
Submission to 2002 International Computer Symposium

(1) Name of the Workshop
Workshop on Cryptography and Information Security

(2) Title of the Paper
Cost Minimization for Thwarting Network Attacks

(3) A Short Abstract
An Attack Graph is a graphical representation of possible ways that an intruder can attack a
network system through atomic attacks. Based on such graphs, Sheyer et al. have
formulated a problem of thwarting a minimum set of atomic attacks (i.e., set T’) to guarantee
that the network system won’t be attacked. As thwarting different atomic attacks usually
involve different cost, we extend their problem to find a minimum-cost T’. Unlike their
approach of using the greedy method to obtain approximate solution of this NP-hard
problem, we reduce the minimum-cost problem to solving a set of Integer Programming
equations. A Branch and Bound Algorithm can efficiently solve these equations for small
cases. For larger cases, the algorithm takes the solution of the greedy method as the initial
solution, iteratively improving this solution until that the software program is terminated.

(4) Name, current affiliation, postal and e-mail addresses, tel and fax
numbers (Contracting Author)
Prof. Wen-Huei Chen
Dept. of Electronic Engineering
Fu Jen Catholic University, Taipei, Taiwan, R.O.C.
Email: PAULTAIPEI@YAHOO.COM.TW

Fax: (02)29042638 Tel:(02) 29031111 ext 2424

(5) Keywords
network security, attack graph, atomic attacks, integer programming

0

mailto:PAULTAIPEI@YAHOO.COM.TW

Cost Minimization for Thwarting Network Attacks

Wen-Huei Chen
Department of Electronic Engineering

Fu Jen Catholic University, Taipei, Taiwan, R.O.C.
PAULTAIPEI@YAHOO.COM.TW

Abstract

An Attack Graph is a graphical representation of possible ways that an intruder can

attack a network system through atomic attacks. Based on such graphs, Sheyer et al. have

formulated a problem of thwarting a minimum set of atomic attacks (i.e., set T’) to guarantee

that the network system won’t be attacked. As thwarting different atomic attacks usually

involve different cost, we extend their problem to find a minimum-cost T’. Unlike their

approach of using the greedy method to obtain approximate solution of this NP-hard

problem, we reduce the minimum-cost problem to solving a set of Integer Programming

equations. A Branch and Bound Algorithm can efficiently solve these equations for small

cases. For larger cases, the algorithm takes the solution of the greedy method as the initial

solution, iteratively improving this solution until that the software program is terminated.

1. Introduction

A network is composed of many hosts remotely connected by links (i.e., cables,

fibers, etc.) A host is a collection of hardware, software, storage media, data and involved

people, each of which may have security holes. Based on these security holes, an intruder

may accomplish an evil goal, e.g., causing a critical host to crash down or lose important

information. Initially, the intruder is in a specific host and has a limited privilege in using it.

He may illegally increase his privilege in using that host or even enter his neighbor host;

such an action is called an atomic attack. He may conduct a sequence of atomic attacks

from his initial host to his target host so as to accomplish his evil goal; such a sequence is

called an attack. As networks grow larger and more complex, more attacks are likely to

occur. Today, network administrators want to thwart all attacks so as to guarantee that their

networks are safe. They begin their works by using tools to scan security holes in each host

so as to determine possible atomic attacks. Now, they want to determine how atomic attacks

1

mailto:PAULTAIPEI@YAHOO.COM.TW

form attacks [1].

Many administrators construct a graph by hand to see how attacks occur. Generally,

such a graph is called the Attack Graph [2]. Each node of the graph represents a state of

the intruder, and each edge represents an atomic attack that changes the state. Certain nodes

are called init nodes (or goal nodes) because they represent the initial state (goal state) of

the intruder. Therefore, an attack can be represented by a path from a init node to a goal

node. The Attack Graph becomes quite complex when the network adds more hosts that

introduce new security holes. Even the most diligent administrator may construct an

incorrect Attack Graph that neglects important attacks. Hence, network administrators

desire a tool to automatically construct the Attack Graph [2].

