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摘要 

 一個大型的無線感測網路可能包含許多
由不同廠商製造的感測結點。為了讓不同廠商

所製造的感測結點能互相溝通，必須要有一個

標準化的通訊機制。而 Zigbee因為其低成本，

低功耗的特性，已經成為未來無線感測網路頗

具希望的通訊標準之一。 

 在此論文中，我們將描述 Zigbee網路層

在設計與實作上的一些議題與細節。此外，我

們也提出一個 beacon 排程的演算法以避免在

一個 Zigbee網路中 beacon的相互碰撞。最後，

我們提出一個基於 Zigbee 的快速物件追蹤方

法，可用來追蹤移動的感測結點。 

 我們的 Zigbee網路層是實作在工研院的

SCAN感測結點上。網路層本身是實作成一個

Linux核心模組。經過測試，資料傳輸數度可

達 88 Kbps，足夠應付大部分的感測網路應用。 

 

關鍵詞：  無線感測網路，Zigbee， IEEE 

802.15.4 

 
 
 

Abstract 
 A Wireless Sensor Network (WSN) 

consists of a large number of sensor nodes, 

which may not be produced by the same vendor. 

To enable communication among sensor nodes 

from different vendors, a standard 

communication link is needed.  

 Zigbee has features such as low cost and 

low power consumption so that it has been 

considered as a promising candidate for the 

communication technology of WSN. 

 In this paper, we describe the design issues 

and implementation details of the Zigbee 

network layer, which serves as a communication 

substrate for WSN. We also propose a beacon 

scheduling algorithm to avoid beacon collision, 

and a fast object-tracking technique that uses the 

functionality provided by Zigbee/IEEE 802.15.4 

to track moveable sensor nodes. 

 We have implemented the Zigbee network 

layer on the SCAN sensor board, which is 

developed by Industrial Technology Research 

Institute (ITRI). The network layer is 

implemented as a Linux kernel module. The 



performance result shows that the throughput of 

the network layer can reach 88 Kbps, which is 

sufficient for most WSNs. 

 

Keywords: Wireless Sensor Network, Zigbee, 

IEEE 802.15.4. 

 
1. Introduction 

 Wireless Sensor Network (WSN) [1, 3, 13] 

has received much attention in recent years. A 

WSN consists of a large number of sensor nodes 

that can communicate and cooperate with each 

other to accomplish a specific task. One of the 

most important requirements of a WSN is that 

sensor nodes should be low power, both in 

computation and communication, so that long 

battery life is allowed. 

 Zigbee [15] is a wireless communication 

technology for wireless personal area network 

(WPAN). It is especially suitable for low-power 

sensing and control applications. The Zigbee 

protocol stack, which consists of the network 

and application layers, sits on top of the MAC 

and PHY layers defined by the IEEE 802.15.4 

[11] standard. Due to the low power and low 

cost features of a node, Zigbee is becoming an 

emerging standard for the communication 

technology of WSNs. For example, the MICA 

sensor series contains a product MICAz [5] that 

is equipped with a 2.4 GHz IEEE 

802.15.4-compliant RF transceiver. For another 

example, there are also efforts [12] that 

implement Zigbee stack on TinyOS[14], the 

most popular operating system for WSNs. 

 Although Zigbee has become a promising 

candidate for the communication technology of 

WSNs, the implementation details are still not 

mentioned in the literature. In this paper, we 

describe the design issues and implementation 

details of the Zigbee network layer, which plays 

the roles of network formation, joining, leaving, 

and packet routing, and it can act as a 

communication substrate of a WSN.  

 In a Zigbee-based WSN, multiple devices 

may send beacons periodically, and hence a 

beacon scheduling algorithm is needed to avoid 

beacon collision. In this paper, we propose a 

beacon scheduling algorithm, which has been 

embedded into our Zigbee network layer 

implementation.  

 In addition to the Zigbee network layer, 

we also developed an object-tracking application 

based on this layer. The application can be 

integrated into a health-caring system for 

watching aged people in a community or a 

student-tracking system that tracks students 

when they are in the path between their homes 

and the school. In order to support fast object 

tracking, we propose a technique that take 

advantage of the functionality provided by 

Zigbee/IEEE 802.15.4 network. We also 

implemented the technique and demonstrate its 

feasibility and performance. 

