極高速數位用戶迴路分波器設計與改良

Design and Modify for VDSL Splitter

郭崇仁

崑山科技大學電通系 cjkuo@mail.ksut.edu.tw

一、摘要

本文設計一個應用於極高速數位用戶 迴路的分波器。

一般論文主要著重於分波器內低通濾 波電路的設計與模擬,本文提出的分波器 採用了結合低通濾波電路和高通濾波電路 的設計,在不考量寄生效應的情況下,選 用不同的被動元件進行實作以及特性上的 比較。事實顯示此新設計的分波器與傳 統分波器相比,在外觀及實用性上均有明 顯的改善效果,以外觀上而言,整體上具 備小型化的優點;而以實用性來說,也可 達到降低成本及符合特性改善的要求。

關鍵詞:極高速數位用戶迴路、分波器、 濾波電路、被動元件

二、簡介

寬頻網路使得網際網路牽引的資訊 流、物流、金流傳遞交換速率加快,寬頻 的影響力自office延燒至home已經是資訊 革命的特色,XDSL 即是採用新的調變模 式,並以現有的電話線直接升級而成的組 合,而 VDSL 即極高速數位式用戶迴路 (Very-High-Speed Digital Subscriber Line) 採高速雙向傳輸,提供使用者下載與回傳 均便利且夠用的頻寬,其本身使用「聲音」 與「資料」分離技術,且被應用在人口密 集的地方。 VDSL 採被動元件應用於分波 施玉麟

崑山科技大學電機所 max@bothhand.com.tw

器之設計上除了可滿足分離技術之基本要 求外,另一方面因被動元件不需外加電源 驅動,亦可確保使用上的安全性且具有較 高之可靠度及零敏度。

2.1 VDSL 網路技術探討

2.1.1 VDSL 的主要特點

與 ADSL 相比, VDSL 在雙絞線上使用更高的頻帶,它使用的頻段在電話網路和 ISDN 的頻率之上,因此與 ADSL 相比,它 不但可以兼容現有的傳統語音信號,還可 以兼容 ISDN 信號。

2.1.2 VDSL 的網路結構

圖 2.1 所示為 VDSL 系統的網路結構,光 纖接口單元(ONU: Optic Network Unit)通 常是由局端設備延伸出來, VDSL 就是在 光纖到路邊(FTTC)或光纖到大樓(FTTB)之 後,用於最後一段用戶端接入的技術,由 於 ONU 與用戶端距離通常不超過 1000 米,因此使用 VDSL 一方面可以達到很高 的傳輸速率,另一方面又可以省下光纖到 桌面的費用。

圖2.1 VDSL系統網路結構

2.1.3 VDSL 的工作流程

以圖 2.1 說明 VDSL 工作流程如下:

- VDSL 接入網左側連接 FTTC 或 FTTB 光纖網路,數據經過光纖接口單元(ONU) 輸入到 VDSL 的局端設備 VTU-O。
- VTU-O 的輸出經過分波器,與電話信號 (POTS)或 ISDN 信號混合,形成雙絞線 的混合信號。分波器可以在頻域上區分 高頻的 VDSL 信號與低頻的語音或 ISDN 信號。
- 3.局端線路上的混合信號進入用戶端的分 波器之後,電話或 ISDN 信號被分離出 來,送入電話或 ISDN 終端,而高速的數 據則送到 VDSL 遠端設備 VTU-R。
- 4. VTU-R 將混合信號做解調解碼和其它處 理後,輸出高速的數字信號給用戶端網 路設備,包括計算機、機頂盒和其它設 備,如果用戶是一個小的局域網路, VTU-R 也可以和局域網路服務器連接。
- 2.2 分波器介紹

