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Abstract

In this paper, we combine geometry-based and image-
based rendering techniques to develop a VR navigation
system that aims to have efficiency relatively independent
of the scene complexity. The system has two stages. In the
preprocessing stage, thex-y plane of a3D scene is parti-
tioned into equal-sized hexagonal navigation cells. Then
for each navigation cell, we associate each object outside
the cell with either a LOD mesh or an object-based depth
mesh depending on its self-occlusion error. The object with
the error larger than a user-specified threshold, is associ-
ated with a LOD mesh of an appropriate resolution. For the
object with error smaller than the threshold, we associated
it with a depth mesh that is reduced from its original mesh
based on the silhouette and depth information of its image
rendered from the cell center. All LOD meshes are then
culled by a conservative back-face computation, and then
all LOD and depth meshes are culled by a conservative vis-
ibility computation, both aim to remove polygons that are
invisible from any point inside the cell. At run-time stage,
LOD meshes are rendered normally while depth meshes
are rendered by texture mapping with their cached images.
Techniques for run-time back-face culling and occlusion
culling can be easily included. Our experimental results
have depicted fast frame rates for complex environments
with acceptable quality-loss.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Viewing Algorithms;

Keywords: Virtual Reality, Visibility, Image Caching,
Image-Based Rendering, Hybrid Rendering

1 INTRODUCTION

In order to achieve an immersive visual effect during the
VR navigation, rendering with photo-realistic scene im-
ages and high frame rate has been our ultimate goal. How-
ever, in the traditional geometry-based rendering, com-
plex scenes always require numerous polygons, and, there-
fore, can be rendered at an unacceptably low frame rate
even using a state-of-the-art hardware. Many techniques
have been proposed in last decades on reducing the poly-
gon count while preserving the visual realism of complex
scenes, including visibility culling, level-of-detail (LOD)
modeling, and more recently, image-based rendering. Al-
though image-based rendering scheme is capable of ren-
dering complex scenes with photo-realistic images in the
time complexity that is independent of the scene complex-

ity, it has been suffered from the limited viewing degree
of freedom and some losses of image quality due to gaps
and holes. Hybrid rendering that combines geometry- and
image-based technique has become a viable alternative.

To take the advantages of both geometry- and image-
based rendering techniques, we introduce a hybrid ren-
dering scheme that aims to render a complex scene in a
constant and high frame rate with only a little or an ac-
ceptable quality loss. The hybrid scheme consists of two
stages: pre-processing stage and run-time stage. In the
pre-processing stage, to exploit the spatial coherence, the
x-y plane of a3D scene is partitioned into equal-sized
hexagonal navigation cells. To reduce hole problem due
to self-occluding, each object outside a cell is represented
either by a LOD mesh or by adepth meshdepending on
its approximateself-occluding error. The object is rep-
resented by a LOD mesh of an appropriate resolution if
its self-occluding error is over a user-specified tolerance;
otherwise by an object-baseddepth mesh. The object-
baseddepth meshis derived from the object’s original
mesh based on the silhouette and depth variation on the
rendered image viewed from the cell center. The result-
ing depth mesh is a view-dependent LOD model of the ob-
ject’s visible part that the resolution becomes coarser when
the object is more distant while the silhouette is well pre-
served. In consequence, for each navigation cell, we have a
set of LOD meshes and depth meshes (together with their
cached images) for objects outside the cell. Since view-
point is constrained in a particular cell during the naviga-
tion, we can further remove back-facing polygons of LOD
meshes and occluded polygons for both type of meshes for
any viewpoint inside the cell. This is accomplished by the
proposed conservative back-facing culling and conserva-
tive occlusion culling. Based on our test, in average, con-
servative back-facing culling removes about30 percent of
polygons in LOD meshes.

At the run-time stage, LOD meshes and depth meshes
associated with the navigation cell where current view-
point lies are rendered. The depth meshes are texture
mapped with the cached images by hardware accelerated
projective-alike texture mappingwhich generates texture
coordinates automatically. Run-time occlusion culling for
the entire scene and back-facing culling for the objects in-
side the cell can be performed to further reduce the polygon
count. To minimize the impact of the data loading while
navigating across the cell boundary, a pre-fetching scheme
is also developed to amortize the loading time to several
previous frames.