 We have implemented the Zigbee network 

layer as a Linux kernel module on the SCAN 

sensor board, which is developed by Industrial 

Technology Research Institute (ITRI). According 

to the performance results, the proposed object 

tracking approach is efficient and the data 

throughput of the network layer (i.e., 88 Kbps) is 

sufficient for most WSNs. 

 The sensor board together with the Zigbee 

protocol stack can serve as a research platform 

for WSN. Different from the TinyOS platform, a 

sensor node application on our platform is a 

typical Linux application program. Thus, 



researchers can implement their techniques with 

less effort. 

 The remainder of the paper is organized as 

follows. Section 2 describes the related efforts. 

Section 3 presents the design issues and 

implementation details. The performance results 

are given in Section 4, and we conclude in 

Section 5. 

 
2. Related Work 

 
2.1 Wireless Sensor Network 
 Wireless Sensor Network (WSN) [1, 3, 13] 

has received a great attention in recent years, 

both from academy and industry. Typically, a 

sensor node consist of a sensor unit (e.g., a 

temperature sensing module), a less-powerful 

computation unit (e.g., ARM, 8051), a small 

storage unit (e.g., Flash memory), and a 

low-power communication unit. Due to the large 

number and tight resource and power constraints 

of sensor nodes, WSN put challenge on solving 

the problems such as deployment, 

energy-efficient routing, reprogramming, and 

etc.  

 Traditionally, sensor nodes communicate 

with each other via proprietary RF links. To 

enable communication among nodes from 

different vendors, a standard communication 

link is necessary. Zigbee has features such as 

low cost and low power consumption so that it 

has been considered as the promising candidate 

for the communication technology of WSN. 

 

2.2 IEEE 802.15.4 
 As mentioned above, Zigbee chooses 

IEEE 802.15.4. as the bottom layers of the 

protocol stack. The specification of IEEE 

802.15.4 defines the MAC and PHY layers for a 

low data rate WPAN. It uses carrier sense 

multiple access with collision avoidance 

(CSMA-CA) as the medium access mechanism, 

and it can achieve 250kbps on the 2.4 GHz ISM 

band (16 channels).  

 Due to the low power feature and 

standardization, some companies such as 

Crossbow[4] and Freescale[9] have developed 

IEEE 802.15.4-compliant sensor boards. 

 

2.3 Zigbee 
 Zigbee [15] is a low data rate wireless 

communication technology for wireless personal 

area network (WPAN). It is defined by the 

Zigbee Alliance, and is especially suitable for 

low-power sensing and control applications. As 

mentioned above, the Zigbee Alliance defines 

the network and application layer protocols, and 

it chooses IEEE 802.15.4 as the bottom layers.  

 A Zigbee node can be a full function 

device (FFD) or a reduced function device 

(RFD). The former is equipped with more 

resources. It can send beacons, form an IEEE 

802.15.4 network, and route packets. The latter 

has fewer resources and usually can not perform 

the above tasks. The nodes in a Zigbee network 

can be classified into three roles: coordinator, 

router, and end device. A FFD can play any one 

of the roles, while a RFD can only play the end 

device role. In Zigbee, the network topology can 

be star, mesh, or cluster tree. Figure 1 shows 

some possible topologies of a Zigbee network. 

 



 
 

Figure 1. Possible Topologies of a Zigbee 

Network 

 

 Although companies such as Ember [7] 

and Figure 8 Wireless [8] have implemented a 

full Zigbee stack, little implementation details 

were mentioned. In this paper, we describe the 

design issues and implementation details of the 

Zigbee network protocol, which serves as the 

communication substrate of a WSN. 

 

3. Design and Implementation 
 The Zigbee network layer is implemented 

as a state machine, which is described in Section 

3.1. Section 3.2 shows the interface provided by 

the network layer to the other layers. Section 3.3 

mentions some important data structures used in 

the network layer. The beacon scheduling 

algorithm and the fast object-tracking technique 

are described in Section 3.4 and 3.5, respectively. 

Finally, we mention the implementation of the 

applications. 

 

3.1 State Machine  
 As we mentioned above, a Zigbee node 

plays one of the three roles: coordinator, router, 

or end device, and we implemented a state 

machine for each role. Figure 2 shows the state 

machine of a Zigbee coordinator. The states 

colored in gray indicate whether the node is in a 

Zigbee network or not, and the role of that node. 

