
A DSP Software Architecture of Multiplexing and Channel

Coding (MCC) Process for WCDMA Mobile System
Chen Chien-Yu

BENQ Mobile System Inc.
No 23 Li-Hsin Rd., Science-Based Industrial Park, HsinChiu, Taiwan, R.O.C.

Tel: +886-3-6118800#6581 Fax: +886-3-6118877
jerrycychen@benqms.com

Key Words: DSP architecture, WCDMA, Multiplexing and Channel Coding

Abstract

This paper proposes a software architecture of the
channel coding and multiplexing processing for
3rd-generation WCDMA mobile system. With the
properties of low internal memory usage and fixed
task arrangement, this architecture is suitable for
DSP implementation. It can also be shown that
processing data from multi-user won’t increase
the task number and internal memory. Finally, this
architecture has been realized in the TI’s
TMS320C6201 DSP and the performance
simulation and memory estimation of different
data rate is given.

1 Introduction

In the 3rd-generation WCDMA spec, the MCC
(multiplexing and channel coding) functional
block defines the encoding/decoding procedure of
data stream from/to MAC layer to offer transport
service over the radio transmission link. The MCC
scheme combining the error detection, error
correction, interleaving, rate matching and
transport channel mapping from/to physical
channels is defined in the 3G TS 25.212[1].

Figure1 shows the MCC procedure for uplink data,
while figure2 shows the downlink part procedure.
The following paragraph describes these sub
modules of the MCC structure.

CRC attachment
The error detection in 3GPP spec is provided by
CRC attachment in the tail of each transport block.
The CRC is 24, 16, 12, 8 or 0 bits, which is
decided in higher layer.

Transport block concatenation and code block
segmentation
After the CRC attachment, these transport blocks
are concatenated into one single block and
preparing for channel coding. However, the
channel coding size has its limitation. Block size
larger than this size should be separated into
smaller segments for further processing.

Channel coding
The error correction scheme provided in 3GPP
spec contains the convolutional coding and turbo
coding. The convolutional code has constraint
length 9 and coding rate 1/3 and 1/2. The turbo
code in 3GPP spec is the parallel concatenated
convolutional code each with constraint length 3
(8-states) combining with a turbo code interleaver
with rate 1/3.

mailto:jerrycychen@benqms.com

DTX insertion
Since the downlink channel has the predefined
spreading factor, the DTX bits are inserted if
transport format with smaller transport channel
size is used.

Interleaving
The interleaving prevents the channel coded data
from the burst error in wireless channel. The 1st
interleaving is performed before the transport
channel multiplexing, and the 2nd interleaving is
performed after the transport channel
multiplexing.

Rate matching
The rate matching process repeats or punctures the
transport channel so that they can be fit into the
physical channel size, which denoted by the
spreading factor of the

Transport channel multiplexing
The transport channel multiplexing multiplexes
different transport channel into a coded composite
transport channel (CCTrCH).

2 DSP implementation issue

To put these operations to the DSP, we have to
consider some limitations of the DSP: the CPU
cycle of the MCC operation and internal memory
usage for each user. Table1 lists the required
operation cycle of each MCC operation for
TMSC6201 DSP, note that the process not listed
here means the CPU cycles of this operation is not
taken into consideration.
Besides, the internal memory usage is also an
important issue of DSP implementation. Since the
C6201 only has a limit internal data memory of
64kbytes, it’s important to arrange the task and
use the internal memory. Table2 shows the
memory required by the MCC operations.

From table1 and table2, we can find that the DSP
can process up to 17 users for 12.2k case, but the
memory size limits the supported user number.
Thus the memory and task arrangement for the
MCC processing can optimize the DSP utilization
for multi-user requirement.

3. The purposed architecture

To optimize the memory utilization, we propose
architecture of MCC operation. Instead of using a
single task processing MCC operation for each
user, it separates the MCC operations to different
tasks. Each task performs an MCC operation for
all users. In the downlink side, there are 5 tasks:
CRC encoding, channel encoding, rate matching,
transport channel multiplexing and 2nd
interleaving. In the uplink side, there are also 5
tasks: CRC decoding, channel decoding, de-rate
matching, transport channel de-multiplexing and
2nd de-interleaving. These tasks are described
below:

tEnCRC
This task is invoked by tDLDataIn when there are
data from higher layer. It performs CRC eocoding
operation for every transport channel. The data are
CRC-padded for every transport block. The
crc-padded block is then combined and moved to
external memory through DMA for further
channel coding.

tEnCC
This task is invoked by tEnCRC. It performs
channel encoding operation for every transport
channel. The transport block is combined by the
tEnCRC task and tEnCC gets the data from
external memory. It separates the data into code
blocks, which are limited by the channel encoder
size limitation. The channel coding operation is

performed every code block. The channel encoded
data will be combined into one streams and
moved to external memory for rate matching.

