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Abstract 

This paper proposes a new key agreement protocol based on a shared conference 

password. With this protocol, it provides an efficient algorithm and takes less 

computation cost to construct a secret communication channel. Besides, the honest 
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provides a efficient protocol to reconstruct new session key when some members join 
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1. Introduction 

With fast growth of the Internet and the shift of communication services to the 

network, group communication becomes increasingly important. Modern 

group-oriented applications include IP-telephony, video-conferencing and 

collaborative workspaces etc… Simultaneously, security and privacy become 

necessary. The security requirement of these applications can be addressed by 

building upon a secret key. 
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Group key agreement means that several parties want to create a common secret 

to be used in exchanging information covertly. For example, a group of people that is 

coming together in a closed meeting and wants to from a private wireless network 

with their laptop computers for duration of the ad hoc meeting. They want to share 

information security so that no one outside of the room can eavesdrop during their 

communication.  

Ad hoc networks are dynamic, peer-to-peer network with little or no supporting 

infrastructure. The members of ad hoc networks may be PDA, mobile phone or 

notebook and so forth. These equipments are hardware-limited lack of storage devices 

and due to the security problems caused by ad hoc network, we consider a small 

group in a closed meeting. Members in this group know each other but can not 

digitally identifying and authenticating each another. Group members cannot provide 

or access third party key management service. They need a group shared key 

establishment protocol to construct a secure communication channel.  

In general group key management protocols come in two different flavors: 

contributory key agreement protocols for small groups and centralized, server-based 

key distribution protocols for large groups. Becker and Wille [5] analyze the minimal 

communication complexity of group key distribution protocol and propose two 

protocols: hypercube and octopus. They proposed a method using Diffie-Hellman Key 

 2



 

exchange protocol to construct a common group key. This protocol handles join and 

merge operations efficiently, but it is inefficient when the group member leave. 

Becker and Wille [5] proposed the hypercube protocol for the number of group 

member is just equal to the exponents of 2; otherwise, the efficiency to decrease. 

Steiner et al. [2] address dynamic membership issues of group key agreement based 

on the two-party Diffie-Hellman Key exchange [12]. The method named Group Diffie 

Hellman (GDH) protocols. GDH provides contributory authenticated key agreement 

and key independence. It requires one broadcast message at the end of each protocol 

run. The GDH protocol should be implemented on linear chain network topology 

where the last node has broadcast capabilities. The scheme uses a group controller and 

need n protocol rounds to establish a common key in a group of n members. 

In this paper, we develop a key agreement protocol based on XOR operation 

[14]. The group members share a conference password. Each group member 

contributes its share to derive a common session key in a general ad hoc network 

environment without making additional assumptions about the availability of any 

support infrastructure. By the proposed method, the member generate group shared 

key more efficient then the previous methods. 

The rest of this paper is organized as follows. In Section 2 introduces our key 

agreement protocols, along with novel security properties. Section 3 introduces 
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membership events of group key agreement protocol. The protocol security discussion 

and complexity analysis are shown in Section 4. Finally, we make conclusions in 

Section 5. 

2. Key agreement protocol 

This section introduces our key agreement protocol. Subsection 2.1 describes a 

key tree structure that we construct based on the member numbers. The proposed 

protocol based this tree structure will be introduced in Subsection 2.2.  

2.1. The key tree of the key agreement protocol 

We assume that there are n members, M1, M2,…,Mn, want to hold a closed 

conference base on ad hoc network without network infrastructure. Each member of 

this group keeps a unique number over [1, n]. These members cooperate based on a 

complete binary tree.  The complete binary tree is constructed based on each 

member unique number.  Figure 1 shows an example of a key tree with 14 members. 

In the key tree, its root is located at level l=0 and its height is h, where h=4. Since the 

structure is a complete binary tree, every node is either a leaf or a parent of one or two 

children nodes. The nodes are denoted with each member’s unique number. In this 

group, we assign the member Mn be “Checker”. The checker is just a group member, 

but with an additional role to confirm the session key correctness. The member Mn-1 is 

named “Candidate”, who arranges replacement of member number after the member 

leave the conference meeting.  For example, there are 14 members in the key tree 
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shown Figure 1. Member number 1 is the root node. Member number 13 is the 

candidate and member number 14 is the checker. Besides, to simplify our subsequent 

protocol description, we introduce the term key-path, denoted as Ti, which is the tree 

path from root node to member Mi. In other words, every member Mi (except member 

M1 and Mn) along his parent node to root node can build a key-path Ti. For example, 

the key-path T5 of member M5 in Figure 1 is the tree path M5→M2→M1. 
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subkey π = S1⊕S2⊕…⊕Sn-1 secretly. In the second phases, each Mi (i = 1, 2, …,n-1 ) 

engages in a separate exchange with Mn, all members have sufficient information to 

compute the session key K. He also verifies that the other members generated the 

same session key K. We introduce our method in detail as the following two phases: 

