
Design and Implementation of a Zigbee-based

Communication Substrate for Wireless Sensor Networks

無線感測網路之 Zigbee通訊平台的設計與實作
Wei-kou Li* Chih-Hung Chou* Zhi-Feng Lin*

dimi@os.nctu.edu.tw robertchou@os.nctu.edu.tw ttom@os.nctu.ed.tw

Da-Wei Chang* Chung-Chou Shen#
david@os.nctu.edu.tw ccshen@itri.org.tw
*Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

#Internet Embedded System Division, Computer & Communications Research Laboratories,
Industrial Technology Research Institute, Hsinchu, Taiwan

摘要

 一個大型的無線感測網路可能包含許多
由不同廠商製造的感測結點。為了讓不同廠商

所製造的感測結點能互相溝通，必須要有一個

標準化的通訊機制。而 Zigbee因為其低成本，

低功耗的特性，已經成為未來無線感測網路頗

具希望的通訊標準之一。

 在此論文中，我們將描述 Zigbee網路層

在設計與實作上的一些議題與細節。此外，我

們也提出一個 beacon 排程的演算法以避免在

一個 Zigbee網路中 beacon的相互碰撞。最後，

我們提出一個基於 Zigbee 的快速物件追蹤方

法，可用來追蹤移動的感測結點。

 我們的 Zigbee網路層是實作在工研院的

SCAN感測結點上。網路層本身是實作成一個

Linux核心模組。經過測試，資料傳輸數度可

達 88 Kbps，足夠應付大部分的感測網路應用。

關鍵詞： 無線感測網路，Zigbee， IEEE

802.15.4

Abstract
 A Wireless Sensor Network (WSN)

consists of a large number of sensor nodes,

which may not be produced by the same vendor.

To enable communication among sensor nodes

from different vendors, a standard

communication link is needed.

 Zigbee has features such as low cost and

low power consumption so that it has been

considered as a promising candidate for the

communication technology of WSN.

 In this paper, we describe the design issues

and implementation details of the Zigbee

network layer, which serves as a communication

substrate for WSN. We also propose a beacon

scheduling algorithm to avoid beacon collision,

and a fast object-tracking technique that uses the

functionality provided by Zigbee/IEEE 802.15.4

to track moveable sensor nodes.

 We have implemented the Zigbee network

layer on the SCAN sensor board, which is

developed by Industrial Technology Research

Institute (ITRI). The network layer is

implemented as a Linux kernel module. The

performance result shows that the throughput of

the network layer can reach 88 Kbps, which is

sufficient for most WSNs.

Keywords: Wireless Sensor Network, Zigbee,

IEEE 802.15.4.

1. Introduction

 Wireless Sensor Network (WSN) [1, 3, 13]

has received much attention in recent years. A

WSN consists of a large number of sensor nodes

that can communicate and cooperate with each

other to accomplish a specific task. One of the

most important requirements of a WSN is that

sensor nodes should be low power, both in

computation and communication, so that long

battery life is allowed.

 Zigbee [15] is a wireless communication

technology for wireless personal area network

(WPAN). It is especially suitable for low-power

sensing and control applications. The Zigbee

protocol stack, which consists of the network

and application layers, sits on top of the MAC

and PHY layers defined by the IEEE 802.15.4

[11] standard. Due to the low power and low

cost features of a node, Zigbee is becoming an

emerging standard for the communication

technology of WSNs. For example, the MICA

sensor series contains a product MICAz [5] that

is equipped with a 2.4 GHz IEEE

802.15.4-compliant RF transceiver. For another

example, there are also efforts [12] that

implement Zigbee stack on TinyOS[14], the

most popular operating system for WSNs.

 Although Zigbee has become a promising

candidate for the communication technology of

WSNs, the implementation details are still not

mentioned in the literature. In this paper, we

describe the design issues and implementation

details of the Zigbee network layer, which plays

the roles of network formation, joining, leaving,

and packet routing, and it can act as a

communication substrate of a WSN.

