our design, once a
new intersection occurs, we will establish its
SMCC immediately for further potential
merging. For example, in Figure 11, an edge

B
iDAB∈ and A’s SMCC has been created using

Figure 7. Using Figure 10 (b), we find AB
intersects with A’s SMCC at C. Next, we create

C’s SMCC using Figure 7 again. Again, with the
help of Figure 10 (b), the edge CB intersects
with C’s SMCC at D. In this manner, we repeat
the above steps until we reach at B. Of course,
we need to create B’s SMCC, since B could be
the starting point of the other edge (i.e., not yet
overlaid) from B

iD . Finally, we recall that in
Section 3.5.1 that we start the local merging
from an extreme vertex. The SMCC of an
extreme vertex is its 1-ring structure. Given two
embeddings),(B

i
A

i DD in Figure 12, we show a

complete sequence of overlaying B
iD on A

iD
by the proposed method.

(a) The results of the equation (10) and (11).

(b) Local merging condition table.

Figure 10. Classifications of local merging
conditions

Figure 11. The merging of ABcan be completed
step by step.

Figure 12. An example of merging is completed
step by step by our algorithm.

3.6 Re-triangulate the Merged Embeddings

Once the merging is completed, we produce
a non-triangulated planar graph called MD . In
order to re-triangulate the MD , we need to
insert additional edges to re-triangulate MD .
For simplicity, our approach is very
straightforward and is described as follows. For
each point MP on MD , the algorithm must
connect the neighboring points of MP to
establish MP ’s 1-ring cyclic structure. Our
design principle (as shown in Figure 13) is that
the inserted edge (i.e., red line in Figure 13)
connecting the neighboring points is not allowed
to generate any new intersection point with other
existing edges (i.e., green lines). It is very easy
to check if an inserted edge intersects with other
edges or not. We can easily adapt the equation
(10) for this purpose.

Figure 13. (a) The inserted AB is not legal and
(b) MP ’s 1-ring cyclic structure is established
by inserting several legal edges.

3.7 Reconstructing the Source Models and
Interpolation

Once we finish the preceding steps, we have
established a complete correspondence between
two models. Our merging algorithm produces
new points in 2D due to intersections. For these
new points, we need to find its corresponding 3D
points in both models. We first compute the
barycentric representation of a new point in the
basis of three old points in 2D. Then, the
barycentric representation is used to interpolate
positions of these three old points in 3D. These
old points are referred to the original vertices on
the input models. In this manner we find 3D
position of a new point. Similarly, for a new
point, we can interpolate its other attributes such
as color and texture coordinates if required.

Once the above step is finished, the
morphing sequence can be easily generated by
linearly moving each vertex from its position in
model A to the corresponding position in model
B in term of time t. Other authors mentioned this
kind of linear interpolation can produces
satisfying results in most cases. However, in
some special case, the self-intersections can
occur. Gregory et al. [3] propose the
user-specified morphing trajectory by the cubic
spline curves for an alternative to linear
interpolation. This simple alternative can be
included in near future.

4. Exper imental Results

Digital video clips of all morphs used in this
paper can be found at http://couger.csie.ncku.
edu.tw/~vr/fast_morph.html. Additionally, the
friendly GUIs of our system are also
demonstrated at this Web site.

4.1 Performance Evaluation and Morphing
Examples

In Figure 14, we show an example of
morphing from a baby head to a man head. In
this example, the number of morphing patches is
four and each patch is illustrated using a
different color. In addition, there are seven extra
feature points (i.e., 4 eye corners, 1 nose tip, 2
mouth corners) used for warping. Figure 14 (c),
we show some timing information and the
geometric information of two models for this
experiment. Times are average execution times.
Our algorithm is performed on a PC with
Pentium III 800 and 128MB. Note that our code
is not fully optimized and more improvements
can be done. All tasks are computed very fast.
For this example, the user interaction time to
specify the extreme vertices for patch
decomposition is about 0.5-1 minute. Our results
are very fast compared other recently reported
timing information in [3,4]. Some experimental
comparison is made in the end of this section.