Many methods have been proposed to formally define the Attack Graph and

automatically construct it. In [3], Dacier defines a Privilege Graph where nodes represents

intruder’s privileges and edges represent intruder’s actions that change the privileges. The

Privilege Graph is then expanded into an Attack State Graph, which represent different

ways that an intruder can reach a goal, such as earning a root privilege of a target host. In

[3], Dacier also proposes a “mean effort to failure” metric to evaluate the Attack Space

Graph. In [4], Orlato et al. experiment that method . In [5], Philips and Swiler define an

Attack Graph where each node represents an atomic attack attempted by the intruder. In [6].

Swiler implements the method of [5] into a tool. However, these construction methods

consume a large space even for small examples. Moreover, those Attack Graphs exclude

seemingly benign system events. These system events (e.g., link failures, user errors,

system recovery actions, etc.) may combine with atomic attacks to form attacks.

 Recently, a new Attack Graph is proposed. Jha and Wing proposes a generic state

machine to represent a network environment specified by a set of variables for the intruder

and the network system [2][7]. A state of the machine corresponds to certain values of these

variables, and a transition is a change of these values caused by an atomic attack. In [2][7],

an atomic attack refers to either the intruder’s evil attempt or the system’s seemingly begin

events. Jha and Wing implements a tool to produce a subset of the state machine which

describes how the intruder has accomplished his goal. Such a subset is graphically

represented by an Attack Graph where each edge is labeled an atomic attack. Certain nodes

of the graph are called init nodes (goal nodes) because they represent initial and goal states

of the intruder respectively. Their tool is based on a symbolic model checker called

“NuSmv” [8] [9] which utilizes BDDs [10] and a backward search from a multitude of goal
2

states [6]; both techniques significally save space and thus that subset. As a result, a large

Attack Graph can be produced efficiently. At the same time, Richey and Amman also use

model checker SMV for network security analysis which checks if an intruder can reach his

single goal state [11].

Shyer et al. consider an optimization problem of the Attack Graph [2]. They assume

that a system administrator wants to thwart a minimum number of atomic attacks so that the

intruder could not reach his goal state. Put it another way, he wants to remove a minimum

set of labels from the Attack Graph (notice that a label corresponds to an atomic attack) so

that any init node cannot reach any goal node through a labeled path (i.e., a path which

contains of all labeled edges.) They reduce the problem to the minimum cover problem

[12]. The latter problem is NP-hard but a greedy approximation algorithm is available.

However, their algorithm does not guarantee the optimal solution even for a small-size

problem. Moreover, the problem assumes that it costs the same to thwart every atomic

attack, which is not true for most network systems.

Our paper has two contributions. First, we generalize the optimization problem by

assigning cost to each atomic attack. That is, we want to thwart a minimum-cost set of

atomic attacks so that the intruder could not reach his goal state. Second, we reduce the

optimization problem to the Integer Programming Problem [13]. Though the latter problem

is also NP-hard, extensive researches in the literature have provided algorithms which either

obtain optimal result for the small case or approximation result for the large case. For

example, a Branch and Bound Algorithm uses the Linear Programming Relaxation as the

lower bound [14]. By introducing the solution from the greedy algorithm of Sheyner et al.

[12] as the first solution, the algorithm can iteratively obtain solutions that continually

improve the first solution till the execution is terminated.

In Section 2, we describe the Attack Graph and the earlier minimization problem. In

Section 3, we introduce the new optimization problem and the Integer Programming

method. In Section 4, our conclusions are presented.

2. The Attack Graph

Consider an Attack Graph G(V, E) of Figure 1. The node set V= {a, b, c, d, e, f, g,

h, i} represents the states of the network environment, where init node a represents the

initial state and goal node i represents the goal state of the intruder. (J, K; X) is an edge

3

from node J to node K that has a label X which represents an atomic attack; atomic attack X

changes the network environment from state J to state K. For example, edge (b, e; 6) means

that an atomic attack “6” will change the environment from state b to state e. Notice that

atomic attack “6” can also change the environment from state g to state h. The set T= {1, 2,

3, 4, 5, 6} is the set of atomic attacks (i.e., labels.)