 In a Zigbee-based WSN, multiple devices

may send beacons periodically, and hence a

beacon scheduling algorithm is needed to avoid

beacon collision. In this paper, we propose a

beacon scheduling algorithm, which has been

embedded into our Zigbee network layer

implementation.

 In addition to the Zigbee network layer,

we also developed an object-tracking application

based on this layer. The application can be

integrated into a health-caring system for

watching aged people in a community or a

student-tracking system that tracks students

when they are in the path between their homes

and the school. In order to support fast object

tracking, we propose a technique that take

advantage of the functionality provided by

Zigbee/IEEE 802.15.4 network. We also

implemented the technique and demonstrate its

feasibility and performance.

 We have implemented the Zigbee network

layer as a Linux kernel module on the SCAN

sensor board, which is developed by Industrial

Technology Research Institute (ITRI). According

to the performance results, the proposed object

tracking approach is efficient and the data

throughput of the network layer (i.e., 88 Kbps) is

sufficient for most WSNs.

 The sensor board together with the Zigbee

protocol stack can serve as a research platform

for WSN. Different from the TinyOS platform, a

sensor node application on our platform is a

typical Linux application program. Thus,

researchers can implement their techniques with

less effort.

 The remainder of the paper is organized as

follows. Section 2 describes the related efforts.

Section 3 presents the design issues and

implementation details. The performance results

are given in Section 4, and we conclude in

Section 5.

2. Related Work

2.1 Wireless Sensor Network
 Wireless Sensor Network (WSN) [1, 3, 13]

has received a great attention in recent years,

both from academy and industry. Typically, a

sensor node consist of a sensor unit (e.g., a

temperature sensing module), a less-powerful

computation unit (e.g., ARM, 8051), a small

storage unit (e.g., Flash memory), and a

low-power communication unit. Due to the large

number and tight resource and power constraints

of sensor nodes, WSN put challenge on solving

the problems such as deployment,

energy-efficient routing, reprogramming, and

etc.

 Traditionally, sensor nodes communicate

with each other via proprietary RF links. To

enable communication among nodes from

different vendors, a standard communication

link is necessary. Zigbee has features such as

low cost and low power consumption so that it

has been considered as the promising candidate

for the communication technology of WSN.

2.2 IEEE 802.15.4
 As mentioned above, Zigbee chooses

IEEE 802.15.4. as the bottom layers of the

protocol stack. The specification of IEEE

802.15.4 defines the MAC and PHY layers for a

low data rate WPAN. It uses carrier sense

multiple access with collision avoidance

(CSMA-CA) as the medium access mechanism,

and it can achieve 250kbps on the 2.4 GHz ISM

band (16 channels).

 Due to the low power feature and

standardization, some companies such as

Crossbow[4] and Freescale[9] have developed

IEEE 802.15.4-compliant sensor boards.

2.3 Zigbee
 Zigbee [15] is a low data rate wireless

communication technology for wireless personal

area network (WPAN). It is defined by the

Zigbee Alliance, and is especially suitable for

low-power sensing and control applications. As

mentioned above, the Zigbee Alliance defines

the network and application layer protocols, and

it chooses IEEE 802.15.4 as the bottom layers.

 A Zigbee node can be a full function

device (FFD) or a reduced function device

(RFD). The former is equipped with more

resources. It can send beacons, form an IEEE

802.15.4 network, and route packets. The latter

has fewer resources and usually can not perform

the above tasks. The nodes in a Zigbee network

can be classified into three roles: coordinator,

router, and end device. A FFD can play any one

of the roles, while a RFD can only play the end

device role. In Zigbee, the network topology can

be star, mesh, or cluster tree. Figure 1 shows

some possible topologies of a Zigbee network.

Figure 1. Possible Topologies of a Zigbee

Network

 Although companies such as Ember [7]

and Figure 8 Wireless [8] have implemented a

full Zigbee stack, little implementation details

were mentioned. In this paper, we describe the

design issues and implementation details of the

Zigbee network protocol, which serves as the

communication substrate of a WSN.