(a) Input models are decomposed into four
morphing patches.

(b) A morphing sequence from a bay head to a
man head.
Model Vertices Triangles Embedding

Time
Warping

Time
Merging

Time
Baby head 570 1136 <1 sec. <1 sec.
Man head 1954 3904 <1 sec. <1 sec.

<1 sec.

(c) Timing information for morphs between a
baby head to a man head.
Figure 14. Morphs between the models of a baby
head to a man head.

In the following, we also show other
interesting examples in Figure 15 and 16.

(a) Both cow and pig are decomposed into two
morphing patches. It takes about 15 seconds for
users to specify extreme vertices for
decomposing each model.

(b) A morphing sequence from a cow to a pig.

Head Body

Cow

Pig

Merging

(c) Embedding results with warping. There are
two embeddings (i.e., two morphing patches) per
each model.

Model Vertices Triangles Embedding
Time

Warping
Time

Merging
Time

Cow 2903 5803 1.2 sec. <1 sec.
Pig 3584 7164 1.5 sec. <1 sec.

<1 sec.

(d) Timing information about morphs between a
cow and a pig.
Figure 15. Morphs between the models of a cow
and a pig.

(a) Both baby and pig are decomposed into five
morphing patches. It takes about 80 seconds to
specify extreme vertices for decomposing each
model. Note that in this example, we explicitly
show the extra features points used in warping.

(b) A morphing sequence (side-views) from a
baby to a pig.

(c) The same morphing sequence rendered from
another view.
Model Vertices Triangles Embedding

Time
Warping

Time
Merging

Time
Baby 2055 4106 <<1 sec. <1 sec.
Pig 3584 7164 <<1 sec. <1 sec.

<<1 sec.

(d) Timing information for morphing from the
baby to a pig.
Figure 16. Morphs between the models of the
baby and a pig.

4.2 Performance Comparison with other Work

Recall that our work is closest in spirit to
Gregory et al.’s [3] work and Alexa’s work [4].
The former was evaluated on SGI Onyx 2 and
the latter was on a SUN Ultra 10. We test our
method on a PC with Pentium III 800 and
128MB. In [3], there is no detailed timing given
for each task. Roughly, their algorithm takes
about 1.5 minutes to compute merged
embedding for models with number of triangles

ranging from 5000 to 8000. However, animators
require several hours to decompose models into
more than 50 morphing patches. It seems not to
be very practical for daily use. Alexa’s work [4]
embeds each model on a 3D sphere and
computes the merged embedding on this sphere.
To experimentally compare this work with ours,
we decompose the model into a large patch and a
small patch by our algorithm, and evaluate the
performance for the large patch only. We should
note that the timing spent on a small patch is
very small and can be ignored in this experiment.
This evaluation is shown in Figure 17.

(a) Both models are decomposed into a large
patch (i.e., yellow color) and a small patch (i.e.,
orange color).

Cow (Large Patch) Pig (Large Patch)
Merged

(Large Patch)

(b) Embedding and merged embedding results of
the large patch.

Model Vertices Triangles Embedding Time
(Large Patch)

Merging Time
(Large Patch)

Cow 2903 5803 1.8 sec.
Pig 3584 7164 1.9 sec.

1 sec.

(c) Timing information for the embedding and
merging

Figure 17 shows the experiment to decompose a
model into a large patch and a small patch.

For performance comparison, we give two
performance tables reported in [4] for several
models.

Table 1. The performance of the merging
algorithm proposed by [4]. The timing
information is given in the upper triangle matrix.
The number of vertices of the merged model is
given in the lower triangle matrix.

Table 2. The performance of the embedding
algorithm proposed by [4].

