

Key Agreement in Ad Hoc Networks

Ren-Junn Hwang, Rong-Chi Chang and Kai-Jun Lin
Department of Computer Science and Information Engineering

Tamkang University, Tamshi, Taipei Hsien 251, Taiwan
Email: {victor, roger}@mail.tku.edu.tw

Abstract

This paper proposes a new key agreement protocol based on a shared conference

password. With this protocol, it provides an efficient algorithm and takes less

computation cost to construct a secret communication channel. Besides, the honest

participants can use password to authenticate themselves. The proposed scheme also

provides an efficient protocol to reconstruct new session key when some members

join or leave the conference.

Keywords: key agreement protocol, session key, Ad hoc networks, security

WORKSHOP: Workshop on Cryptology and information Security

Corresponding author:

Rong-Chi Chang

Post address: P.O. Box 1-130 Tamshui, Taipei Country, 251, Taiwan, R.O.C.

E-mail: roger@mail.tku.edu.tw

TEL: +886-2-26251652, +886-919-553561

FAX:+886-2-26251564

Key Agreement in Ad Hoc Networks

Ren-Junn Hwang, Rong-Chi Chang and Kai-Jun Lin
Department of Computer Science and Information Engineering

Tamkang University, Tamshi, Taipei Hsien 251, Taiwan
Email: {victor, roger}@mail.tku.edu.tw

Abstract

This paper proposes a new key agreement protocol based on a shared conference

password. With this protocol, it provides an efficient algorithm and takes less

computation cost to construct a secret communication channel. Besides, the honest

participants can use password to authenticate themselves. The proposed scheme also

provides a efficient protocol to reconstruct new session key when some members join

or leave the conference.

Keywords: key agreement protocol, session key, Ad hoc networks, security

1. Introduction

With fast growth of the Internet and the shift of communication services to the

network, group communication becomes increasingly important. Modern

group-oriented applications include IP-telephony, video-conferencing and

collaborative workspaces etc… Simultaneously, security and privacy become

necessary. The security requirement of these applications can be addressed by

building upon a secret key.

 1

Group key agreement means that several parties want to create a common secret

to be used in exchanging information covertly. For example, a group of people that is

coming together in a closed meeting and wants to from a private wireless network

with their laptop computers for duration of the ad hoc meeting. They want to share

information security so that no one outside of the room can eavesdrop during their

communication.

Ad hoc networks are dynamic, peer-to-peer network with little or no supporting

infrastructure. The members of ad hoc networks may be PDA, mobile phone or

notebook and so forth. These equipments are hardware-limited lack of storage devices

and due to the security problems caused by ad hoc network, we consider a small

group in a closed meeting. Members in this group know each other but can not

digitally identifying and authenticating each another. Group members cannot provide

or access third party key management service. They need a group shared key

establishment protocol to construct a secure communication channel.

In general group key management protocols come in two different flavors:

contributory key agreement protocols for small groups and centralized, server-based

key distribution protocols for large groups. Becker and Wille [5] analyze the minimal

communication complexity of group key distribution protocol and propose two

protocols: hypercube and octopus. They proposed a method using Diffie-Hellman Key

 2

exchange protocol to construct a common group key. This protocol handles join and

merge operations efficiently, but it is inefficient when the group member leave.

Becker and Wille [5] proposed the hypercube protocol for the number of group

member is just equal to the exponents of 2; otherwise, the efficiency to decrease.

Steiner et al. [2] address dynamic membership issues of group key agreement based

on the two-party Diffie-Hellman Key exchange [12]. The method named Group Diffie

Hellman (GDH) protocols. GDH provides contributory authenticated key agreement

and key independence. It requires one broadcast message at the end of each protocol

run. The GDH protocol should be implemented on linear chain network topology

where the last node has broadcast capabilities. The scheme uses a group controller and

need n protocol rounds to establish a common key in a group of n members.

In this paper, we develop a key agreement protocol based on XOR operation

[14]. The group members share a conference password. Each group member

contributes its share to derive a common session key in a general ad hoc network

environment without making additional assumptions about the availability of any

support infrastructure. By the proposed method, the member generate group shared

key more efficient then the previous methods.