3. Design and Implementation
 The Zigbee network layer is implemented

as a state machine, which is described in Section

3.1. Section 3.2 shows the interface provided by

the network layer to the other layers. Section 3.3

mentions some important data structures used in

the network layer. The beacon scheduling

algorithm and the fast object-tracking technique

are described in Section 3.4 and 3.5, respectively.

Finally, we mention the implementation of the

applications.

3.1 State Machine
 As we mentioned above, a Zigbee node

plays one of the three roles: coordinator, router,

or end device, and we implemented a state

machine for each role. Figure 2 shows the state

machine of a Zigbee coordinator. The states

colored in gray indicate whether the node is in a

Zigbee network or not, and the role of that node.

For example, the Out NWK state is the initial

state and indicates that the node is not in a

network. The In as Coordinator state indicates

that the node is currently in a Zigbee network

and acts as the network coordinator.

 From Figure 2 we can see that, a

coordinator transfer from the initial state (i.e.,

the Out NWK state) to the In as Coordinator

state via four steps. First, it receives the network

formation request from the application layer,

enters into the energy detection (ED) scan state,

and performs the ED scan procedure. When

receiving a network formation request, the node

tries to start a WPAN. Therefore, it performs ED

scan first to find out the channel with the least

signal energy among all the available channels.

The node will try to form a WPAN on that

channel. Second, when an ED scan confirmation

is received from the MAC layer (i.e., indicates

that the ED scan procedure is done), the node

enters the passive scan state and performs the

passive scan procedure. Through the procedure,

the node can learn the PAN identifiers (PAN IDs)

that are currently used by the other WPANs on

the target channel, and then the node can select

an available PAN ID. Third, when the passive

scan confirmation is received from the MAC, the

node enters the start request state, and sends a

start request to the MAC so that periodic

beacons will be scheduled for transmission by

the MAC. Fourth, when the start request

confirmation is received, the node enters into the

In as Coordinator state.

Figure 2. State Transition in a Coordinator

 It is worth mentioning that the state

transition happens according to the management

flow, not the data flow. In other words, data

packet transmission/reception does not lead to

state transition. Data transmission/reception can

happen at anytime as long as the node is in the

network (i.e., the node is in one of the In as

Coordinator, Association Response, Update NIB,

and Orphan Response states in Figure 2).

Figure 3. State Transition in a Router

 Figure 3 shows the state transition of a

Zigbee router. During the initialization of a

router, the application layer issues a network

discovery request to the network layer, which

triggers a passive scan procedure. Slightly

different from the passive scan procedure

mentioned in Figure 2, the passive scan

procedure of a router scans all the available

channels and returns the PAN information (such

as PAN ID, channel number) on these channels.

According to the information, the application

layer chooses a PAN that it wishes to join into

and issues a join request (that specifies the join

as router option) to the network layer. When

receiving the join request, the network layer

selects a node with the strongest signal strength

in the target PAN and associates with it by

issuing an association request to the MAC layer.

Then, the start router request is issued and the

router enters into the In as Router state. Note

that the router may send periodic beacons or not,

according to the parameters specified in the start

router request.

 In addition to the normal join operation,

Zigbee also contains a re-join operation, which

can be used to re-associate with a

coordinator/router that the node had already

associated with but the link was once broken.

The re-join operation triggers the orphan scan

procedure of the MAC, which is typically much

faster than the normal association procedure. We

use this feature to enable fast object tracking,

which is described more clearly in Section 3.5.

 When a coordinator/router enters into a

network, it can allow others to join with it. When

receiving an association indication from the

MAC, the coordinator/router checks whether or

not to allow the remote device to join into the

network. If the device is allowed, the network

layer will assign a network address for the

device. When an orphan notification is received,

the network layer checks whether or not the

remote device had already associated with the

local node. If it had, the network layer assigns

the same network address for the remote device

so that the remote device can enter the network

again.