2 RELATED WORK

View frustum culling that prevents the objects outside the
view volume from being sent to the rendering pipeline is
the basic visibility culling. Furthermore, back-face culling
is also commonly used. In [15], a sub-linear algorithm has
been proposed for culling back-facing polygons, but it suf-
fers from the requirements of model partitioning. Zhang
and et al. improved this by introducingnormal maskwhich
reduces the per polygon back-face test to only one logical
AND operation [29].

Several run-time methods have been proposed that fur-
ther cull out polygons that are occluded by others. There
include occlusion culling using shadow frusta [14], hierar-
chical Z-buffer [10], and hierarchical occlusion map [30].
However, there are inevitable overheads doing occlusion
culling at run-time. Cohen-Or and et al. [3] proposed a pre-
processing algorithm for regional occlusion culling, but it’s
performance depends heavily on a single strong occluder.
Durand and et al. [7] proposedextended projectionopera-
tions and Schaufler and et al. [20] proposedblocker exten-
sionto handle occluder fusion of multiple occluders. They
both subdivide a scene into volumetric cell, and computes
potential visibility set (PVS) for each volumetric cell.

With those visibility culling techniques, the remaining
polygons might be still too many to achieve interactive
rate. Level-of-detail (LOD) modeling has been very use-
ful in further reducing the number of polygon that are vis-
ible and inside the view frustum. Distant objects get pro-
jected to small areas on the screen and hence can be rep-
resented with coarse meshes. On the other hand, nearby
objects share larger screen areas and should be modeled by
meshes of higher resolution. Many methods have been pro-
posed to obtain LOD meshes; e.g.,edge collapsing[13],
vertex clustering[19], vertex decimation[22], progressive
mesh[11, 28], andview dependent LOD[27, 12].

Geometry-based rendering based on visibility culling
and LOD modeling alone usually still cannot meet inter-
active requirement for very complex scenes. Image-based
rendering (IBR) has been a well known alternative. IBR
takes parallax into account, and renders a scene by inter-
polating neighboring reference views [2, 1, 18, 23]. IBR
has efficiency that is independent of the scene complex-
ity, and can model natural scenes using photographs. It
is, however, often constrained by the limited viewing de-
gree of freedom. IBR in general has problems like folding,
gap, and hole. Lumigraph [9] and light field rendering [16]
have been proposed to reduce the7D plenoptic function
P (θ, φ, λ, Vx, Vy, Vz, t) to the 4D function P ′(s, t, u, v)
for static scenes. However, both require enormous stor-
age for the extremely large number of images. Layered
depth image (LDI) [25] is a good try to eliminate hole
problems due to the visibility changes. LDI structure is
more compact in the sense that redundant information has
been reduced when several neighboring reference images
are composed into a single LDI.

Hierarchical image caching proposed in [21, 24] is the
first approach that combines geometry-based and image-
based rendering aiming to achieve an interactive frame rate
for complex static scenes. The cached texture possesses no
depth information and, in turns, limits its life cycle. The
image simplification schemes proposed in [5, 4, 26] rep-
resent background or distant scene using2D cached depth
meshes derived from the rendered images for some specific
views. Such depth meshes are rendered by re-projection
and texture mapping. In such approaches, folding prob-

lems and gaps resulting from the resolution changes can
be eliminated; however, the hole problems due to visibility
and self-occluding still remain. Moreover, disjointed ob-
jects might be rendered as connected objects, and depth
meshes derived on the2D cached images are in pixel-
resolution, which might lead to geometric inaccuracy when
re-projected into3D space. In [6] proposed multi-layered
impostors to restrict visibility artifacts to a given size, and
as well as a dynamic update scheme to improve the resolu-
tion mismatch.