The rest of this paper is organized as follows. In Section 2 introduces our key

agreement protocols, along with novel security properties. Section 3 introduces

 3

membership events of group key agreement protocol. The protocol security discussion

and complexity analysis are shown in Section 4. Finally, we make conclusions in

Section 5.

2. Key agreement protocol

This section introduces our key agreement protocol. Subsection 2.1 describes a

key tree structure that we construct based on the member numbers. The proposed

protocol based this tree structure will be introduced in Subsection 2.2.

2.1. The key tree of the key agreement protocol

We assume that there are n members, M1, M2,…,Mn, want to hold a closed

conference base on ad hoc network without network infrastructure. Each member of

this group keeps a unique number over [1, n]. These members cooperate based on a

complete binary tree. The complete binary tree is constructed based on each

member unique number. Figure 1 shows an example of a key tree with 14 members.

In the key tree, its root is located at level l=0 and its height is h, where h=4. Since the

structure is a complete binary tree, every node is either a leaf or a parent of one or two

children nodes. The nodes are denoted with each member’s unique number. In this

group, we assign the member Mn be “Checker”. The checker is just a group member,

but with an additional role to confirm the session key correctness. The member Mn-1 is

named “Candidate”, who arranges replacement of member number after the member

leave the conference meeting. For example, there are 14 members in the key tree

 4

shown Figure 1. Member number 1 is the root node. Member number 13 is the

candidate and member number 14 is the checker. Besides, to simplify our subsequent

protocol description, we introduce the term key-path, denoted as Ti, which is the tree

path from root node to member Mi. In other words, every member Mi (except member

M1 and Mn) along his parent node to root node can build a key-path Ti. For example,

the key-path T5 of member M5 in Figure 1 is the tree path M5→M2→M1.

1

2 3

l =0

l =1

2.2. Two phases of the

This subsection i

In our scenario, there a

of the protocol all m

S1⊕S2⊕…⊕Sn, where S

divided into two phase

14

Checker
74 5 6

8 9 10 1211

l =2

l =3

key-path T5

Figure 1: An example of the k

 proposed protocol

ntroduces our key agreement p

re n members sharing a passw

embers who know P will

i is contributed by Mi. Mi se

s. In the first phases, M1, M2

5

13

Candidate
h

ey tree structure

rotocol based on XOR operation.

ord P. Our goal is that at the end

get a shared session key K =

lects Si randomly. The protocol is

,…,Mn-1 cooperate to construct a

subkey π = S1⊕S2⊕…⊕Sn-1 secretly. In the second phases, each Mi (i = 1, 2, …,n-1)

engages in a separate exchange with Mn, all members have sufficient information to

compute the session key K. He also verifies that the other members generated the

same session key K. We introduce our method in detail as the following two phases:

Phase 1:

Each member Mi chooses a random quantity Si, i is the node number that Mi

located in the key tree. If the member Mi locates at leaf node (i.e. 2i > n) of the key

tree, he assigns his intermediate key K’i as Si. He sends intermediate key K’i and

verification message, Fi (=f(P||K’i), where f() is a public one-way hash function) to

his parent node. The parent concatenates K’i with P and generates a verification

message Fi’ by hash function f(). If F=F’, the parent node authenticates the child

note’s identity and his Si because they share the same P. The parent node records

children’s intermediate keys. If the member Mi locates at internal node (i.e. 2i ≤ n), he

authenticates the children nodes’ identities and their intermediate keys (e.g. K’2i and

K’2i+1) by using verification messages F2i(=f(P||K’2i) and F2i+1 (=f(P||K’2i+1)) separately.

The Mi randomly selects a number Si and generates intermediate key

K’i=Si⊕K’2i⊕K’2i+1, where “⊕” denotes the XOR operation. He also generate the

verification message Fi (=f(P||K’i)). Furthermore, he sends the intermediate key and

verification message to his parent node. If the member is the root node (i.e. i = 1),

 6

who has to collect his children nodes’ intermediate keys and use his random number

S1 to compute the subkey π (=K’1=S1⊕K’2⊕K’3). Note that the members perform

the previous simultaneously when they locate on the same level of the key tree. The

key agreement algorithm is presented below:

Algorithm 1: [phase 1 of key agreement protocol]

For each level from the level 0 to the last shallowest level of the key tree:

/* The members in the same level of the key tree perform the following steps

simultaneously*/

Case 1 (2i < n-1): Mi verifies K’2i and K’2i+1 by F2i=f(P||K’2i) and F2i+1=f(P||K’2i+1).