Figure 4. State Transition in an End Device

 Figure 4 shows the state transition of a

Zigbee end device. The states are a subset of

those shown in Figure 3. During the

initialization of an end device, the application

layer also issues a network discovery request to

the network layer, which triggers a passive scan

procedure and therefore the node can associate

with a coordinator/router it chooses.

 Whatever the role a node plays, an

in-network node can leave the network when it

receives a leave request form the application

layer. The request triggers the disassociation

procedure of the MAC to leave the network.

3.2 Inter-Layer Communication

Figure 5. The Inter-Layer Interface

 As mentioned above, Zigbee network layer

sits between the application layer and the MAC

layer. The inter-layer communication is via

messages. Figure 5 shows the inter-layer

interface, which is defined by [10]. The interface

is divided into data and management parts, and

the network layer provides four APIs to the other

layers: APL_NLDE/APL_NLME for the

application layer, and

MCPS_NWK/MLME_NWK for the MAC layer.

These APIs are used by the application and

MAC layers to transfer messages to the network

layer. When a message is received, the network

layer inserts the message into the corresponding

queue to allow the state machine to process the

message.

 The network layer checks the message

queues periodically to see if there are any

pending messages. If there are, it removes the

first message from the queue and uses the

message as the input of the state machine. The

state machine will process the message, and

perform state transition when necessary. Then,

the memory used by the message will be freed

and the network layer will check the next

pending message.

 Figure 6 shows the structure of the

message transferred from the application layer to

the Network Layer Management Entity (NLME).

Basically, each message contains message type

and message data. Other kinds of messages are

similar to that shown in Figure 6 so we do not

describe them in the paper.

Figure 6. Application-to-NLME Message

3.3 Important Data Structures
 In addition to the message structure, the

most important data structure is the network

layer information base (NIB), which stores the

status of the network, the routing table, and the

state of the neighbor nodes.

 Figure 7 shows the data structure of NIB.

It consists of the information such as the

maximum depth of the network, the maximum

number of the router, a neighbor table, and the

capability of the node.

Figure 7. The NIB

The structure of a neighbor table entry is

shown in Figure 8. It consists of PAN ID,

address information, device type (coordinator,

router, or end device), relationship between the

local and the remote nodes, the signal strength,

and etc.

Figure 8. Neighbor Table Entry

3.4 Beacon Scheduling
As mentioned before, multiple routers (and

the coordinator) may send periodic beacons. A

beacon scheduling algorithm can be used to

select the starting time of the beacons so that

beacon collision can be avoided.

The most important parameters of a

beacon scheduling algorithms are beacon order

and superframe order. The former represents the

time interval between two successive beacons,

while the latter stands for the actual time period

managed by the router (i.e., the router sends a

beacon at the start of this period, and routers and

end devices under this router can send/receive

packets to/from the router in this period).

Note that, in IEEE 802.15.4, the beacon

order time is 2’s power times to the supreframe

order time. For example, if the value of beacon

order is 5 and the value of supreframe order is 2,

there can be 25-2 (i.e., 8) superframes in the

beacon order time. Thus, we can regard the

superframe order time as a time segment, and

therefore the goal of a beacon scheduling

algorithm is to allocate an unused segment (from

all the available segments in the beacon order

time) to the current router. When a segment is

allocated to a router, the router can send a

beacon at the starting time of the segment.

To find an unused segment, the router

must first collect all of the beacons it can receive,

and find out the segments that are used by these

beacons. However, only considering the beacons

the router can receive may suffer from the

hidden node problem. As shown in Figure 9, if

the white node is a router that wants to join with

the gray node, it may receive beacons from the

gray node and select a segment which is

different from that used by the gray node.

However, the segment may be overlaps with that

of the black node, which is a hidden node of the

white node, so that collisions may happen when

both the black node and the white node wants to

send beacon/data frames to the gray node.

To avoid this problem, the Zigbee network

layer embeds TxOffset values in the payload of a

beacon, which indicate the timing differences

between the beacon and the neighboring beacons.