圖2.2 分波器結構

圖 2.2 為分波器結構,分為低通 (LPF)和高通(HPF)兩部份,其為三個端 口的設備。低通的作用是將 POTS 或 ISDN 信號從 VDSL 信號中分離出來,以 避免 VDSL 混合信號進入電話設備,產 生人耳所無法接受的信號。高通的作用 是保護 VDSL 信號,避免低頻的 POTS 或 ISDN 信號進入 VDSL 線路產生干 擾。VDSL 系統使用兩個相對應的分波 器,一個位於用戶端,一個位於局端, 不管使用在那一種模式,其規格均需符 合標準所制定之要求,圖 2.3 及圖 2.4 分 別為分波器於 VTU-O 及 VTU-R 端的實 際應用。

圖2.3 分波器應用於VTU-O端

三、分波器設計與改良

3.1 濾波器原理

圖3.1 高頻電路方塊圖

遵循一般的電路分析技術,可以導出 一組代表圖 3.1 的高頻電路方程式,再應用 現代網路理論,配合設計規格的要求,可 求得最佳表現時的各元件之值,此為設計 濾波電路的基本程序。

常見應用現代網路理論所設計的濾波電路,基本上都是以低通濾波為其設計原型,可以用巴特沃斯函數、柴比雪夫函數或是橢圓函數所推導出的數據加以計算設計。而高通(high-pass)、帶通(band-pass)以及帶拒(band-reject) 三種電路的設計,可應用低通原型(low-pass prototype)的數據,經過適當的轉換程序獲得。這些都已經有較

成熟的實現方法,因此利用它們就可以快 速的進行濾波器設計。

3.1.1 巴特沃斯低通濾波器

巴特沃斯低通濾波器的衰減特性如圖 3.2 所示。

衰減計算公式為:

 $A = 10\log(1 + \overline{\omega}^{2n}) \quad dB \tag{3-1}$

 $\overline{\omega} = \frac{\omega}{\omega_c}; \quad \omega_c:$ 截止瀕率,即3dB頻率點

由(3-1)式可見濾波器的階數愈大,阻止帶 衰減也就愈大,對於n階的巴特沃斯低通 濾波器,其衰減速率為每10倍頻20ndB。

3.1.2 柴比雪夫濾波器

柴比雪夫低通濾波器的衰減特性如圖 3.3 所示。

衰減計算公式為:

$$A = 10\log[1 + \varepsilon^2 C_n^2(\overline{\omega})] \quad dB \tag{3-2}$$

ε表示通帶容許的最大衰減 A_{max} 所決定的 常數,稱波紋系數。

$$C_n(\overline{\omega}) = \cos(n\cos^{-1}\overline{\omega}) \tag{3-3}$$

(3-3)式為n 階柴比雪夫多項式

柴比雪夫低通濾波器的特點是通帶衰減等 波動,阻帶衰減單調上升。 3.1.3 橢圓型濾波器

橢圓型低通濾波器的衰減特性如圖 3.4 所示。

回5.1 相因主因巡视品明衣

衰減計算公式為:

 $A = 10 \log[1 + \varepsilon_1^2 Z_n^2(\overline{\omega})] dB$ (3-4) ε_1 表示通帶容許的最大衰減 A_{max} 所決定的 常數,稱波紋系數。

 $Z_{n}(\overline{\omega}) = \sin[n \sin^{-1}(\omega; m) + c; m']$ (3-5) (3-5)式為n階橢圓型多項式,其中

$$m = \frac{1}{\left(\frac{\omega}{\omega_c}\right)^2}$$
; $m' = \frac{\varepsilon_1}{\varepsilon_2}$