Phase 1: 

Each member Mi chooses a random quantity Si, i is the node number that Mi 

located in the key tree. If the member Mi locates at leaf node (i.e. 2i > n) of the key 

tree, he assigns his intermediate key K’i as Si.  He sends intermediate key K’i and 

verification message, Fi (=f(P||K’i), where f( ) is a public one-way hash function) to 

his parent node. The parent concatenates K’i with P and generates a verification 

message Fi’ by hash function f( ). If F=F’, the parent node authenticates the child 

note’s identity and his Si because they share the same P.  The parent node records 

children’s intermediate keys. If the member Mi locates at internal node (i.e. 2i ≤ n), he 

authenticates the children nodes’ identities and their intermediate keys (e.g. K’2i and 

K’2i+1) by using verification messages F2i(=f(P||K’2i) and F2i+1 (=f(P||K’2i+1)) separately. 

The Mi randomly selects a number Si and generates intermediate key 

K’i=Si⊕K’2i⊕K’2i+1, where “⊕” denotes the XOR operation.  He also generate the 

verification message Fi (=f(P||K’i)).  Furthermore, he sends the intermediate key and 

verification message to his parent node. If the member is the root node (i.e. i = 1), 
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who has to collect his children nodes’ intermediate keys and use his random number 

S1 to compute the subkey π  (=K’1=S1⊕K’2⊕K’3). Note that the members perform 

the previous simultaneously when they locate on the same level of the key tree. The 

key agreement algorithm is presented below: 

Algorithm 1: [phase 1 of key agreement protocol] 

For each level from the level 0 to the last shallowest level of the key tree:  

/* The members in the same level of the key tree perform the following steps 

simultaneously*/ 

Case 1 (2i < n-1): Mi verifies K’2i and K’2i+1 by F2i=f(P||K’2i) and F2i+1=f(P||K’2i+1).  

He selects a random number Si and computes K’i=K’2i ⊕K’2i+1 ⊕ Si . He 

also generates the verification message Fi=f(P||K’i) for K’i. He sends Fi and 

K’i to his parent node. 

/* K’2i and K’2i+1 are provided by M2i and M2i+1 respectively.  M2i and M2i+1 

are children of Mi */ 

Case 2 (2i = n-1): Mi verifies K’2i by F2i=f(P||K’2i).  He selects a random number 

Si and computes K’i=K’2i ⊕Si . He also generates the verification message 

Fi=f(P||K’i) for K’i.  He sends Fi and K’i to his parent node. 

/* K’2i is provided by M2i.  M2i is the child of Mi */ 

Case 3 (2i > n-1): Mi selects a random number Si and assigns K’i=Si . He also 
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generates the verification message Fi=f(P||K’i) for K’i.  He sends Fi and 

K’i to his parent node. 

/* Mi is a leaf node */ 

Case 4 (i=1): Mi verifies K’2 and K’3 by F2=f(P||K’2) and F3=f(P||K’3).  He selects 

a random number S1 and computes subkey π =K’1=K’2 ⊕K’3 ⊕S1.  

/* K’2 and K’3 are provided by M2 and M3 respectively.  M2 and M3 are 

children of M1.  M1 is the root of key tree. */ 

Phase 2: 

At the end of Phase 1, the member M1 generates a subkey π (= S1⊕S2⊕…⊕ Sn-1). 