By considering the TxOffset values, a beacon

scheduling algorithm can avoid the problem of

hidden nodes. Take Figure 9 as an example, the

beacon of the gray node embeds a TxOffset

value, which indicates the timing difference

between the beacon of the gray node and the

beacon of the black node. When receiving the

beacon (from the gray node), the white node can

learn the time segments of both the gray and the

black nodes according to the receive time of the

beacon and the TxOffset value. Therefore, the

white node can choose a time segment that is

different from those of the black and gray nodes.

Figure 9. The Hidden Node Problem

Figure 10. Beacon Scheduling Algorithm

Figure 10 shows the proposed beacon

scheduling algorithm. We take an example to

make the readers understand the algorithm more

easily. Assuming that the there are 8 (i.e., 23)

segments in a beacon order time. This algorithm

first check segment 0 and 4 (i.e., multiple of 22),

Black node

Gray node

 White node

c: current interval

b: beacon order interval

B: an array of segments in the beacon

interval

collect the beacon information (including the

TxOffset information)

mark all used beacon segments in B

let c = b / 2 /* half of the beacon

 interval*/

while(c >= 1)

{

check all segments with segment number

i*c in B (where 0 <= i <= b/c -1)

 if an unused segment is found

 return the segment number

 else

 c = c/2

}

/* all segments are used */

return “no available segment”

then segment 2 and 6 (multiple of 21), and

finally segment 1, 3, 5, 7 (multiple of 20). The

algorithm returns the unused segment number

that it finds first.

3.5 Fast Object Tracking
 Some WSN applications require tracking

the location of specific moveable sensor nodes.

In this section, we describe the approach that we

used to track a Zigbee-based sensor node (i.e.,

object).

 When a Zigbee-based object moves from

the radio range of a node to that of another node,

the object usually has to perform association

with the new node. However, association

requires a long time, so we use orphan join

operation instead. As shown in Figure 11, the

object will broadcast orphan request command,

which will be received by router R1, R3, and R4

since they are in the radio range of the object.

The object will join into one of the routers (i.e.,

become the child of the router), and all the above

routers can send packets to the coordinator to

specify that the object is in the radio ranges of

the routers. Each router can also record the

signal strength of the received packet and pass

the information to the coordinator so that more

precise positioning is possible.

We will demonstrate that the orphan join

operation outperforms the association operation

in time in Section 4.3.

Figure11. Orphan Join

3.6 Application Implementation
In the initial implementation, the

application is linked together with the Zigbee

network layer as a Linux kernel module.

Therefore, the communication between the

application and the Zigbee network layer is

through function calls.

To make application development easier, we

currently allow the applications to be executed

in user mode. We have wrapped the Zigbee

network layer as a character device so that an

application can perform communication via

Zigbee by simply accessing the character device

file. Specifically, an application can send

commands/data to the Zigbee network layer by

performing ioctl() calls. On the other hand, the

Zigbee network layer notifies the application by

using Linux signals. We reserve two signal

numbers for Zigbee applications. SIGUSR1 is

used by the management flow, and SIGUSR2 is

used by the data flow.

4. Evaluation
4.1 Experimental Environment
 We use the SCAN ZB V1.0B sensor

boards developed by Computer and

Communication Research Laboratory (CCL) at

Industrial Technology Research Institute (ITRI)

as our sensor devices. Each sensor board is

equipped with a Hynix HMS30C7202 CPU

(70MHz), 16-MByte Flash, 16-MByte DRAM,

and a Chipcon CC2420 RF Transceiver. The

operating system is Linux, version 2.4.21.

 The MAC layer, which we use in the

following experiments, is developed by

Computer Systems Laboratory at CSIE

Department of Chang Gung University. In

addition to this MAC, our Zigbee network

implementation was also ported to the D18

MAC, the IEE 802.15.4-compliant MAC

developed by Freescale Semiconductor Inc.