For example, the Out NWK state is the initial 

state and indicates that the node is not in a 

network. The In as Coordinator state indicates 

that the node is currently in a Zigbee network 

and acts as the network coordinator.  

 From Figure 2 we can see that, a 

coordinator transfer from the initial state (i.e., 

the Out NWK state) to the In as Coordinator 

state via four steps. First, it receives the network 

formation request from the application layer, 

enters into the energy detection (ED) scan state, 

and performs the ED scan procedure. When 

receiving a network formation request, the node 

tries to start a WPAN. Therefore, it performs ED 

scan first to find out the channel with the least 

signal energy among all the available channels. 

The node will try to form a WPAN on that 

channel. Second, when an ED scan confirmation 

is received from the MAC layer (i.e., indicates 

that the ED scan procedure is done), the node 

enters the passive scan state and performs the 

passive scan procedure. Through the procedure, 

the node can learn the PAN identifiers (PAN IDs) 

that are currently used by the other WPANs on 

the target channel, and then the node can select 

an available PAN ID. Third, when the passive 

scan confirmation is received from the MAC, the 

node enters the start request state, and sends a 

start request to the MAC so that periodic 

beacons will be scheduled for transmission by 

the MAC. Fourth, when the start request 

confirmation is received, the node enters into the 

In as Coordinator state.  

 



 

Figure 2. State Transition in a Coordinator  

 

 It is worth mentioning that the state 

transition happens according to the management 

flow, not the data flow. In other words, data 

packet transmission/reception does not lead to 

state transition. Data transmission/reception can 

happen at anytime as long as the node is in the 

network (i.e., the node is in one of the In as 

Coordinator, Association Response, Update NIB, 

and Orphan Response states in Figure 2). 

  

 
Figure 3. State Transition in a Router 

 

 Figure 3 shows the state transition of a 

Zigbee router. During the initialization of a 

router, the application layer issues a network 

discovery request to the network layer, which 

triggers a passive scan procedure. Slightly 

different from the passive scan procedure 

mentioned in Figure 2, the passive scan 

procedure of a router scans all the available 

channels and returns the PAN information (such 

as PAN ID, channel number) on these channels. 

According to the information, the application 

layer chooses a PAN that it wishes to join into 

and issues a join request (that specifies the join 

as router option) to the network layer. When 

receiving the join request, the network layer 

selects a node with the strongest signal strength 

in the target PAN and associates with it by 

issuing an association request to the MAC layer. 

Then, the start router request is issued and the 

router enters into the In as Router state. Note 

that the router may send periodic beacons or not, 

according to the parameters specified in the start 

router request. 

 In addition to the normal join operation, 

Zigbee also contains a re-join operation, which 

can be used to re-associate with a 

coordinator/router that the node had already 

associated with but the link was once broken. 

The re-join operation triggers the orphan scan 

procedure of the MAC, which is typically much 

faster than the normal association procedure. We 

use this feature to enable fast object tracking, 

which is described more clearly in Section 3.5. 

 When a coordinator/router enters into a 

network, it can allow others to join with it. When 

receiving an association indication from the 

MAC, the coordinator/router checks whether or 

not to allow the remote device to join into the 

network. If the device is allowed, the network 

layer will assign a network address for the 

device. When an orphan notification is received, 

the network layer checks whether or not the 

remote device had already associated with the 

local node. If it had, the network layer assigns 



the same network address for the remote device 

so that the remote device can enter the network 

again. 

 

Figure 4. State Transition in an End Device 

 

 Figure 4 shows the state transition of a 

Zigbee end device. The states are a subset of 

those shown in Figure 3. During the 

initialization of an end device, the application 

layer also issues a network discovery request to 

the network layer, which triggers a passive scan 

procedure and therefore the node can associate 

with a coordinator/router it chooses. 

 Whatever the role a node plays, an 

in-network node can leave the network when it 

receives a leave request form the application 

layer. The request triggers the disassociation 

procedure of the MAC to leave the network. 