3 PROPOSED HYBRID SCHEME

A scene represented by traditional image-based represen-
tation would produce a lot of artifacts such as cracks and
holes due to resolution mismatch and visibility change
respectively. However, a scene represented by a single
environment-based depth mesh (impostor) still produces
rubber artifacts caused by incorrect connections between
disjoint surfaces. Although, disjoint surfaces are identi-
fied, holes appear in a new view caused by the lack of
information of occluded parts. Such that, we propose an
object-based depth meshesscheme to greatly reduce the
hole artifacts produced from the occlusion between ob-
jects, as well as aself-occlusion error estimationto restrict
the hole artifacts produced from object’s self-occlusion in
a given size. Such estimation decides the representation of
objects, those objects which will potentially result in holes
smaller than a user-specified tolerance are represented by
depth meshes; otherwise, by standard meshes of appropri-
ate LOD resolutions. Hence, each object outside the cell
will be checked to see if itsself-occluding erroris smaller
than a predefined tolerance. The object will be associated
with a depth mesh if such test is true, and a LOD mesh if it
fails.

To reduce the redundancy of a regular-grid meshing, as
well as the precision error caused by the projection from
object space to image space, thedepth meshis simplified
based on the original mesh and depth characteristic by an
edge collapsing while preserving most of the important vi-
sual appearances.

Furthermore, to reduce the polygon count in scene nav-
igation, for each navigation cell we do the conservation
back-face culling for all LOD meshes, followed by a con-
servative occlusion culling for all depth meshes and LOD
meshes, both aim to remove invisible polygons for any
view inside the cell.

3.1 Pre-processing Stage

The processing steps in the pre-processing stage are:

1. Hexagonal spatial subdivision.

2. Selection of object’s representation based on its self-
occluding error estimation.

3. Depth mesh construction.

4. LOD mesh generation.

5. Regional conservative back-face culling.

6. Regional conservative occlusion culling.



Figure 1: The bird’s eye view of the scene and the naviga-
tion path.

3.1.1 Hexagonal spatial subdivision

In order to utilize the spatial locality of a complex scene,
we subdivide thex-y plane of the scene intoN × M
hexagonal navigation cells (Figure 1.) With the spatial
subdivision, the scene data and viewpoints can be local-
ized to cells, and, therefore, visibility culling, conservative
back-facing and occlusion culling can be performed in pre-
processing phase. A reason why the hexagonal subdivi-
sion, rather than rectangular subdivision, is used is that, in
worse case, data of three adjacent cells need to be loaded,
instead of four for rectangular subdivision, when navigat-
ing across the cell boundary. Table 1 depicts the maximum
ratio of side faces could be seen from an inside point of the
hexagonal and rectangular cell under different FOVs.

FOV(o) 120 90 60 45 30
Hexagonal 5/6 4/6 3/6 3/6 2/6
Rectangular 4/4 3/4 3/4 2/4 2/4

Table 1: Maximum ratio of side faces seen from a point
inside the cell under different FOVs.

3.1.2 Self-occluding error estimation

The major problem of depth mesh representation is that
it is only the visible part of the object viewed from the
cell center hence has limited viewing degree of freedom.
When a new view is far from the cell center, parts that are
invisible originally might become visible and get rendered
as holes. We propose a self-occluding error to estimate the
maximum size of the hole that may appear when the object
is represented by a depth mesh.

As shown in Figure 2, the maximum error occurs at the
farest view positionV ′ from the cell centerV . Let the
cell size, i.e., the length ofV V ′ be c, the distant between
object and the cell center, i.e., the length ofV O bed, and
the sizein depth of the object itself, i.e., the length ofOP
bel. The length ofOC is l∗tan θ, the angleθ betweenV P
andV ′P is θ = tan−1 c

d+l , ands which is the projected

size ofOP as well asOC is:
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Figure 2: The maximum self-occluding error occurs at the
positionV ′.
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The test on self-occluding error is to check if the object’s
maximum projected errors is smaller then a user-specified
tolerance in image precision. If it is, the object is repre-
sented by a depth mesh; otherwise by a LOD mesh.

3.1.3 Depth mesh construction

The cached image of an object is obtained by rendering the
object using the cell center as the center of projection and
using the cell’s side face as the projection window. The
depth imageis the cached image augmented with the depth
values. The simplest way to construct adepth meshfor
an object is to use the regular-grid triangulation [17] per-
formed on the depth image, which would, however, results
in too many redundant triangles and produces rubber ef-
fects caused by incorrect connections. Furthermore, since
it is performed in the image space, it always suffers from
the precision error caused by the projection.