For our example in Figure 17, the sum of
the vertices of the cow and the pig is 6487, and
the sum of the triangles of the cow and the pig is
12967. Our example can be roughly
corresponding to the Pig-Horse case (the sum of
vertices is 6418) in Table 1. The merging
algorithm proposed by [4] takes 4.2 second, but
our merging algorithm only takes about 1 second.
Furthermore, let us see the times of embedding
in Table 2. For pig and piglet models, the
embeddings take about 277.9 and 113.1 seconds,
respectively. However, ours takes less than 2
seconds. In this respect, ours performs
significantly better than [4]. Finally, we should
also mention another work [5] that was
evaluated on SGI Onyx 2 with R10000 processor.
Unfortunately, [5] does not provide detailed
timing information for each task. However, in [5]
the user interaction time ranges from 5 minutes
up to 15 minutes to decompose models. For the
most complex example with 11464 triangles, the
embedding can be computed in less than 5
seconds. The merging takes less than 3 seconds.
In contrast, we do not require too much time in
the user interaction time. As shown in Section
4.1, both embedding and merging are computed
very quickly (in less than 1 or 2 seconds).
Finally, we conclude that our performance is
comparable to or even much better than the
above state-of-the-art.

5. Conclusion and Future Work

We have presented techniques for
computing shape transitions between polygonal
3D objects. These techniques have proven to be
fast and intuitive methods for 3D polygon
morphing. Our technique does not require too
much user interaction time in contrast to other
previous wok [3,5]. Furthermore, the proposed
embedding and merging methods perform well
to be comparable to or even much better than
the-state-of-art. In the evaluated examples, both
are computed very fast (less than 1 or 2 seconds).
A number of researches can be done in near
future. For example, we can replace the linear
interpolation with other alternative to avoid
self-intersection. The merged embedding usually
has about 2 to 5 times as many triangles and
vertices as the input models. We plan to design a

new method of 3D morphing without the
requirement of the embedding merging. The
morphing shapes can automatically adjust the
number of triangles and vertices in need.

Acknowledgements

This project is supported by NSC-90-2213-
E-006-085

Reference

1. F. Lazarus and A. Verroust,
“Three-dimensional metamorphosis: a
survey”, The Visual Computer,
14(8-9):373-389, 1998.

2. J. Gomes, L. Darsa, B. Costa, and L. Velho,
“Warping and Morphing of Graphical
Objects,” Morgan Kaufmann, 1999.

3. A. Gregory, A. State, M. Lin, D. Manocha,
and M. Livingston,” Interactive surface
decomposition for polyhedra morphing,”
The Visual Computer, 15(9): 453-470,
1999.

4. Marc Alexa, “Merging polyhedral shapes
with scattered features,” The Visual
Computer, 16(1):26–37, 2000.

5. Malte Zockler, Detlev Stalling, and
Hans-Christian Hege, ”Fast and intuitive
generation of geometric shape transitions,”
The Visual Computer, 16(5):241–253,
2000.

6. James R. Kent, Wayne E. Carlson, and

Richard E.Parent,. “Shape transformation
for polyhedral objects,” Computer Graphics
(Proceedings of SIGGRAPH
92),26(2):47–54, July 1992.

7. F. Lazarus and A. Verroust, “Metamorphosis
of cylinder-like objects,” The Journal of
Visualization and Computer Animation,
8(3):131-146, 1997.

8. R.E. Parent, “Shape transformation by
boundary representation interpolation: A
recursive approach to establish face
correspondences,” The Journal of
Visualization and Computer Animation,
Vol. 3, No. 4, 1992, pp. 219-239.

9. D. DeCarlo and J. Gallier, “Topological
evolution of surfaces,” Proc. Graphics
Interface, May 1996, pp. 194-203.

10. Takashi Kanai, Hiromasa Suzuki and
Fumihiko Kimura, “Metamorphosis of
arbitrary triangular meshes,” IEEE
Computer Graphics and Applications,
March/April Issue, 2000, pp. 62-75.

11. Aaron Lee, David Dobkin, Wim Sweldens,
and Peter Schroder, “Multiresolution mesh
morphing,” Proceedings of SIGGRAPH 99,
pages 343–350, August 1999.

12. Aaron W. F. Lee, Wim Sweldens, Peter
Schroder, Lawrence Cowsar, and David
Dobkin, ”Maps: Multiresolution adaptive
parameterization of surfaces,” Proceedings
of SIGGRAPH 98, pages 95–104, July
1998.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11