 

3.2 Inter-Layer Communication 
 

 
Figure 5. The Inter-Layer Interface 

 As mentioned above, Zigbee network layer 

sits between the application layer and the MAC 

layer. The inter-layer communication is via 

messages. Figure 5 shows the inter-layer 

interface, which is defined by [10]. The interface 

is divided into data and management parts, and 

the network layer provides four APIs to the other 

layers: APL_NLDE/APL_NLME for the 

application layer, and 

MCPS_NWK/MLME_NWK for the MAC layer. 

These APIs are used by the application and 

MAC layers to transfer messages to the network 

layer. When a message is received, the network 

layer inserts the message into the corresponding 

queue to allow the state machine to process the 

message. 

 The network layer checks the message 

queues periodically to see if there are any 

pending messages. If there are, it removes the 

first message from the queue and uses the 

message as the input of the state machine. The 

state machine will process the message, and 

perform state transition when necessary. Then, 

the memory used by the message will be freed 

and the network layer will check the next 

pending message.  

 Figure 6 shows the structure of the 

message transferred from the application layer to 

the Network Layer Management Entity (NLME). 

Basically, each message contains message type 

and message data. Other kinds of messages are 

similar to that shown in Figure 6 so we do not 

describe them in the paper.  



 

Figure 6. Application-to-NLME Message 

 

3.3 Important Data Structures 
 In addition to the message structure, the 

most important data structure is the network 

layer information base (NIB), which stores the 

status of the network, the routing table, and the 

state of the neighbor nodes. 

 Figure 7 shows the data structure of NIB. 

It consists of the information such as the 

maximum depth of the network, the maximum 

number of the router, a neighbor table, and the 

capability of the node.  

 

 
Figure 7. The NIB 

 

The structure of a neighbor table entry is 

shown in Figure 8. It consists of PAN ID, 

address information, device type (coordinator, 

router, or end device), relationship between the 

local and the remote nodes, the signal strength, 

and etc. 

 
Figure 8. Neighbor Table Entry 

 

3.4 Beacon Scheduling 
As mentioned before, multiple routers (and 

the coordinator) may send periodic beacons. A 

beacon scheduling algorithm can be used to 

select the starting time of the beacons so that 

beacon collision can be avoided.  

The most important parameters of a 

beacon scheduling algorithms are beacon order 

and superframe order. The former represents the 

time interval between two successive beacons, 

while the latter stands for the actual time period 

managed by the router (i.e., the router sends a 

beacon at the start of this period, and routers and 

end devices under this router can send/receive 

packets to/from the router in this period). 

Note that, in IEEE 802.15.4, the beacon 

order time is 2’s power times to the supreframe 

order time. For example, if the value of beacon 

order is 5 and the value of supreframe order is 2, 

there can be 25-2 (i.e., 8) superframes in the 

beacon order time. Thus, we can regard the 

superframe order time as a time segment, and 

therefore the goal of a beacon scheduling 

algorithm is to allocate an unused segment (from 

all the available segments in the beacon order 

time) to the current router. When a segment is 

allocated to a router, the router can send a 

beacon at the starting time of the segment. 



To find an unused segment, the router 

must first collect all of the beacons it can receive, 

and find out the segments that are used by these 

beacons. However, only considering the beacons 

the router can receive may suffer from the 

hidden node problem. As shown in Figure 9, if 

the white node is a router that wants to join with 

the gray node, it may receive beacons from the 

gray node and select a segment which is 

different from that used by the gray node. 

However, the segment may be overlaps with that 

of the black node, which is a hidden node of the 

white node, so that collisions may happen when 

both the black node and the white node wants to 

send beacon/data frames to the gray node. 

To avoid this problem, the Zigbee network 

layer embeds TxOffset values in the payload of a 

beacon, which indicate the timing differences 

between the beacon and the neighboring beacons. 

By considering the TxOffset values, a beacon 

scheduling algorithm can avoid the problem of 

hidden nodes. Take Figure 9 as an example, the 

beacon of the gray node embeds a TxOffset 

value, which indicates the timing difference 

between the beacon of the gray node and the 

beacon of the black node. When receiving the 

beacon (from the gray node), the white node can 

learn the time segments of both the gray and the 

black nodes according to the receive time of the 

beacon and the TxOffset value. Therefore, the 

white node can choose a time segment that is 

different from those of the black and gray nodes. 