In order to reduce the number of the triangles on a depth
mesh while preserving most of the visual appearances, sev-
eral properties of the depth image could be adopted. The
most important one is to use the depth coherence, by that
we mean pixels of similar depth variation are likely to be
on the same surface, and a pixel that has a sharp depth
variation from adjacent pixels would have a high possibil-
ity to be on a contour edge. Moreover, the external contour
edges of the rendered object on the image is the most im-
portant visual appearance, and hence must be included in
the depth mesh. External contour edges can be easily de-
rived by using thecontour extractionin the field of image
processing. If we can extract all the contour edges from the
depth image, rubber effects caused by undetected gaps (C0

discontinuity) between disjointed surfaces represented by a
connected mesh and blur effects appearing at the sharp cor-
ners (C1 discontinuity) represented by a flatted mesh could
be greatly reduced.



In order to minimize the precision error caused by pro-
jection (from floating-point precision in world space into
integer precision in image space), we simplify the depth
mesh in both the image and the object space in three steps.
Firstly, we categorize image pixels on the depth image
based on the importance of it’s visual appearance and it’s
characteristic into four categories:

• external contour: a pixel on the external contour ex-
tracted bycontour extraction.

• internal contour (gap)(C0 discontinuity): a pixel
whose Z value differs from neighboring pixels over
a specified toleranceTC0 (i.e., |Zi − Zi+1| > TC0 ,
see Figure 3(a).)

• sharp edge(C1 discontinuity): a pixel whose Z vari-
ation differs from neighboring pixels over a specified
toleranceTC1 (i.e., |(Zi−1 − Zi) − (Zi − Zi+1)| >
TC1 , see Figure 3(b).)

• interior: other pixel whose Z value is different from
the background Z value.

Secondly, vertices of object’s original mesh are pro-
jected again (but do not alter the value of depth image)
with the same projection setup of the depth image to do the
visibility test for each vertex. If Z value of a projected ver-
tex equals to the Z value at the pixel on the depth image,
the pixel on the depth image is representing the vertex of
the original mesh; otherwise the vertex is behind other sur-
faces. For the former case, a weight relative to the category
of the pixel is assigned to the vertex (The highest weight is
assigned forexternal contourcategory, a lower weight is
assigned forinternal contourcategory, and so on.) On the
other hand, for the later case (invisible vertex), the vertex
gets the weight zero.

Lastly, weight-based edge collapsing is performed based
on the weights of vertices to simplify the object’s original
mesh. Moreover, to obtain a proper resolution of the sim-
plified depth mesh and preserve the visual appearances, the
edge with one of or both vertices’s weight smaller than the
weight of thesharp cornercategory and whose projected
size smaller than a user-specified length tolerance (in pix-
els) is simplified. As a result, a more optimized triangle
aspect ratio is obtained and tiny triangles with respect to
the view contain no important visual appearances are re-
moved.

In addition, we use the JPEG algorithm to compress the
cached images for reducing the storage requirements and
reducing the loading time as well. Decompression needed
at run-time can be supported by the state-of-the-art graph-
ics hardware with texture decompression (eg. S3’s S3TC.)
Bandwidth between host and graphics hardware can be
greatly reduced as well.

3.1.4 Regional conservative back-face culling

As shown in Figure 4(b), for each polygon, we obtain the
vector from one of six corner vertices of the navigation
cell to the center of polygon, and do the dot product of the
vector with polygon’s normal vector. If it is negative, the
polygon is back-facing with respect to that corner vertex.
If a polygon is back-facing for all six vertices of the cell,
the polygon is back-facing with respect to any point inside
the cell, and hence should be culled. In short, a polygonP

is back-facing for a navigation cellC, if

dot product(P.normal, vector(Ci, P.center)) < 0,
for every i = 0, . . . , 5,

whereCi’s are the corners of the navigation cell. A simple
proof for the2D case is as follows:

If a polygonP is back-facing with respect to both
points A and B, P is back-facing with respect to
any point on the lineAB (see Figure 4(a).) Any
inner pointI of a navigation cell is on a lineCiE,
where vertexE is on an edgeCjC(j+1)mod6 (see Fig-
ure 4(b).) Because,P is back-facing with respect to
all cornersCk, k = 0, . . . , 5, P is back-facing with
respect toE and thereforeI.