ε,:阻带漣波常數

橢圓型低通濾波器的特點是通帶和阻帶的 衰減特性都呈現等波動。

3.2 濾波器原型的選取

比較巴特沃斯低通濾波器與柴比雪夫 低通濾波器的衰減曲線可以看出,若衰減 带内允許的衰减量和濾波器階數為一定, 則柴比雪夫低通濾波器的截止速率更快。 針對高通濾波器的設計規格而言,截止特 性是重點,因此以柴比雪夫低通濾波器透 過轉換程序更可符合高通濾波器設計規格 要求。另外橢圓型低通濾波器雖然涉及比 較複雜的函數分析,但對低通濾波器的設 計規格來說, 階數多寡是要求的重點, 而使 用橢圓型低通濾波器將可用較低的階數就 可符合設計規格要求,因此是一個較好的 選擇。再者柴比雪夫低通濾波器及橢圓型 低通濾波器均已有較成熟的實現方法,所 以可縮短設計的時間。綜合上述考慮原 因,本文選取橢圓型低通濾波器及柴比雪

夫低通濾波器原型分別用於分波器內低通 濾波電路及高通濾波電路的設計改良。

3.3 網路參數

為了分析電路,通常以雙埠的電路網路 (two Port Network)中的 S 參數作為分析 用。圖 3.5 電路網路中輸入一電壓訊號 a_1 , 如輸入埠未能完全匹配,一定會有反射訊 號的 b_1 產生,而實際進入電路網路內的訊 號,經過電路放大或衰減後輸出訊號 b_2 至 負載,如果輸入埠與負載未能完全匹配, 亦會造成反射訊號 a_2 。

圖3.5 電路網路方塊圖

依匹配的觀念可推導出 S 參數,用以 描述電路網路在輸出入埠的反射現象及其 增益,而各個 S 參數的定義如下:

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
(3-6)

 $S_{11} = \frac{b_1}{a_{1_{a_2}=0}}$ 輸入反射係數 @輸出埠匹配

- $S_{21} = \frac{b_2}{a_1}$ 順向傳輸係數 @輸出埠匹配
- $S_{12} = \frac{b_1}{a_2}$ 逆向傳輸係數 @輸入埠匹配

 $S_{22} = \frac{b_2}{a_2}_{a_1=0}$ 輸出反射係數 @輸入埠匹配

3.4 濾波器設計的實務考量

基本上,討論高頻濾波電路設計時, 一般都設電感與電容為一無耗損的元件, 而濾波器的理論亦都是基於這一假設所推 出。一般來說電容器的Q值可以假設為無 限大,但電感元件的Q值,卻不能如此假設。實際使用的電感,其Q值為有限值, 應用有限Q值的元件以代替理想的無耗損 的元件,將會產生下列的效應:

- (1) 濾波電路的介入耗損增加,但在截止區 的衰減值,仍將維持不變,因而使兩者 的相對衰減降低,亦即損及濾波電路在 截止區內的衰減特性。
- (2) 在振幅頻率響應曲線中,截止頻率 f_c 附近的轉折斜率增大,致使該點的衰 減,大於理論的 3dB 值。
- (3) 在通帶內,以理論設計的連波值會因之 減小,如果元件Q值甚低,將使連波消失,進而損及濾波電路的選擇性。

3.5 磁性材料的應用

在高頻電路中,常因受空間限制,需 要使用體型小而電感量高的元件,因此磁 性材料是一個不錯的選擇,應用磁性材料 的優點如下:

- (1)可使線圈體型減小:由於磁通密度增加,所以同值的電感量,所需的線圈匝數大為減少。
- (2) 可使Q值增加:由於所需的線圈匝數大 為減少,電感值隨之降低,Q值相對提 高。

(3) 電感量可作調整:調整線圈中磁性材料的位置,可使電感量作有規則的增減。 不過,由於磁性材料種類甚多,特性亦有 差異,故在選用時,應注意到以下幾點:

- (1)每種磁性材料本身都有耗損,並且可能因所用材質與應用頻率範圍,不盡配合而產生耗損。
- (2)所有磁性材料的導磁係數u 會隨信號 頻率而改變,高頻u 的截止頻率較低, 當信號頻率高於截止頻率時,u 將急劇 下降,也間接影響了電感量的大小。

$$L_s = u \times \frac{n_e}{L_e} \tag{3-7}$$

上式說明了電感量 L_s 與u值的關係,

而 A_e 為磁體有效截面積, L_e 為磁體有效長度,其數學式如下所示:

$$A_e = \frac{h \cdot \ln^2(r_2 / r_1)}{(1 / r_1) - (1 / r^2)}$$
(3-8)

$$L_e = \frac{2\pi \cdot \ln(r_2 / r_1)}{(1/r_1) - (1/r^2)}$$
(3-9)

h:磁環高度 *r*₁:磁環內徑 *r*₂:磁環外徑

圖 3.6 是兩種不同材料的導磁係數 u 及 u 對頻率的變化圖。

- (3) 導磁係數 u 愈高,愈容易受溫度影響,當溫度大幅變化時,電感量亦必隨 之改變。
- (4) 導磁係數 u 亦會隨信號強度而改變, 若信號過強,鐵心將形成飽和,使得 u 值下降。

用於線圈的磁性材料,就其結構來說,大 致分為兩種,一種是磁蕊心(ferrite core), 一種是鐵粉心(iron core),兩者在設計高頻 電路的應用上,並無明確的適用範圍,因 此如何針對設計的要求選用適當的材料, 必需謹慎考慮,因鐵粉心的磁化曲線不易 飽和,但其導磁率較低,而磁蕊心容易飽 和,但其導磁率較高。圖 3.8 及圖 3.9 是 磁蕊心環型鐵蕊及鐵粉心環型鐵蕊的實物 圖。

圖3.8 磁蕊心環型鐵蕊 圖3.

圖3.9 鐵粉心環型鐵蕊

四、模擬與實作結果

4.1 低通濾波器

整個設計流程簡述如下:

- (1) 決定表 4.1.1 低通濾波器設計規格。
- (2) 根據設計規格,應用已知橢圓型低通波 器函數,決定濾波器階數並計算出表 4.1.2 各個零件數值,圖 4.1.1 為其電路 結構。
- (3)為了有較高的抗雜訊能力以及對外界 的干擾有較大的隔離效果,我們對電路 做修正,將低通電路結構改為圖 4.1.2 平衡式(Balance)電路結構並修正部份 零件數值,表 4.1.3 列出修正後的零件 數值。
- (4) 電路模擬(如圖 4.1.3 及圖 4.1.4)。
- (5)使用磁性材料分析儀選定材料並確認 規格後,進行 Type1 的電路實作,表 4.1.4 及表 4.1.5 分別列出電容及電感材 料的選用狀況。
- (6) 以網路分析儀進行試,圖 4.1.5 及圖
 4.1.6 為 Type1 實測曲線圖。
- (7)使用磁性材料分析儀選定材料並確認 規格後,進行 Type2 的電路實作,表 4.1.6 及表 4.1.7 分別列出電容及電感材 料的選用狀況。
- (8) 以網路分析儀進行測試,圖 4.1.7 及圖4.1.8 為 Type2 實測曲線圖。
- (9) 將圖 4.1.5 及圖 4.1.7 曲線作比較(如圖 4.1.9)。
- (10) 將圖 4.1.6 及圖 4.1.8 曲線作比 (4.1.10)。
- (11) 將圖 4.1.5 與市面上現有產品作比較(如圖 4.1.11)。
- (12) 將圖 4.1.6 與市面上現有產品作比較(如圖 4.1.12)。

圖4.1.1 低通濾波器電路結構

圖4.1.2平衡式(Balance)低通濾波器電路結構

Item	Note
Insertion Loss	-1.0dB @4K~160KHz
(Max)	-{1.0+3.01*Log ₂ (f/160)}dB
	@160K~320KHz
	-{15.0-6.02*Log ₂ (10/f)}dB
Determ Logg	@4K~10KHz
Return Loss	-15dB @10K~160KHz
(MIN)	-{15.0-6.02*Log ₂ (f/160)}dB
	@160K~220KHz
Passband frequency	@4K~320KHz
Impedance	\cong 110 ohm
Attenuation	-{42.14*Log ₂ (f/320)}dB
(Min)	@640K~932KHz
	-65dB@932K~6.0MHz
	-55dB @6M~12MHz