 

 
Figure 9. The Hidden Node Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Beacon Scheduling Algorithm 

 

Figure 10 shows the proposed beacon 

scheduling algorithm. We take an example to 

make the readers understand the algorithm more 

easily. Assuming that the there are 8 (i.e., 23) 

segments in a beacon order time. This algorithm 

first check segment 0 and 4 (i.e., multiple of 22), 

Black node 

Gray node 

 White node 

c: current interval 

b: beacon order interval 

B: an array of segments in the beacon 

interval 

 

collect the beacon information (including the 

TxOffset information) 

mark all used beacon segments in B 

let c = b / 2  /* half of the beacon  

    interval*/ 

while(c >= 1) 

{ 

check all segments with segment number 

i*c in B ( where 0 <= i <= b/c -1 ) 

 if an unused segment is found 

  return the segment number 

 else 

  c = c/2   

} 

/* all segments are used */ 

return “no available segment” 



then segment 2 and 6 (multiple of 21), and 

finally segment 1, 3, 5, 7 (multiple of 20). The 

algorithm returns the unused segment number 

that it finds first. 

 

3.5 Fast Object Tracking 
 Some WSN applications require tracking 

the location of specific moveable sensor nodes. 

In this section, we describe the approach that we 

used to track a Zigbee-based sensor node (i.e., 

object). 

 When a Zigbee-based object moves from 

the radio range of a node to that of another node, 

the object usually has to perform association 

with the new node. However, association 

requires a long time, so we use orphan join 

operation instead. As shown in Figure 11, the 

object will broadcast orphan request command, 

which will be received by router R1, R3, and R4 

since they are in the radio range of the object. 

The object will join into one of the routers (i.e., 

become the child of the router), and all the above 

routers can send packets to the coordinator to 

specify that the object is in the radio ranges of 

the routers. Each router can also record the 

signal strength of the received packet and pass 

the information to the coordinator so that more 

precise positioning is possible. 

We will demonstrate that the orphan join 

operation outperforms the association operation 

in time in Section 4.3. 

 

 
Figure11. Orphan Join 

 

3.6 Application Implementation 
In the initial implementation, the 

application is linked together with the Zigbee 

network layer as a Linux kernel module. 

Therefore, the communication between the 

application and the Zigbee network layer is 

through function calls. 

To make application development easier, we 

currently allow the applications to be executed 

in user mode. We have wrapped the Zigbee 

network layer as a character device so that an 

application can perform communication via 

Zigbee by simply accessing the character device 

file. Specifically, an application can send 

commands/data to the Zigbee network layer by 

performing ioctl() calls. On the other hand, the 

Zigbee network layer notifies the application by 

using Linux signals. We reserve two signal 

numbers for Zigbee applications. SIGUSR1 is 

used by the management flow, and SIGUSR2 is 

used by the data flow. 

 

4. Evaluation 
4.1 Experimental Environment 
 We use the SCAN ZB V1.0B sensor 

boards developed by Computer and 

Communication Research Laboratory (CCL) at 

Industrial Technology Research Institute (ITRI) 

as our sensor devices. Each sensor board is 



equipped with a Hynix HMS30C7202 CPU 

(70MHz), 16-MByte Flash, 16-MByte DRAM, 

and a Chipcon CC2420 RF Transceiver. The 

operating system is Linux, version 2.4.21.  

 The MAC layer, which we use in the 

following experiments, is developed by 

Computer Systems Laboratory at CSIE 

Department of Chang Gung University. In 

addition to this MAC, our Zigbee network 

implementation was also ported to the D18 

MAC, the IEE 802.15.4-compliant MAC 

developed by Freescale Semiconductor Inc. 

 Besides the sensor nodes, we also use a 

packet sniffer CC2420EB [2] developed by 

Chipcon Inc. in some of the following 

experiments. 

 

4.2 Object Tracking  
 To demonstrate the feasibility of the object 

tracking, we build up a backbone network that 

consists of three nodes: one coordinator and two 

routers. As shown in Figure 12, device 0000 is 

the coordinator, while devices 0001 and 0002 are 

the routers. This figure is presented by the 

packet sniffer with the Network Sensor Analyzer 

software [6] developed by Daintree Netwrok 

Inc., which is used to visualize the network 

topology. In addition to the backbone, there are 

three moveable objects that need to be tracked. 