Moreover, two corners are necessary and sufficient for
this regional back-facing test for each polygon (see Fig-
ure 4(c).) For any pointI ′ inside the navigation cell,CiI ′

intersectCjP at pointD′, becauseD′ is onCjP andP is
back-facing with respect to bothCi andCj ; such that,P
is back-facing with respect toD′, as well asI ′. Note that,
each polygon would required to test with different pair of
corners.

3.1.5 Regional conservative occlusion culling

It is very common that objects or part of objects are oc-
cluded by other objects in a complex scene, especially a
densely occluded environment. In order to utilize the spa-
tial coherence of occlusion, we perform a regional con-
servative occlusion culling in the pre-processing stage for
both LOD meshes and depth meshes.

The extended projection [7] provide us a useful tool with
a little modification for our hexagonal subdivision scheme.
This extended projection can also handle the case of multi-
ple occluders by using occluder fusion. The selection of
occluders is based on the meshes’ projected size. Only
those meshes whose projected sizes are larger than a user-
specified threshold are selected to be occluders.

3.2 Run-time stage

In the run-time stage, we do the following steps:

1. At program start-up time, we setup a lowest priority
thread for pre-fetching the geometry and image data
of neighboring cells.

2. Ensure that the geometry and image data for the cur-
rent navigation cell is loaded into memory.

3. Perform a run-time normal cluster based back-face
culling for the objects inside the current navigation
cell.

4. Perform a run-time occlusion culling for all meshes.

5. Remain the remain meshes. Depth meshes are the ren-
dered using theprojective-alike texture mapping.

6. Pre-fetch data of neighboring cells when CPU load is
relative low.
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Figure 4: Regional back-face culling.

3.2.1 Rendering

Objects inside the navigation cell can be seen from any di-
rection, it is impossible to determine the visibility during
the pre-processing stage. Those polygons inside the navi-
gation cell can be group into clusters according to its nor-
mal [15] in the pre-processing stage. During the run-time
stage, we can quickly cull out the whole back-facing clus-
ter of polygons according to the viewing direction and the
FOV.

Although there are considerable overheads, it is a ben-
eficial approach to reduce the polygons sent into graphic
pipeline by applying a run-time occlusion culling for a
densely occluded environment. To perform the culling,
we generate an occlusion map similar to the idea proposed
in [30]. Only LOD meshes, depth meshes, and original
meshes inside the navigation cell whose projected area
larger than a pre-specified threshold are selected to be oc-
cluders. Though this approach of occluders selection is not
optimized, it is advantageous not to spend too much time
on selecting occluders.

3.2.2 Projective-alike texture mapping

A projective-alike-texture-mappingmethod is developed to
map the cached image onto depth mesh in such a way that
the texture coordinate of each vertex can be generated au-
tomatically by the standard OpenGL (glTexGen().)

himage

xoffset

wstored

Source image
(rendered image)Cached image

yoffset

wimage

hstored

Figure 5: A cached image is a part of a source image.

In most cases, a object-based depth mesh located in part
of a source image (e.g. see Figure 5.) To minimize the stor-
age requirement of cached images, only necessary rectan-
gular part of source image is stored as cached image.

Texture coordinates(s, t) maps from image coor-
dinates (x, y) can be derived by(s, t) = ((x −
xoffset)/wstored, (y − yoffset)/hstored), wherexoffset and
yoffset are the offset of the cached image relative to source
image, andwstored andhstored are width and height of the
cached image, respectively. The GPU of graphics hard-
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Figure 6: Re-projection from source to destination image,
T1 andT2 are the camera matrix of source imageI1 and
destination imageI2, respectively..

ware can also do the transformation of re-projection from
the source image coordinates to the destination image co-
ordinates by multiply the inverse of the camera matrix of
the source image (Figure 6), allowing CPU leisurely does
the visibility culling, level-of-detail selection, pre-fetching,
and so on.