表4.1.1 低通濾波器設計規格-G.993.1 (G.vdsl.f)

位置	計算值
C1	3.05nF
C2	1.06nF
C3	8.04nF
C4	162pF
C5	8.25nF
C6	658pF
C7	3.43nF
L1	55.3uH
L2	80.4uH
L3	60.5uH

表4.1.2 低通濾波器零件位置與計算值

位置	修正值
C1	3.05nF
C21/C22	2.12nF
C3	8.04nF
C41/C42	324pF
C5	8.25nF
C61/C62	1.31nF
C7	3.43nF
L11/L12	27.6uH
L21/L22	40.2uH
L31/L32	30.2uH

表4.1.3 低通濾波器修正後零件位置與計算值

圖4.1.6 低通濾波器輸入反射係數實測結果

愛數 元件	類型	型號	容值	耐壓	誤差值
C1	晶片電容	1206	2.7nF	500Vdc	±10%
C21/C22	晶片電容	1206	2.2nF	100Vdc	±10%
C3	晶片電容	1206	8.2nF	500Vdc	±10%
C41/C42	晶片電容	0805	330pF	100Vdc	±5%
C5	晶片電容	1206	8.2nF	500Vdc	±10%
C61/C62	晶片電容	1206	1.5nF	100Vdc	±10%
C7	晶片電容	1206	3.3nF	500Vdc	±10%

表4.1.4 Type1實際電容材料選用

參數 元件	類型	材質	型號	感值	誤差值
L11+L12	環形	鎳鋅	S18	13.8uH	±5%
L21+L22	環形	鎳鋅	S18	20.1uH	±5%
L31+L32	環形	鎳鋅	S18	15.2uH	±5%

表4.1.5 Type1實際電感材料選用

參 數 元件	類型	型號	容值	耐壓	誤差值
C1	晶片電容	1206	2.7nF	500Vdc	±10%
C21/C22	晶片電容	1206	2.2nF	100Vdc	±10%
C3	晶片電容	1206	8.2nF	500Vdc	±10%
C41/C42	晶片電容	0805	330pF	100Vdc	±5%
C5	晶片電容	1206	8.2nF	500Vdc	±10%
C61/C62	晶片電容	1206	1.5nF	100Vdc	±10%
C7	晶片電容	1206	3.3nF	500Vdc	±10%

表4.1.6 Type2實際電容材料選用

愛數	類型	材質	型號	感值	誤差值
元件					
L11/L12	晶片電感	錳鋅	NL32252	27.0uH	±5%
L21/L22	晶片電感	錳鋅	NL32252	39.0uH	±5%
L31/L32	晶片電感	錳鋅	NL32252	27.0uH	±5%

表4.1.7 Type2實際電感材料選用

圖4.1.7 低通濾波器順向傳輸係數實測結果

圖4.1.8 低通濾波器輸入反射係數實測結果

圖4.1.5與圖4.1.7曲線比較

圖4.1.6與圖4.1.8曲線比較

圖4.1.6改良式低通濾波器輸入反射 係數實測與傳統低通濾波器比較圖

4.2 高通濾波器

整個設計流程簡述如下:

- (1) 決定表 4.2.1 高通濾波器設計規格。
- (2) 根據設計規格,應用已知柴比雪夫低通 濾波器函數,經轉換程序決定濾波器階 並計算表 4.2.2 各個零件數值,圖 4.2.1 為其電路結構。
- (3)為了有較高的抗雜訊能力以及對外界 的干擾有較大的隔離效果,我們對電路 做了修正,及將高通電路結構改良為圖 4.2.2 平衡式(Balance)電路結構並修正 部份零件值,表 4.2.3 列出修正後的零 件數值。
- (4) 電路模擬(如圖 4.2.3 及圖 4.2.4)。
- (5)使用磁性材料分析儀選定材料並確認 規格後進行 Typ3 的電路實作,表 4.2.4 及表 4.2.5 分別列出電容及電感材料的 選用狀況。
- (6) 以網路分析儀進行測試,圖 4.1.5 及圖 4.1.6 為 Type3 實測曲線圖。
- (7)使用磁性材料分析儀選定材料並確認 規格後,進行 Type4 的電路實作,表

4.2.6 及表 4.2.7 分別列出電容及電感材 料的選用狀況。

- (8) 以網路分析儀進行測試,圖 4.2.7 及圖4.2.8 為 Type2 實測線圖。
- (9) 將圖 4.2.5 及圖 4.2.7 曲線作比較(如圖 4.2.9)。
- (10) 將圖 4.2.6 及圖 4.2.8 曲線作比較(如 4.2.10)。
- (11) 將圖 4.2.5 與市面上現有產品作比較(如圖 4.2.11)。
- (12) 將圖 4.2.6 與市面上現有產品作比較(如圖 4.2.12)。

位置	計算值
C1	2.4nF
C2	1.26nF
C3	1.26nF
C4	2.4nF
L1	17.3uH
L2	15.3uH
L3	17.3uH

表4.2.2高通濾波器零件位置與計算值

Item	Note
Insertion Loss	-{4.5-3.01*Log ₂ (f/640)}dB
(Max)	@640 kHz ~1.28 MHz
	-1.5dB@1.28~12 MHz
	-{12.0-6.02*Log ₂ (1280/f)}dB
(Min)	@640 kHz ~1.28 MHz
(iviiii)	-12.0 dB@1.28 ~12 MHz
Passband Frequency	@640K~12MHz
Impedance	100 ohm
Attenuation	-60.6 dB@20 kHz ~200 kHz
(Min)	-{36.1*Log ₂ (640/f)} dB
	200 kHz ~320 kHz

表4.2.1高通濾波器設計規格-G.993.1 (G.vdsl.f)

圖4.2.2 平衡式(Balance)高通濾波器電路結構

位置	計算值
C11/C12	4.8nF
C21/C22	2.52nF
C31/C32	2.52nF
C41/C42	4.8nF
L1	17.3uH
L2	15.3uH
L3	17.3uH

表4.2.3高通濾波器修正後零件位置與計算值

愛數 元件	類型	型號	容值	耐壓	誤差值
C11/C12	晶片電容	1206	4.7nF	500Vdc	±10%
C21/C22	晶片電容	1206	2.7nF	500Vdc	±10%
C31/C32	晶片電容	1206	2.7nF	500Vdc	±10%
C41/C42	晶片電容	1206	4.7nF	500Vdc	±10%

表4.2.4 Type3實際電容材料選用

參數					
元件	類型	材質	型號	感值	誤差值
L1	環形	鎳鋅	S25	17.3uH	±5%
L2	環形	鎳鋅	S25	15.3uH	±5%
L3	環形	鎳鋅	S25	17.3uH	±5%

表4.2.5 Type3實際電感材料選用

圖4.2.6 高通濾波器輸入反射係數實測結果

愛數 元件	類型	型號	容值	耐壓	誤差值
C11/C12	晶片電容	1206	4.7nF	500Vdc	±10%
C21/C22	晶片電容	1206	2.7nF	500Vdc	±10%
C31/C32	晶片電容	1206	2.7nF	500Vdc	±10%
C41/C42	晶片電容	1206	4.7nF	500Vdc	±10%

表4.2.6 Type 4實際電容材料選用

愛數 元件	類型	材質	型號	感值	誤差值
L1	晶片電感	錳鋅	NL32252	18.0uH	±5%
L2	晶片電感	錳鋅	NL32252	15.0uH	±5%
L3	晶片電感	錳鋅	NL32252	18.0uH	±5%