 Besides the sensor nodes, we also use a

packet sniffer CC2420EB [2] developed by

Chipcon Inc. in some of the following

experiments.

4.2 Object Tracking
 To demonstrate the feasibility of the object

tracking, we build up a backbone network that

consists of three nodes: one coordinator and two

routers. As shown in Figure 12, device 0000 is

the coordinator, while devices 0001 and 0002 are

the routers. This figure is presented by the

packet sniffer with the Network Sensor Analyzer

software [6] developed by Daintree Netwrok

Inc., which is used to visualize the network

topology. In addition to the backbone, there are

three moveable objects that need to be tracked.

Originally, the three objects join with the

coordinator. During the experiment, we move

the objects from the original position to the radio

range of router 0001, and then to the radio range

of router 0002. Figure 13 shows the result. From

the figure we can see that, the objects finally join

with router 0002.

Figure 12. Object Tracking (Initial Condition)

Figure 13. Object Tracking (Final Condition)

4.3 Performance of Orphan Join
 In this section, we measure the

performance of orphan join, and compare it with

the performance of association.

4.3.1 Orphan Join v.s. Association

 To measure the performance, we have an

end device associate (or orphan join) with the

coordinator and measure the time of the whole

procedure on the end device. Figure 14 shows

the results. From the figure we can see that the

association time is about 9 times more than the

orphan join time. This proves that the orphan

join outperforms association in

performance.

Join Comparison

428.54

46.44

0

50

100

150

200

250

300

350

400

450

Enddevice

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
m
s
)

Associate

Orphan

Figure 14. Performance Comparison between

Orphan Join and Association

 Note that most of the time an end device

spends in an orphan join procedure is to wait for

the response of the coordinator. In current

implementation, we use a fixed waiting time of 5

jiffies (on Linux) which equals to 45ms in

average. In the future, we will let an end device

terminate the procedure once it has received a

response from any coordinator or routers. This

reduces the time of the procedure further.

4.3.2 Orphan Join with Multiple Nodes

In this section, we measure the

performance of orphan join when multiple nodes

join into the same coordinator at the same time.

Figure 15 shows the results. The x-axis indicates

the number of nodes, while the y-axis represents

the average time of the procedure measured on

the end devices. From the figure we can see that

about 46ms is required when there is a single

end device join with the coordinator, and only

about 50 ms is required when there are 14

devices. This demonstrates that the performance

does not degrade much when there is a moderate

number of end devices join with the same

coordinator/router. We did not measure the

performance for more devices due to the

unavailability of more device hardware. In the

future, we will perform this experiment again for

more devices.

Orphan Join

44

45

46

47

48

49

50

51

1 2 4 6 8 10 12 14
of devices

J
o
i
n

T
i
m
e

(
m
s
)

Figure 15. Performance of Orphan Join with

Multiple Nodes

4.3.3 Timing Breakdown

Table 1. Orphan Join Timing Breakdown
Primitive Time(us)
NWK_TX 60
MAC_TX 341
Wait Time 45937
MAC_RX 10
NWK_RX 53

System 53

 In this section, we provide a timing

breakdown of the orphan join procedure, which

includes sending a request to and receiving a

response from the coordinator. Table 1 shows the

result. As mentioned above, most of the time is

spent on waiting for the response. The real

processing time (including the network layer, the

MAC layer and the operating system) is quite

small.

4.4 Data Throughput
 In this section, we measure the data

throughput with the presence of the network

layer. Figure 16 shows the results. As shown in

the figure, the data throughput increases as the

size of the payload grows, and the maximum

through reaches 88 kbps.

Data Throughput

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 96

Network Payload Length (bytes)

T
h
r
o
u
g
h
p
u
t

(
K
b
/
s
)

Figure 16. Data Through under Different

Payload Sizes

 In the last experiment, we measure the

throughput degradation due to the adding of the

Zigbee network layer implementation. The right

bar of Figure 17 indicates the maximum

performance of the MAC, while the left bar

represents the maximum performance under the

situation that the Zigbee network layer

implementation is added on top of the MAC. As

shown in the figure, the throughput degradation

is about 9 kbps, which comes mainly from

queuing delay and network layer header

processing.