He selects a random number Si and computes K’i=K’2i ⊕K’2i+1 ⊕ Si . He

also generates the verification message Fi=f(P||K’i) for K’i. He sends Fi and

K’i to his parent node.

/* K’2i and K’2i+1 are provided by M2i and M2i+1 respectively. M2i and M2i+1

are children of Mi */

Case 2 (2i = n-1): Mi verifies K’2i by F2i=f(P||K’2i). He selects a random number

Si and computes K’i=K’2i ⊕Si . He also generates the verification message

Fi=f(P||K’i) for K’i. He sends Fi and K’i to his parent node.

/* K’2i is provided by M2i. M2i is the child of Mi */

Case 3 (2i > n-1): Mi selects a random number Si and assigns K’i=Si . He also

 7

generates the verification message Fi=f(P||K’i) for K’i. He sends Fi and

K’i to his parent node.

/* Mi is a leaf node */

Case 4 (i=1): Mi verifies K’2 and K’3 by F2=f(P||K’2) and F3=f(P||K’3). He selects

a random number S1 and computes subkey π =K’1=K’2 ⊕K’3 ⊕S1.

/* K’2 and K’3 are provided by M2 and M3 respectively. M2 and M3 are

children of M1. M1 is the root of key tree. */

Phase 2:

At the end of Phase 1, the member M1 generates a subkey π (= S1⊕S2⊕…⊕ Sn-1).

In Step1 of this phase, the member M1 broadcasts subkey π to each member, except

the member Mn. In Step2, each member Mi (i = 1,2,…,n-1) removes its contribution

from π and inserts a randomly chosen blinding factor S’
i. The resulting quantity, Ci,

is equal to π ⊕Si ⊕S’
i. Each member Mi (i = 1,2,…,n-1) sends Ci and the verification

message f(P||Ci) to member Mn. Mn verifies the message sent by each member. In

Step3, Mn computes and sends EP⊕Ci (Ci⊕Sn) to each member Mi. He encrypted the

message Ci⊕Sn by using the symmetric encryption function with key P⊕Ci. The

legal member decrypts the received messages to extract Sn. A this point, Mi (i =

1,2,…,n-1) unbinds the quantity received from Mn and constructs a session key Ki =π

⊕Sn. In Step4, each member Mi (for i=1, 2, …, n-1) sends the key confirmation

 8

message of Ki as EP⊕Sn (Ki) to member Mn, where EP⊕Sn (Ki) denotes encrypting Ki

with a symmetric encryption function and key P⊕Sn. In Step5, the member Mn

verifies that each member generated the same session key K (=K1=K2=…=Kn-1).

Mn notifies all members the conference that the session key is established

successfully. The algorithm key agreement protocol is shown as following:

Algorithm 2: [phase 2 of key agreement protocol]

Step1: M1→Mi : π, f(P||π) ; for i=2,3,…,n-1 and π = S1⊕S2⊕…⊕Sn-1

Step2: Mi→Mn : Ci, f(P||Ci); for i=1,2,…,n-1, and Ci=π ⊕Si ⊕ S’
i, S’

i is a

blinding factor that is randomly chosen by Mi

Step3: Mn→Mi: EP⊕Ci (Ci⊕Sn); for i =1,2,…,n-1

Step4: Mi→Mn: Mi, EP⊕Sn (Ki); for i =1,2,…,n-1 and Ki=(π ⊕Sn)

Step5: Mn check session key K

3. Membership events

In our scenario, the conference members are not always fixed. Some times there

are new members joint the conference, after the session key is generated. This new

member does not authorize to know the messages of this conference before he joins

this conference. The conference should change their session key and the shared

password. Some times there are some members leave. They do not authorize to get

the messages after they leave. This conference should change the session key and the

 9

shared password, too. This section introduces two protocols to generate the new

session key when the group member is adapting.