表4.2.7 Type 4實際電感材料選用

圖4.2.7 高通濾波器順向傳輸係數實測結果

10

4.3 討論

濾波器材料的選用除決定了零件數量 的多寡外,也決定了分波器特性的優劣及 設計方向,再從圖 4.1.9 及圖 4.1.10 與圖 4.2.9 及圖 4.2.10 看來,材料的選用同樣影 響了模擬與實作結果的差異程度。另外從 圖 4.1.11 及圖 4.1.12 與圖 4.2.11 及圖 4.2.12 也可看出本文較佳濾波器的設計組合為表 4.1.4、表 4.1.5、表 4.2.4 及表 4.2.5 的內容, 而此設計改良在順向傳輸特性與輸入反射 特性上獲得某種程度的改善,如圖 4.1.11、 圖 4.1.12 及圖 4.2.12 所示。

4.4 PCB layout

圖4.4.3 上層零件位置圖

4.5 分波器實物外觀

圖 4.5.1 為傳統分波器原型,而圖 4.5.2 原型 I 是依據表 4.1.4、表 4.1.5、表 4.2.4 及表 4.2.5 的內容設計而來的;圖 4.5.3 原 型 II 是依據表 4.1.6、表 4.1.7、表 4.2.6 及 表 4.2.7 的內容設計得來。

圖4.5.2 改良式分波器原型 Ⅰ 圖4.5.3 改良式分波器原型 Ⅱ

4.6 成本分析

類別性質	傳統分波 器原型	改良式分波 器原型 I	改良式分波 器原型Ⅱ
體積比例(%)	100%	約 60%	約 60%
整體電路特性	次之	較佳	較差
元件及用料數	最多	最少	次之
製作成本	最高	最低	次之

表4.6 圖4.5.2改良式分波器原型 I 及圖4.5.3分波器原型Ⅱ與傳統分波器原型比較表

五、結論

本文利用網路參數分析及濾波器特性 進行分波器設計,在濾波電路設計的基礎 上,進一步對濾波器的磁性材料作了實質 的討論與分析,並從實作上的結果探討分 波器特性表現上的差異點。從理論上看 來,濾波器階數愈多,濾波器效果愈好, 但卻造成電路面積過大及製作不易的缺 點,而且因元件及焊接點較多,也會造成 通帶內信號衰減。

另外本文為簡化設計的複雜程度,未 將元件的寄生效應考慮進來,但實際上驗 証發現選用適當的材料並輔以適當的理論 設計方法,除可快速的達到設計規格之要 求,且可有效的縮短設計時間並減少使用 的零件數及降低成本外,對於產品小型化 及實用性上也有實質的助益。

Reference

- [1] Ferroxcube," Soft Ferrites and Access", Data Handbook, 2005.
- [2] ITU-T Recommendation AnnexFof G993.1 , 2003.
- [3] John Cookand Phil Sheppard, "ADSL and VADSL Splitter Designa Telephony Performance", IEEE Journal, 1995.
- [4] Karel Hajek, Jiri Sedlacek, "General Mu -ltiple LC Prototype Filter Solutions and Optimization", IEEE conference, 2002.
- [5] Prentice Hall," Numerical Methods Using MATHCAD",2002.
- [6] Corral,C. A, Lindquist, C. S, "Selectivity of elliptic filters", IEEE Proceedings, Vol. 147, Issue 3, June.2000.
- [7]袁杰,"高頻電路分析與設計", 全威圖書, 2001.
- [8] 謝孟翰等, "高頻通訊電路設計", 高立 書, 2002.
- [9] 森榮二, "LC 濾波器的設計與製作", 建 興文化事業出版社, 2003.
- [10] 尤騰, 劉峰"XDSL 技術與應用", 電子工業出版社, 2002.