An attack can be formed by considering labels of the path which starts from an init

node and ends at a goal node. For example, an attack [1, 6, 5, 1] can be formed from the

path [node a, node b, node e, node f, node i]. Disregarding their orders, atomic attacks of

an attack form a specific set called the realizable set. For example, the attack [1, 6, 5, 1]

forms a realizable set {1, 6, 5}. Rel(G) is a set of possible realizable sets of G(V, E). Thus,

Rel(G) = {{1, 6, 5}, {1, 6, 4, 5}, {2, 1, 5}, {2, 1, 4, 5}, {2, 4, 6, 5}, {3, 1, 6, 5}}. In

general, the size of Rel(G) can be exponential [15]. In practice, Rel(G) can be significally

smaller than the number of possible paths from init nodes to goal nodes because the same

label appears in many edges. For example, a reasonable assumption of G(V, E) has made

the size of Rel(G) linear.

1

6

5

1

2

3

6

5

1
1 4

4

a

i

b
c

d

e

f

g

h

init node

goal node
Figure 1. An attack graph G(V, E)

Assume that a realizable set is {x1, x2, ..., xj, xj+1, ..., xn} which represents many

attacks. A system administrator can adopt a policy (e.g., installing a firewall) to thwart an

atomic attack xj so as to thwart those attacks. Notice that xj may appear in another realizable

set which represents other attacks. Thus, thwarting xj may in fact thwarting two sets of

attacks. In [2], Sheyer et al. assumes that the system administrator wants to thwart a

4

minimum set subset T’ of the set of atomic attacks T so as to thwart all attacks represented

by Rel(G) = {R1, R2, ...,Rk, Rk+1, . .., Rm}. Put it another way, the administrator wants

to find a subset T’ such that that T’ intersects with Rk (k=1, 2, ..., m) by at least one

element. For example, consider T= {1, 2, 3, 4, 5, 6} and Rel(G) = {{1, 6, 5}, {1, 6, 4,

5}, {2, 1, 5}, {2, 1, 4, 5}, {2, 4, 6, 5}, {3, 1, 6, 5}}. T’ = {2, 3, 6} intersects with each

realizable set of Rel(G) by at least one element. Thus, thwarting atomic attacks 2, 3 and 6

can thwart all attacks.

Sheyner et al. reduces the minimization problem to the minimum cover problem [2].

The problem is NP-hard but a greedy approximation algorithm is available. The greedy

algorithm pick an element of T that appears mostly in the sets of Rel(G). Those covered sets

are removed from Rel(G), and the same picking process continues until that Rel(G) is

empty. For example, the algorithm would pick T’ = {6} first as “6” appears mostly in

Rel(G). The algorithm finally pick T’ = {6, 2}. However, T’ is the minimum one because

T’ = {5} can thwart all attacks.

3. The New Optimization Problem

In Section 2, we have reviewed an optimization problem for constructing a minimum

set of atomic attacks to thwart all attacks. In this section, we enhance the problem to

construct a minimum-cost set of atomic attacks to thwart all attacks. We will use the Integer

Programming method to solve this problem.

Assume that thwarting an atomic attack X takes a cost of cost(X). The administrator

wants to find a minimum-cost subset T’ = T (which is the set of atomic attacks) so as to

thwart attacks. That is, he wants to find T’ such that T’ intersects with each realizable set of

Rel(G) by at least once one element (recall Section 2 that a realizable set represents

attack(s)). For example, consider Figure 1. Assume that cost (1)= cost(2) = cost(3)=

cost(4) =cost(6) = 10 and cost(5) = 50, T = {1, 2, 3, 4, 5, 6} and Rel(G)= {{1, 6, 5}, {1,

6, 4, 5}, {2, 1, 5}, {2, 1, 4, 5}, {2, 4, 6, 5}, {3, 1, 6, 5}}. The optimal choice of Section

2: T’ = {5} takes a cost of 50, which is larger than the cost 30 of another choice: T’ = {2,

3, 6}.

We solve this minimum-cost optimization problem by formulating a set of Integer

Programming Equations. Consider a set of atomic attacks T= {t1, t2, . . .,tj, . . ., tn] and a set

of realizable set Rel(G) = {R1, R2, ..., Rj, R j+1, . ., Rm}. The optimal subset T’ of T is

5

defined by a set of integer variables x1, x2, ..., xj, ..., xk, where xj = 1 if tj of T is included

in T’ and xj = 0 if it is not included. The equations are as follows:

Minimize cost(t1) + cost(t2) + . . . + cost(tn)

such that

 t1’ +t2’ + . .. + tr’ = 1 if {t1’, t2’, . .. ,tr’ } is a realizable set of Rel(G).

 t1, t2, . .. , tn = 0 or 1.