Originally, the three objects join with the 

coordinator. During the experiment, we move 

the objects from the original position to the radio 

range of router 0001, and then to the radio range 

of router 0002. Figure 13 shows the result. From 

the figure we can see that, the objects finally join 

with router 0002. 

 

 
Figure 12. Object Tracking (Initial Condition) 

 

 
Figure 13. Object Tracking (Final Condition) 

 

4.3 Performance of Orphan Join  
 In this section, we measure the 

performance of orphan join, and compare it with 

the performance of association. 

 

4.3.1 Orphan Join v.s. Association 

 To measure the performance, we have an 

end device associate (or orphan join) with the 

coordinator and measure the time of the whole 

procedure on the end device. Figure 14 shows 

the results. From the figure we can see that the 

association time is about 9 times more than the 

orphan join time. This proves that the orphan 

join outperforms association in 

performance.
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Figure 14. Performance Comparison between 

Orphan Join and Association 

  

 Note that most of the time an end device 

spends in an orphan join procedure is to wait for 

the response of the coordinator. In current 

implementation, we use a fixed waiting time of 5 

jiffies (on Linux) which equals to 45ms in 

average. In the future, we will let an end device 

terminate the procedure once it has received a 

response from any coordinator or routers. This 

reduces the time of the procedure further. 

 

4.3.2 Orphan Join with Multiple Nodes  

In this section, we measure the 

performance of orphan join when multiple nodes 

join into the same coordinator at the same time. 

Figure 15 shows the results. The x-axis indicates 

the number of nodes, while the y-axis represents 

the average time of the procedure measured on 

the end devices. From the figure we can see that 

about 46ms is required when there is a single 

end device join with the coordinator, and only 

about 50 ms is required when there are 14 

devices. This demonstrates that the performance 

does not degrade much when there is a moderate 

number of end devices join with the same 

coordinator/router. We did not measure the 

performance for more devices due to the 

unavailability of more device hardware. In the 

future, we will perform this experiment again for 

more devices. 
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Figure 15. Performance of Orphan Join with 

Multiple Nodes 

 

4.3.3 Timing Breakdown 

 

Table 1. Orphan Join Timing Breakdown 
Primitive Time(us) 
NWK_TX 60
MAC_TX 341
Wait Time 45937
MAC_RX 10
NWK_RX 53

System 53
 

 In this section, we provide a timing 

breakdown of the orphan join procedure, which 

includes sending a request to and receiving a 

response from the coordinator. Table 1 shows the 

result. As mentioned above, most of the time is 

spent on waiting for the response. The real 

processing time (including the network layer, the 

MAC layer and the operating system) is quite 

small.  

 

4.4 Data Throughput 
 In this section, we measure the data 

throughput with the presence of the network 

layer. Figure 16 shows the results. As shown in 

the figure, the data throughput increases as the 

size of the payload grows, and the maximum 



through reaches 88 kbps.  
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Figure 16. Data Through under Different 

Payload Sizes 

 

 In the last experiment, we measure the 

throughput degradation due to the adding of the 

Zigbee network layer implementation. The right 

bar of Figure 17 indicates the maximum 

performance of the MAC, while the left bar 

represents the maximum performance under the 

situation that the Zigbee network layer 

implementation is added on top of the MAC. As 

shown in the figure, the throughput degradation 

is about 9 kbps, which comes mainly from 

queuing delay and network layer header 

processing.  
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Figure 17. Performance Impact of Adding the 

Zigbee Network Layer 

 

 

 

5. Conclusions 
 In this paper, we have described the design 

and implementation of the Zigbee network layer, 

which is responsible for network 

formation/joining/leaving and packet routing. In 

addition, we also proposed a beacon scheduling 

algorithm for avoiding the beacon collision 

problem. Finally, we proposed using the orphan 

join operation to achieve fast object tracking in a 

Zigbee WSN. 

 We have implemented the Zigbee network 

layer as a Linux kernel module. According to the 

performance results, the proposed object 

tracking approach is efficient and the data 

throughput of the network layer (i.e., 88 Kbps) is 

sufficient for most WSNs. 

 The sensor board together with the Zigbee 

implementation can serve as a research platform 

for WSN. Different from the TinyOS platform, a 

sensor node application on our platform is a 

typical Linux application program. Thus, 

researchers can implement their techniques with 

less effort. 
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