3.1. Joining protocol

We assume that the group has n members: M1, M2,…,Mn. The new member Mn+1

wants to join the conference. The new member Mn+1 initiate the protocol by sending a

joining request message that contains his member number. The new member will be

allowed to join the conference when the members in the conference receive this

message and permit it. Furthermore, the members of the conference have to change

the password from P to P’ and reconstruct the session key. We describe the

reconstructing protocol in the following paragraph.

Firstly, Mn+1 sends random quantity Sn+1 encrypted with new password P’ to old

members M1, M2,…,Mn. In this conference, the old members receive and decrypt the

message to extract Sn+1. Each members Mi (i =1,2,…,n) computes a session key Ki
∧

=K⊕P⊕Sn+1. Secondly, the Mn sends a quantity K⊕P encrypted with new password P’

(i.e. EP’(K⊕P)) to member Mn+1. Note that Mn+1 computes the session key Kn+1
∧

 by

Kn+1
∧

=Sn+1⊕(K⊕P). Thirdly, Mn+1 encrypts the session key Kn+1
∧

 with key P’ ⊕Sn+1

and sends it to M1. M1 verifies the session key K
∧

 that member Mn+1 generated.

Figure 2 shows the joining protocol in detail:

 10

Step1:

Mn+1

M1, M2,…,Mn

Compute Ki
∧

=K⊕P ⊕Sn+1

Step2:

Mn+1

Mn

Step3:

Mn+1

Compute Kn+1
∧

= Sn

Mn+1, EP’(Sn+1)

EP’(K⊕P)

Figure 2: key agreeme

3.2. Leaving protocol

Assume that there are n

wants to leave the conference.

should be changed and the k

security of conference meeting

The leaving member initiates

conference members. The can

member number of leaving me

sends it to his new parent node.

The reconstructing protoc

tree. Generally, we divide two c

Case 1: Md is a leaf node

+1⊕ (K⊕P)

M1

M1 verifies session key Kn+1
∧

EP’ ⊕Sn+1(Kn+1
∧

)

nt protocol of a new member joining the conference

members in the conference room and the member Md

When a member leaved the conference, the session key

ey tree structure is altered. In order to maintain the

, the shared password should be changed to P’, too.

the leave protocol by sending a leave message to all

didate member changes his member number as the

mber. The candidate picks a new random number and

ols are different based on the Md’s location in the key

ases to introduce the leaving protocol.

11

Figure 3 shows an example of this case clearly. If M11 leaves the conference, the

candidate, M13, (the right-most leaf node) alters his member number to 11. Moreover,

the checker M14 changes its member number to 13. M12 is the new candidate of this

conference.

The key tree is reorganized. Figure 3 (b) is the new key tree structure. Firstly,

each of the members, Mi, except the root M1 on the key-path, M11→M5→M2→M1,

should select a new random number S’’
i. The first node of this key-path, M11, sends his

new random number to his parent as Ep’(S’’
11). Secondly, the node, Mi, except the leaf

node compute the new intermediate key K’’
i= K’’

2i⊕K’’
2i+1⊕S’’

i, where K’’
2i and K’’

2i+1

are intermediate keys transformed by his children. If Mi’s child M2i does not in the

key-path, then K’’
2i= K’

2i. Mi sends intermediate key K’’
i
 to his parent. The key-path

that each member in it should joint previous process is from the leaving member’s

location to the root. Finally, M1 performs the algorithm 2 in Section 2 to reconstruct

and verify a new session key.

1

2 3

14

1

2 3

13

Checker
74 5 6

8 9 10 12

11

74 5 6

8 9 10 11

key-path T11

13

e e

d
(a)

Figure 3: Tr

Candidat

 (b)

ee updating in leave operation- Md is leaf node

12
Checker
12

Candidat

M

Case 2: Md is an internal node

Figure 4 shows an example of this case. The leaving member, M5, is an internal

node of this key tree. The candidate member, M13, change his number to 5. Moreover,

the checker M14 changes its member number to 13, and the new candidate is M12.