This method does not need to specify texture coordi-
nates, and in consequence, reduces the bandwidth needed
between CPU and graphics accelerator, and does not re-
quire additional memory for storing texture coordinate at
each vertex. Moreover, vertices of a depth meshes are
allowed to be stored in source image coordinate system,
which requires 16-bit unsigned integer forx andy, and 32-
bit floating point forz. As a result, 8 bytes is necessarily
sufficient for each vertex, compared to 12 bytes per vertex
if all x, y, andz are stored as world coordinates as well as
8 bytes for texture coordinatess andt.

3.2.3 Cell Transition

A major problem arises in spatial-subdivision approach
is how to achieve smooth and unnoticeable transition be-
tween cells. When the view point moves across the cell
boundary and makes a transition from cellA to cellB, we
will switch the geometry set fromGA toGB , depth mesh
set fromDA toDB , and cached image set fromIA to IB .
Accordingly, it may spend a lot of time in loading data
from disk.

Here, we develop a pre-fetch mechanism which pre-
loads the geometry and image data of neighboring cells
when CPU load is relative low. It will amortize the loading
time to several inside-cell frames and reduce the difference
of rendering time between an inside-cell frame and a cross-
cell-boundary frame. We can easily attain this by setting
the priority of a pre-fetch thread to be lower then others.
As a result, we will not be interrupted by the loading of
newly navigated data during the cell transition and obtain
a more smooth frame rates and an unnoticeable transition.
Note that the smaller cell size is the more frequent the tran-
sition is.

4 EXPERIMENTS

Our test scene is a statuary park which is consists of784
objects with880, 840 polygons on an area of1200× 1000;
see Figure 1. Figure 7 represents images of two different

views of our scene. Notice that the standing horse in Fig-
ure 7(b) is represented by a depth mesh, in a contrary, the
front cattle in Figure 7(d) is represented by a LOD mesh.

The test platform is a PC with an AMD ThunderBird
1200Mhz CPU, 512MB main memory, and an nVidia
GeForce3 with 64MB DDR RAM graphics accelerator.

4.1 Image Quality
To identify how much quality-loss of our proposed method,
we use the signal-to-noise ratio SNR(dB), defined as fol-
lows:

SNR = 10 ∗ log

∑M−1
x=0

∑N−1
y=0 f̂(x, y)2∑M−1

x=0

∑N−1
y=0

[
f̂(x, y)− f(x, y)

]2
wheref̂(x, y) is the pixel color of the approximated im-
age at position(x, y), M andN are the dimensions of the
image.

Before applying SNR, the RGB color is mapped to a
single luminance valueY since our human eyes are more
sensitive to the changes in luminance than to the changes
in chrominance. Such mapping [8] is

Y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B.

Note that, human eyes in general would not able to dis-
tinguish between two images that have an signal-to-noise
ratio (SNR) greater than25dB.

4.2 Cell Size and Self-Occluding Error
Consideration

Four settings of the cell size and self-occluding error tol-
erance are used in our experimental test: two different cell
sizes (50 and100) with two different self-occluding error
tolerances (1-pixel and3-pixel.)

The distributions of LOD meshes and depth meshes for
these four different settings are shown in Figure 8. A LOD
mesh is marked as a red cross while a depth mesh as a
blue point. As we can expect, the higher self-occluding
error we can tolerate, the more objects are represented by
depth meshes. In the case of cell size50 and1-pixel er-
ror tolerance, there are four LOD meshes, while there is
only one LOD meshes for the setting of3-pixel error tol-
erance. However, with no doubt, image quality for3-pixel
tolerance is lower than that of1-pixel tolerance.

Figure 9 compares the image quality obtained by the
proposed scheme and by rendering with pure geometry
for the four different settings. Similarly, Figure 10 shows
the frame time comparison but with no run-time occlusion
culling for our scheme. Table 2 lists the polygon simplifi-
cation ratio for the objects represented by LOD and depth
meshes, the average frame rate, and average image quality
for the four settings. All of them show that, more poly-
gons are simplified for the higher error tolerance setting
with the cost of higher quality-loss. That is, a trade-off
between the performance and image quality. Note that,
the quality differences between different cell sizes are al-
most the same, mainly due to the fact that the selection of
object’s representation is designed to ensure the bounded
self-occluding error. Hence, the cell size has few impact
on the image quality under our proposed scheme. How-
ever, as the cell size increases, more objects are represented
by LOD meshes, more objects are put inside the navigation



cell, and the number of potential visible polygons increases
also, so the number of polygons increases dramatically. As
a result, worse performance will be found.