In Step1 of this phase, the member M1 broadcasts subkey π to each member, except 

the member Mn. In Step2, each member Mi (i = 1,2,…,n-1) removes its contribution 

from π and inserts a randomly chosen blinding factor S’
i. The resulting quantity, Ci, 

is equal to π ⊕Si ⊕S’
i. Each member Mi (i = 1,2,…,n-1) sends Ci and the verification 

message f(P||Ci) to member Mn. Mn verifies the message sent by each member. In 

Step3, Mn computes and sends EP⊕Ci (Ci⊕Sn) to each member Mi. He encrypted the 

message Ci⊕Sn by using the symmetric encryption function with key P⊕Ci. The 

legal member decrypts the received messages to extract Sn. A this point, Mi ( i = 

1,2,…,n-1) unbinds the quantity received from Mn and constructs a session key Ki =π 

⊕Sn. In Step4, each member Mi (for i=1, 2, …, n-1) sends the key confirmation 
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message of Ki as EP⊕Sn (Ki) to member Mn, where EP⊕Sn (Ki) denotes encrypting Ki 

with a symmetric encryption function and key P⊕Sn. In Step5, the member Mn 

verifies that each member generated the same session key K (=K1=K2=…=Kn-1).  

Mn notifies all members the conference that the session key is established 

successfully. The algorithm key agreement protocol is shown as following: 

Algorithm 2: [phase 2 of key agreement protocol] 

Step1: M1→Mi : π,  f( P||π ) ; for i=2,3,…,n-1 and π = S1⊕S2⊕…⊕Sn-1 

Step2: Mi→Mn : Ci, f( P||Ci ); for i=1,2,…,n-1, and Ci=π ⊕Si ⊕ S’
i, S’

i is a 

blinding factor that is randomly chosen by Mi 

Step3: Mn→Mi: EP⊕Ci (Ci⊕Sn); for i =1,2,…,n-1 

Step4: Mi→Mn: Mi, EP⊕Sn (Ki); for i =1,2,…,n-1 and Ki=(π ⊕Sn)  

Step5: Mn check session key K 

3. Membership events 

In our scenario, the conference members are not always fixed. Some times there 

are new members joint the conference, after the session key is generated. This new 

member does not authorize to know the messages of this conference before he joins 

this conference. The conference should change their session key and the shared 

password. Some times there are some members leave. They do not authorize to get 

the messages after they leave. This conference should change the session key and the 
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shared password, too. This section introduces two protocols to generate the new 

session key when the group member is adapting.  

3.1. Joining protocol 

We assume that the group has n members: M1, M2,…,Mn. The new member Mn+1 

wants to join the conference. The new member Mn+1 initiate the protocol by sending a 

joining request message that contains his member number. The new member will be 

allowed to join the conference when the members in the conference receive this 

message and permit it. Furthermore, the members of the conference have to change 

the password from P to P’ and reconstruct the session key. We describe the 

reconstructing protocol in the following paragraph. 

Firstly, Mn+1 sends random quantity Sn+1 encrypted with new password P’ to old 

members M1, M2,…,Mn. In this conference, the old members receive and decrypt the 

message to extract Sn+1. Each members Mi ( i =1,2,…,n ) computes a session key Ki
∧

  

=K⊕P⊕Sn+1. Secondly, the Mn sends a quantity K⊕P encrypted with new password P’ 

(i.e. EP’(K⊕P) ) to member Mn+1. Note that Mn+1 computes the session key Kn+1
∧

 by 

Kn+1
∧

=Sn+1⊕(K⊕P).  Thirdly, Mn+1 encrypts the session key Kn+1
∧

 with key P’ ⊕Sn+1 

and sends it to M1.  M1 verifies the session key K
∧

 that member Mn+1 generated.  

Figure 2 shows the joining protocol in detail: 
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Figure 3 shows an example of this case clearly. If M11 leaves the conference, the 

candidate, M13, (the right-most leaf node) alters his member number to 11. Moreover, 

the checker M14 changes its member number to 13. M12 is the new candidate of this 

conference.  

The key tree is reorganized. Figure 3 (b) is the new key tree structure. Firstly, 

each of the members, Mi, except the root M1 on the key-path, M11→M5→M2→M1, 

should select a new random number S’’
i. The first node of this key-path, M11, sends his 

new random number to his parent as Ep’(S’’
11). Secondly, the node, Mi, except the leaf 

node compute the new intermediate key K’’
i= K’’

2i⊕K’’
2i+1⊕S’’

i, where K’’
2i and K’’

2i+1 

are intermediate keys transformed by his children. If Mi’s child M2i does not in the 

key-path, then K’’
2i= K’

2i.  Mi sends intermediate key K’’
i
 to his parent. The key-path 

that each member in it should joint previous process is from the leaving member’s 

location to the root. Finally, M1 performs the algorithm 2 in Section 2 to reconstruct 

and verify a new session key. 
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Case 2:  Md is an internal node 

Figure 4 shows an example of this case. The leaving member, M5, is an internal 

node of this key tree. The candidate member, M13, change his number to 5. Moreover, 

the checker M14 changes its member number to 13, and the new candidate is M12.  