The key tree is altered. Figure 4 (b) is the new key tree structure. The conference

has to change its session key by security considerations. Firstly, each member, Mi,

except the root member in the key-path, M5→M2→M1, and the two children of M5

select a new random number S’’
i. Secondly, each of the two children, Mi, of the first

node of the key-path, sends the new random number to his parent as Ep’(S’’
i). Thirdly,

each member Mj of the key-path compute a new intermediate key as

K’’
j=K’’

2j⊕K’’
2j+1⊕S’’

j, where K’’
2j is a intermediate key sent by the child node M2j. If

the child M2j does not in the key-path then K’’
2j=K’

2j. The special key-path is from the

altered node to the root. Finally, M1 perform the algorithm 2 of Section 2 to

reconstruct a new session key.

1

7

2 3

4 6

8 9 10 1211

1

7

2 3

4 5 6

8 9 10 1211

 r
key-path T5

13

5 e e
Md

(a)

Figure 4: Tree

Candidat
14

Checker

 updating in leav

1

13

Checke

e operation- Md is i

3

Candidat

(b)

nternal node

4. Discussion

We discuss the security analysis and efficiency of the proposed protocols in this

section. The subsection 4.1 discusses the forward and backward secrecy. We make the

comparisons among the GDH.2 [2], hypercube [5], octopus protocols [5] and our

method in Subsection 4.2.

4.1. Security analysis

The new member of the conference cannot derive the session key before he join

this conference is named backward secrecy. It is important, because that new member

is legal after he joins. The session key can be derived by knowing the random number.

In the member joining protocol, the joining member Mn+1 picks a random

quantity Sn+1 and encrypted it by password P’ and broadcasts it with its join request.

The conference password P is changed to P’. Mn sends a quantity, K⊕P, to Mn+1

which is encrypted with P’. At this point, the Mn+1 can compute the new session key

K
∧
, but he cannot derive old session key K, because the Mn+1 does not know the old

password P. The proposed protocol provides the backward security.

A member Md leaving the conference cannot get the new session key after his

leaving is named forward secrecy. In the leaving protocol, the candidate changes its

share and member number to replace the leaved member location when Md leaves the

conference. The members in the key-path which construct from Md to root change

 14

their shares. The leaving protocol reconstructs the session key based on these shares.

The leaving member, Md, cannot generate the new session key. The new session key is

regenerated by new shared random number that Md does not know. The proposed

protocol provides forward secrecy.

4.2. Efficiency discussion

This subsection analyzes the communication and computation costs of the key

agreement protocols. Table 1 shows the comparisons among GDH.2 [2], hypercube

[5], octopus protocols [5] and our protocols. The n denotes the number of member in

this conference. The second row of the Table 1 shows the numbers of DH-Key

exchanges that are sent by two members. In the third row, the simple round means

that every member can send or receive at most one message per round. [5] In the last

row, the broadcast means one member sends a message to each member

simultaneously.

By the Table 1, it is clearly that GDH.2 and our protocol need fewer numbers of

communication messages. The Octopus protocol need fewer number of 2-party DH

exchanges than ours, but in our protocol all member use the XOR operation to

compute the session key. The XOR operation takes less computation cost than DH

exchange operation. As Table 1 illustrates, our method need log2n+1 times of the

simple rounds. The number of simple rounds of our scheme is fewer than GDH.2 and

 15

Octopus protocols’. In generally, Table 1 shows that our protocol is more efficient

than the others.

Table 1: Protocols comparison

 GDH.2 Hypercube Octopus Our method

The number of
messages send via
the communication

n nlog2n 3n-4 n

DH-Key
Exchanges

n
2

log2nn 2n-4 0

Simple Rounds n log2n 2
4

42 +



 −n log2n+1

Broadcast Yes No No Yes

Items
Methods

5. Conclusions

In this paper, we propose new protocols for password-based key agreement in ad

hoc networks. The environment does not provide additional infrastructure and

physically secures communication channels. In our protocol, the legal conference

member use password to authenticate participants and lower computing operations for

the session key generation. In addition, this protocol supports dynamic conference

member events. The proposed protocol is more efficient than the others.

 16

6. References

[1] N. Asokan and Philip Ginzboorg. “Key-agreement in ad hoc networks”, Computer
Communications, Vol. 23, No. 17, Nov. 2000, pp. 1627-1637.