Table 3 depicts the culling rate of the conservative back-
facing culling, in which about30% polygons of LOD
meshes are culled out for the case of cell size50. In gen-
eral, the larger size a cell has, the fewer back-facing rate
is.

At the time of writing this paper, we still work on several
minor bugs of this pre-processing occlusion culling pro-
gram, therefore, we have no information about how many
percentage of polygons will be culled, at this moment.

Polygons
number in
LOD meshes

Back-face-
culled polygon
number

Culled rate

size 50, 3-pixel 9,511 2,891 30.40%
size 100, 3-pixel 8,887 2,018 22.71%

Table 3: Average culling rate of the regional back-face
culling for all cells.

4.3 Performance

We use the setting of cell size50 and3-pixel self-occluding
error tolerance for the further testing. Four rendering con-
figurations are used to do the performance comparison:

• A: (Pure geometry)The original meshes of the scene
are rendered using the traditional graphics pipeline.

• B: (Pure geometry w/ view frustum culling) Same
asA, but with software view frustum culling.

• C: (Proposed scheme w/ run-time occlusion
culling) The scene is rendered by the proposed
scheme with view frustum culling and run-time oc-
clusion culling.

• D: (Proposed scheme w/o run-time occlusion
culling) The scene is rendered by proposed scheme
with view frustum culling butwithoutrun-time occlu-
sion culling.

Since we want to identify how much benefit comes from
the depth mesh representation alone, the configurationC
andD use original meshes instead of LOD meshes to repre-
sent those objects which the self-occluding error exceeding
the tolerance.

Table 4 lists the performance of each configuration.
ConfigurationC andD spend additional time on loading
neighboring cell data at the first frame, so, there are peaks
at the first frame. Our proposed scheme w/o run-time oc-
clusion culling has about18.7 speedup factor compare to
the pure geometric rendering while yields an average SNR
about22dB. As mention before, the overhead of run-time
occlusion culling is unnegliable, and our test scene is not
a densely occluded environment, so, configurationC is
slower thanD but still outperformsB.

Figure 11 depicts the frame time of every rendering
frames on the same navigation path under these four ren-
dering configurations. It shows that our proposed method
provides a faster rendering with an acceptable quality-loss
and has a more constant frame rate compared to the ren-
dering configurationB.

A B C D
Frame Time(ms) 332.50 81.73 60.29 17.75
Frame Rate(fps) 3.01 12.24 16.59 56.35
Speed Up 1×(baseline) 4.07× 5.51× 18.7×

Table 4: Performance of the four testing configurations.

5 DISCUSSION & FUTURE WORK

In this paper, we have proposed a hexagonal spatial subdi-
vision and a hybrid scheme for navigating complex scenes.
The method can achieve a smooth, navigation with no ap-
parent popping effects at an almost constant and interactive
frame rate. By cooperating with LOD meshes and depth
meshes, parallax error and popping effect will be mini-
mized. Furthermore, with visibility preprocessing, poly-
gons invisible from a region will never sent into graph-
ics pipeline. A tradeoff between performance and qual-
ity requirement can be easily made by specifying the self-
occluding error tolerance.

As the future works, we will firstly finish the pre-
processing occlusion culling program to effectively cull
out the polygons that are invisible from a cell region. We
will also improve the depth mesh construction and simpli-
fication to have a better simplified depth mesh. Moreover,
we will try to exploit the data coherence between neigh-
boring cells to improve our pre-loading scheme.
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(a) View 1, rendered by pure geometries. (b) View 1, rendered by the proposed scheme.

(c) View 2, rendered by pure geometries. (d) View 2, rendered by the proposed scheme.

Figure 7: Two different views of our test scene.



(a) size50, 1-pixel (b) size50, 3-pixel

(c) size100,1-pixel (d) size100,3-pixel

Figure 8: Distribution of LOD meshes and depth meshes under four different settings.
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Figure 9: The quality of the four different settings on the same navigation path.
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Figure 10: The frame time of the four different settings on the same navigation path.
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Figure 11: The frame time of the four different configurations on the same navigation path.