88.1

97

0

20

40

60

80

100

120

Layer

T
h
r
o
u
g
h
p
u
t

(
K
b
/
s
)

NWK

MAC

Figure 17. Performance Impact of Adding the

Zigbee Network Layer

5. Conclusions
 In this paper, we have described the design

and implementation of the Zigbee network layer,

which is responsible for network

formation/joining/leaving and packet routing. In

addition, we also proposed a beacon scheduling

algorithm for avoiding the beacon collision

problem. Finally, we proposed using the orphan

join operation to achieve fast object tracking in a

Zigbee WSN.

 We have implemented the Zigbee network

layer as a Linux kernel module. According to the

performance results, the proposed object

tracking approach is efficient and the data

throughput of the network layer (i.e., 88 Kbps) is

sufficient for most WSNs.

 The sensor board together with the Zigbee

implementation can serve as a research platform

for WSN. Different from the TinyOS platform, a

sensor node application on our platform is a

typical Linux application program. Thus,

researchers can implement their techniques with

less effort.

References

[1] L. F. Akyildiz, W. Su, Y.

Sankarasubramaniam and E. Cayirci, “A

Survey on Sensor Networks”, IEEE

Communication Magazine, Vol. 40, No. 8,

pp. 102-114, August 2002.

[2] Chipcon Inc., “CC2420 Zigbee DK

Development Kit”, available at

http://www.chipcon.com/index.cfm?kat_id=

2&subkat_id=12&dok_id=176, 2005.

[3] C. Y. Chong and S. P. Kumar, “Sensor

Networks: Evolution, Opportunities, and

Challenges”, Proceedings of the IEEE, Vol.

91, No. 8, pp. 1247-1256, August 2003.

[4] Crossbow Technology Inc., the Company

Web Site of Crossbow Technology Inc.,

available at http://www.xbow.com/, 2005.

[5] Crossbow Technology Inc., MICAz datasheet,

available at

http://www.xbow.com/Products/Product_pdf

_files/Wireless_pdf/MICAz_Datasheet.pdf,

2005.

[6] Daintree Networks, Inc., “Daintree Network

Analyzer Software”, available at

http://www.daintree. net/products/sna.htm,

2005.

[7] Ember Corporation, "EmberZNet? 2.0 - Fact

Sheet ", available at

http://www.ember.com/products/software/zi

gbee2.html, August 2005.

[8] Figure 8 Wireless, Inc., "ZigBee Software

Development Suite", available at

http://www.figure8

wireless.com/DataSheet.pdf, 2005.

[9] Freescale Semiconductor Inc., the Company

Web Site of Freescale Semiconductor Inc.,

http://www. freescale.com, 2005.

[10] Freescale Semiconductor Inc., “802.15.4

MAC/PHY Software Reference Manual”,

available at

http://www.freescale.com/files/rf_if/doc/ref

_manual/802154MPSRM.pdf, May 2005.

[11] IEEE, IEEE standard for information

technology - telecommunications and

information exchange between systems -

local and metropolitan area networks

specific requirements part 15.4: wireless

medium access control (MAC) and physical

layer (PHY) specifications for low-rate

wireless personal area networks

(LR-WPANs), 2003.

[12] Luxoft Labs., The Zigbee Stack Page,

available at http://www.

luxoftlabs.com/tiki-index.php?page=ZigBee

%20Stack, 2005.

[13] V. Rajaravivarma, Y. Yang and T. Yang, "An

overview of Wireless Sensor Network and

applications", IEEE Proceedings of the 35th

Southeastern Symposium on System Theory,

pp.432-436, 2003.

[14] TinyOS Web Site, available at

http://www.tinyos.net/, 2005.

[15] Zigbee Alliance, available at

http://www.zigbee.org/, 2005.