[2] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. “Authenticated group key
agreement and friends”, In Proc. 5th ACM Conference on Computer and
Communications Security, Nov. 1998, pp. 17-26.

[3] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. “New multiparty
authentication services and key agreement protocols”, IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 4, Apr. 2001, pp. 628-640.

[4] Giuseppe Ateniese and Gene Tsudik. “Some open issues and new directions in
group signatures”, In Proc. 3rd International Conference on Financial
Cryptography (FC’99), Vol. 1648 of LNCS, Feb. 1999, pp. 196-211.

[5] Klaus Becker and Uta Wille. “Communication complexity of group key
distribution”, In Proc. 5th ACM Conference on Computer and Communications
Security, Nov. 1998, pp. 1-6.

[6] M. Bellare, D. Pointcheval and P. Rogaway, “Authenticated key exchange secure
against dictionary attack”, Proceeding of Advances in Cryptology – Eurocypt
2000, pp. 139-155.

[7] S. Bellovin and M. Merritt, “Encrypted key exchange: password-based protocols
secure against dictionary attack”, IEEE Symposium on Research in Security and
Privacy, 1992, pp. 72-84.

[8] S. Bellovin and M. Merritt, “Augmented encrypted key exchange: a
password-based protocol secure against dictionary attacks and password-life
compromise”, ACM Conference on Computer and Communications Security,
1993, pp. 244-250.

[9] M. Boyarsky, “Public-key cryptography and password protocols: the multi-user
case”, ACM Conference on Computer and Communications Security, Sep.1999,
pp. 63-72.

[10] V. Boyko, P. Mackenzie and S. Patel, “Provably secure password authenticated
key exchange using Diffie-Hellman”, Proceedings of Advances in
Cryptology-Eurocrypt 2000, 1998, pp. 156-171.

[11] Mike Burmester and Yvo Desmedt. “A secure and efficient conference key

 17

 18

distribution system”, In Advances in Cryptology - EUROCRYPT ’94, Vol. 950 of
LNCS, May 1994, pp. 275-286.

[12] W. Diffie, and M.E. Hellman, “New directions in cryptography”, IEEE Trans.
On Information Theory, Vol. IT-22, No.6, 1976, pp. 644-654.

[13] D. Jablon, “Extended password key exchange protocols”, WETICE Workshop on
Enterprise Security, 1997.

[14] Sahar M. Ghanem, Hussein Abdel-Wahab, “A simple XOR-based technique for
distributing group key in secure multicasting”, In Proc. The Fifth IEEE
Symposium on Computers and Communications, pp. 166-171, 2000.

[15] Ingemar Ingemarsson, Donald T. Tang, and C. K. Wong. “A conference key
distribution system”, IEEE Transactions on Information Theory, Vol. IT-28, No. 5,
Sep. 1982, pp. 714-720.

[16] Y. Kim, A. Perrig, and G. Tsudik. “Simple and fault-tolerant key agreement for
dynamic collaborative group”, In 7th ACM conference on Computer and
communications, Nov. 2000, pp. 235-244.

[17] Silja Mäki, Maarit Hietalahti, and Tuomas Aura. “A survey of ad-hoc network
security”, Interim report of project 007- security of mobile agents and ad-hoc
societies, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Sep. 2000.

[18] Michael Steiner, Gene Tsudik, and Michael Waidner. “Diffie-Hellman key
distribution extended to group communication”, In 3rd ACM Conference on
Computer and Communications Security, Mar. 1996, pp. 31-37.

[19] Michael Steiner, Gene Tsudik, and Michael Waidner. “CLIQUES: a new
approach to group key agreement”, In Proc. 18th International Conference on
Distributed Computing Systems (ICDCS’98), May 1998, pp. 380-387.

[20] Michael Steiner, Gene Tsudik, and Michael Waidner. “Key agreement in
dynamic peer groups”, IEEE Transactions on Parallel and Distributed Systems,
Vol. 11, No. 8, Aug. 2000, pp. 769-780.

	Introduction
	Key agreement protocol
	The key tree of the key agreement protocol
	Two phases of the proposed protocol

	Membership events
	Joining protocol
	Leaving protocol

	Discussion
	Security analysis
	Efficiency discussion

	Conclusions
	References