tEnRM
This task is invoked by tEnCC. It performs
downlink rate matching operation for every
transport channel. Downlink rate matching
matches the size of physical channel for largest
size of all transport format for each transport
channel (fix position) or largest size of all
transport format combination (flexible position).
After rate matching, the 1st DTX bit insertion and
1st interleaving is performed. Then the transport
channel data can be divided into ‘TTI’ parts and
are ready for transport channel multiplexing.
Every part presents data which will be transferred
in 10 ms. These data will be combined with other
transport channels to be one physical channel.

tTrchMux
This task is also invoked by its previous task -
tEnRM. Before transport channel muxtiplexing,
the data is processed in the unit of one transport
channel. This task multiplexes transport channel
that should be combined into one physical channel.
After transport channel multiplexing, the 2nd DTX
insertion is performed.

t2ndil
This task is invoked by the frame ISR every frame.
It receives the data from tTrchMux in the external
memory and finds the physical channel data for
next frame. If there exists the data for next frame,
2nd interleaving operation will be performed. After
this operation, this task invokes the output task
called tDlDataOut and output for further
processing.

tDe2ndil
The same as t2ndil, this task is invoked by the
frame ISR every frame. It receives the physical

channel data form tULDataIn task and performs
the 2nd de-interleaving operation. The data will be
moved to external memory after the process.

tDeRM
This task performs the de-rate matching operation
for the physical channel data every frame. After
the rate matching, these data will be separated to
every transport channel per frame. These
segments will also be moved to external memory
and tTrchMux will be invoked to process these
data.

tTrchDemux
The task collects data of ‘TTI’ frames from the
tDeRM task. The de-multiplexing process
combines the data of ‘TTI’ frames into one
transport channel. After the combining the 1st
de-interleaving is also performed. The data are
then moved to external memory for channel
decoding.

tDeCC
The channel decoding is performed every
transport channel and is invoked by the
tTrchDemux task. After channel decoding, the
code blocks are then combined together for CRC
decoding process. Since this operation is most
DSP cycle consuming, it is possible to use an
ASIC to accelerate the speed. Then this task can
call the relative function call to activate the ASIC
for the channel decoding processing.

tDeCRC
The last task of the MCC decoding process is the
De-CRC operation. This task is also invoked by
the it previous task - tDeCC. It performs CRC
decoding for each transport block and checks if
there are CRC errors being reported to higher
layer.
From the above description, we can find that each
task processes the MCC data from its previous

task, and passes the data to next task. Since the
internal memory may not be enough for all the
users, the data will be put to external memory
after the task finishing its operation. The next task
has to move the data from external memory to
internal memory and processes data. Since the
data moving between external memory and
internal memory is through the DMA channel, it
doesn’t increase much load. In this mechanism,
the data passing between the tasks are the coding
information of the data, i.e., the data length,
coding type, parameters, … etc, and the real data
are passing through internal memory and external
memory. Thus there is always one user’s data
keep in internal memory, no matter how many
users the DSP processing now at the same time.
Figure3 and figure4 show the downlink and uplink
tasks of this architecture.
The MCC operations described in the prior section
are distributed into the 10 tasks. Considering the
worst case of 12.2k the case, if all the tasks are
processing in parallel, the data memory
requirement is the same as the value shown in the
total cost of table2, i.e., 18912, no matter how
many users it supported. Hence the DSP has a
good utilization instead of the internal memory
size limitation. On the other hand, if we consider
the 64k case, since the DSP can support only one
user, it is impossible for these tasks to process in
parallel. Thus the maximum memory usage is not
the sum of the memory of all these tasks, but the
maximum data requirement of a single task. In
this way the internal memory requirement can be
reduced from 57324 bytes to 15600 bytes.
Beside of the data heap, the stack of each task also
uses the internal memory. The stack required by
each task depends on the program itself. Since the
tasks are statically allocated before compiling

stage, the stack size is fixed and it doesn’t
increase according to the number of supported
users.

Conclusion

This paper proposes a DSP architecture for MCC
processing. This architecture has been
implemented on the Innovative Integration’s M62
DSP board. With careful resource arrangement, a
single 64kbps or multiple 12.2kbps MCC
processing can be achieved. With other channel
decoding ASIC’s help, more radio link and higher
bit rate service can be supported with the same
architecture.

References
[1] 3G TS 25.212 V4.4.0, “3rd generation
partnership project; Technical Specification Group
Radio Access Network; Multiplexing and channel
coding (FDD)”
[2] 3G TS 25.141 V3.9.0, “3rd generation
partnership project; Technical Specification Group
Radio Access Network; Basestation conformance
testing (FDD)”
[3] Henry Yiu, “Implementing V.32bis Viterbi
Decoder on the TMS320C62xx DSP”, Application
Report SPRA444, Customer Applications Center,
Texas Instruments Hong Kong Ltd.
[4] D.E. Cress, and W.J. Ebel, “Turbo Code
Implementation Issues for Low Latency, Low
Power Applications”, 1998 Symposium on
Wireless Personal Communications, MPRG,
Virginia Tech, June 10-12, 1998.