The key tree is altered. Figure 4 (b) is the new key tree structure. The conference 

has to change its session key by security considerations. Firstly, each member, Mi, 

except the root member in the key-path, M5→M2→M1, and the two children of M5 

select a new random number S’’
i. Secondly, each of the two children, Mi, of the first 

node of the key-path, sends the new random number to his parent as Ep’(S’’
i). Thirdly, 

each member Mj of the key-path compute a new intermediate key as 

K’’
j=K’’

2j⊕K’’
2j+1⊕S’’

j, where K’’
2j is a intermediate key sent by the child node M2j. If 

the child M2j does not in the key-path then K’’
2j=K’

2j. The special key-path is from the 

altered node to the root. Finally, M1 perform the algorithm 2 of Section 2 to 

reconstruct a new session key. 
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4. Discussion  

We discuss the security analysis and efficiency of the proposed protocols in this 

section. The subsection 4.1 discusses the forward and backward secrecy. We make the 

comparisons among the GDH.2 [2], hypercube [5], octopus protocols [5] and our 

method in Subsection 4.2. 

4.1. Security analysis  

The new member of the conference cannot derive the session key before he join 

this conference is named backward secrecy. It is important, because that new member 

is legal after he joins. The session key can be derived by knowing the random number. 

In the member joining protocol, the joining member Mn+1 picks a random 

quantity Sn+1 and encrypted it by password P’ and broadcasts it with its join request. 

The conference password P is changed to P’. Mn sends a quantity, K⊕P, to Mn+1 

which is encrypted with P’. At this point, the Mn+1 can compute the new session key 

K
∧
, but he cannot derive old session key K, because the Mn+1 does not know the old 

password P. The proposed protocol provides the backward security. 

A member Md leaving the conference cannot get the new session key after his 

leaving is named forward secrecy. In the leaving protocol, the candidate changes its 

share and member number to replace the leaved member location when Md leaves the 

conference. The members in the key-path which construct from Md to root change 
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their shares.  The leaving protocol reconstructs the session key based on these shares. 

The leaving member, Md, cannot generate the new session key. The new session key is 

regenerated by new shared random number that Md does not know. The proposed 

protocol provides forward secrecy. 

4.2. Efficiency discussion 

This subsection analyzes the communication and computation costs of the key 

agreement protocols. Table 1 shows the comparisons among GDH.2 [2], hypercube 

[5], octopus protocols [5] and our protocols. The n denotes the number of member in 

this conference.  The second row of the Table 1 shows the numbers of DH-Key 

exchanges that are sent by two members.  In the third row, the simple round means 

that every member can send or receive at most one message per round. [5] In the last 

row, the broadcast means one member sends a message to each member 

simultaneously. 

By the Table 1, it is clearly that GDH.2 and our protocol need fewer numbers of 

communication messages. The Octopus protocol need fewer number of 2-party DH 

exchanges than ours, but in our protocol all member use the XOR operation to 

compute the session key. The XOR operation takes less computation cost than DH 

exchange operation. As Table 1 illustrates, our method need log2n+1 times of the 

simple rounds. The number of simple rounds of our scheme is fewer than GDH.2 and 
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Octopus protocols’. In generally, Table 1 shows that our protocol is more efficient 

than the others. 

Table 1: Protocols comparison 

 GDH.2 Hypercube Octopus Our method 

The number of 
messages send via 
the communication 

n nlog2n 3n-4 n 

DH-Key 
Exchanges 

n 
2

log2nn  2n-4 0 

Simple Rounds n log2n 2
4

42 +



 −n  log2n+1 

Broadcast Yes No No Yes 

Items 
Methods 

 

5. Conclusions 

In this paper, we propose new protocols for password-based key agreement in ad 

hoc networks. The environment does not provide additional infrastructure and 

physically secures communication channels. In our protocol, the legal conference 

member use password to authenticate participants and lower computing operations for 

the session key generation. In addition, this protocol supports dynamic conference 

member events. The proposed protocol is more efficient than the others. 
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