The objective function “cost(t1) + cost(t2) + . . . + cost(tn)” means that we want to

find a subset T’ that is of the minimum cost. The constraint equation means that each

atomic attack of T’ should intersect with each realizable set at least once, so as to thwart the

attack represented by that realizable set. Consider the same example of Figure 1, we thus

have the following integer programming equations.

Minimize 10*t1 + 10*t2 + 10*t3 + 10*t4 + 50*t5 + 10*t6

such that

t1 + t6 + t5 ≥ 1

t1 + t6 + t4 + t5 ≥ 1

t2 + t1 + t5 ≥ 1

t2 + t1 + t4 + t5 ≥ 1

t2 + t4 + t6 + t5 ≥ 1

t3 + t1 + t6 + t5 ≥ 1

t1, t2, t3, t4, t5, t6 = 0, 1

The five constraint equation corresponds to to the five realizable sets of Rel(G). By

solving the above equations using the Lindo package over an IBM PC[14], we have the

following solution:

t1 = 1, t2 = 0, t3 = 0, t4 = 1, t5 = 0, t6 = 0

That is, we must thwart atomic attacks “1” and “4”. It can be checked from Figure 1

that after thwarting these atomic attacks, the intruder cannot reach his goal node from the init

node. It takes a cost of 20 to thwart the two atomic attacks.

4. Conclusions
6

In this paper, we have extended the problem of thwarting a minimum set of atomic

attacks to the problem of thwart a minimum-cost set of atomic attacks which guarantee that

the intruder cannot attack the network system. We have also proposed an integer

programming method to solve the problem. As described in [2][7][15], the Attack Graph

has been used to analyze the security of a Bank Transaction System and a Firewall Detection

System. We plan to implement our method into a tool so that we can see the performance of

our method over these large cases.

References

[1] C. P. Pfleeger, Security in Computing, 2nd Edition, Prentice-Hall Inc., New Jersey,

U.S.A.,1997.

[2] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. M. Wing, “Automated generation

and analysis of attack graphs,” Proc. of IEEE Symposium on Security and Privacy, May

2002.

[3] M. Dacier, Towards Quantitative Evaluation of Computer Security, PhD Thesis, Institu

National Polytechnique de Toulouse, December 1994.

[4] R. Ortalo, Y. Dewarte and M. Kanniche, Experimenting with quantitative evaluation

tools for monitoring operational security, IEEE Trans. on Software Engineering, Vol.

25, No. 5, pp. 633-650, September/October, 1999.

[5] C. Philips and L. Swiler, “A graph-based system for network vulnerability analysis,”

New Security Paradigms Workshop, pp. 71-79, 1998.

[6] L. Swiler, C. Philips, D. Ellis and S. Chakerian, Computer-attack graph generation tool,

Proc. of the DARPA Information Survivability Conference and Exposition, June 2000.

[7] S. Jha and J. M. Wing, “Survivability analysis of networked systems,” Proc. of Int’l

Conference on Sofware Engineering, May 2001.

[8] NuSMV, “Nusmv: a new symbolic model checker,” http://afrodite.itc.it:1024/nusmv/.

[9] SMV, “Smv: a symbolic model checker,” http://www.cs.cmu.edu/modelcheck/.

[10] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE

Trans. on Computers, Vol. C-35, No. 8, pp. 677-691, August 1986.

[11] R. W. Ritchey and P. Amman, Using model checking to analyze network

vulnerabilities, Proc. IEEE Symposium on Security and Privacy, pp. 156-165, May

2001.

7

http://afrodite.itc.it:1024/nusmv/
http://www.cs.cmu.edu/modelcheck/

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-completeness, W. H. Freeman and Company, San Francisco, U. S. A., 1979.

[13] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1998.

[14] L. Schrage, Lindo 5.0 User’s Manual, Scientific Press, 1991.

[15] S. Jha, O. Sheyner and J. M. Wing, “Minimization and Reliability Analyses of Attack

Graphs,” Technical Report, CMU-CS-02-109, School of Computer Science, Carnegie

Mellon University, PA, U.S.A., Feb 2002.

8