Rate
matching

Physical channel
segmentation

PhC
H

#1
PhC

H
#2

iiTiii dddd ,,,, 321 K

iiNiii eeee ,,,, 321 K

Radio frame segmentation

iiViii ffff ,,,, 321 K

Sssss ,,,, 321 K

pUppp uuuu ,,,, 321 K

pUppp vvvv ,,,, 321 K

2nd interleaving

Physical channel mapping

iiEiii cccc ,,,, 321 K

iirKiririr oooo ,,,, 321 K

Channel coding

iimAimimim aaaa ,,,, 321 K

Rate matching

iimBimimim bbbb ,,,, 321 K

TrBk concatenation /
Code block segmentation

CRC attachment

iiTiii tttt ,,,, 321 K

Radio frame equalisation

1st interleaving

TrCH Multiplexing

CCTrCH

Fig1: The DL MCC procedure

PhC

H
#1

PhC
H

#2

TrCH Multiplexing

iiGiii gggg ,,,, 321 K

iiDiii hhhh ,,,, 321 K

iiViii ffff ,,,, 321 K

Sssss ,,,, 321 K

Rwwww ,,,, 321 K

pUppp vvvv ,,,, 321 K

iiEiii cccc ,,,, 321 K

iimBimimim bbbb ,,,, 321 K

iimAimimim aaaa ,,,, 321 K

CRC attachment

Rate matching
Rate

matching

1st insertion of DTX
indication

iiQiii qqqq ,,,, 321 K

1st interleaving

Radio frame segmentation

2nd insertion of DTX
indication

pUppp uuuu ,,,, 321 K

2nd interleaving

Physical channel
segmentation

Physical channel mapping

iirKiririr oooo ,,,, 321 K

TrBk concatenation /
Code block segmentation

Channel coding

CCTrCH

Fig2: The UL MCC procedure

Frame ISR

tEnCRC
- Get data
- CRC

tEnCC
- Channel coding

tEnRM
- Rate matching
- 1st DTX insertion
- 1st interleaving
- Radio frame
segmentation

tTrchMux
- TrCH multiplexing
- 2nd DTX insertion
- Physical channel
segmentation

tDLDataOut
- Output data to chip
rate processor

tDLDataIn
- Input data from NBAP

Down link MCC

t2ndil
- 2nd interleaving
- Physical channel
mapping

External M
em

ory

Fig3: Proposed downlink MCC architecture

Frame ISR

tDeCRC
- Output data
- De-CRC

tDeCC
- Channel decoding
- Code block
concatenation

tDeRM
- De-rate matching

tTrchDemux
- TrCH
de-multiplexing
- Radio frame
concatenation
- 1st de-interleaving

tULDataIn
- Get data from chip rate
processor

tULDataOut
- Output data to NBAP

Up link MCC

tDe2ndil
- Physical channel
mapping to CCTrCH
- 2nd de-interleaving

External M
em

ory

Fig4: Proposed downlink MCC architecture

MCC operations Cycles/bit # of bit/sec for 12.2k Cost cycles/sec for 12.2k # of bit/sec for 64k Cost cycles/sec for 64k

CRC/De-CRC 1 12200 * 2 24400 64000 * 2 128000

Convolutional encoding 8 13000 104000 0 0

Turbo encoding 15 0 0 64800 972000

1st interleaving / 1st de-interleaving 1 40200 * 2 80400 195000 * 2 390000

Rate matching / de-rate matching 6.5 40200 * 2 522600 195000 * 2 2535000

2nd interleaving / 2nd de-interleaving 1 60000 * 2 120000 240000 * 2 480000

Viterbi decoding 800 13000 10400000 0 0

Turbo-decoding 1850 0 0 64800 119880000

Total cost 11251400 124385000

Support user (C6201@200MHz) 17. 87 1.61

Table1: the operation cycle estimation of the MCC processing for 12.2k and 64k case

MCC operations Data required for 12k Data required for 64k

CRC/De-CRC 1008 5152

Convolutional encoding 1064 0

Turbo encoding 0 7788

Rate matching / de-rate matching 3216 15600

TrCH Mux / TrCH De-mux 1608 8400

2nd interleaving / 2nd de-interleaving 1608 8400

Viterbi decoding 10408 0

Turbo-decoding 0 11984

Total cost 18912 57324

Support user (64 kbyte) 3.3 1.1

Table2: the internal memory estimation of the MCC processing for 12.2k and 64k case

