
(1) name of the workshop：Workshop on Databases and Software Engineering
(2) title of the paper：A Study of Document-based MVC Design Pattern for Improve Web-based

Application System Development
(3) author1 name：Shuan-Ju Chiu

current affiliation：Institute of Information Management, Chung Yuan Christian University,
Taiwan
postal address：22 Pu-Jen,Pu-chung Li, Chung-Li (32023), Taiwan, R.O.C
e-mail address：gpie.tw@yahoo.com.tw
telephone number：886-927889233
fax number：886-3-4660094

(4) author2 name：Kuo-Ming Lo
current affiliation：Institute of Information Management, Chung Yuan Christian University,
Taiwan
postal address：22 Pu-Jen,Pu-chung Li, Chung-Li (32023), Taiwan, R.O.C
e-mail address：gpie.tw@yahoo.com.tw
telephone number：886-955060358
fax number：886-3-4660094

(5) author3 name：Danny Lai
current affiliation：Institute of Information Management, Chung Yuan Christian University,
Taiwan
postal address：22 Pu-Jen,Pu-chung Li, Chung-Li (32023), Taiwan, R.O.C
e-mail address：dannylai@seed.net.tw
telephone number：886-938108234
fax number：886-3-4660094

(6) author4 name：Yu-Liang Chi
current affiliation：Institute of Information Management, Chung Yuan Christian University,
Taiwan
postal address：22 Pu-Jen,Pu-chung Li, Chung-Li (32023), Taiwan, R.O.C
e-mail address：maxchi@mis.cycu.edu.tw
telephone number：886-3-4563171 ext 5408
fax number：886-3-4660094

(7) name of the contact author：Shuan-Ju Chiu

(8) keywords： Design Patterns、MVC、Document-based MVC、XML、Web

 1

A Study of Document-based MVC Design Pattern for Improve Web-based Application System Development

Shuan-Ju Chiu, Kuo-Ming Lo, Danny Lai, Yu-Liang Chi

Institute of Information Management, Chung Yuan Christian University, Taiwan

Abstract

This paper proposes an improvement
approach for software development, named
DMVC (Document-based
Model-View-Controller) design pattern.
DMVC, based on XML and MVC, improve
flexible on modification especially when
system requirement change and software
maintenance.

For solving decouple and interaction
problem, we add two low-level design
patterns, “Abstract Factory” and “Façade”,
between Model and Controller to reduce
dependency. Therefore, Controller and Model
can collaborate just by XML document. We
also describe an application flow that is made
by XML document, so the display logic of
view can be adapted when workflow or
requirement change. Consequently, DMVC
generate an improved design pattern to assist
in large application system development.

To base on the XML characteristics of
interoperability and human-machine readable,
the benefit of DMVC is not only improving
maintainability, but more decoupling Model、
View、Controller components.

Keyword: Design Patterns、MVC、

Document-based MVC、XML、Web-based
Application

1. Introduction

Design Patterns are well-organized
development approaches that collect
experiences or proven "best practices" during
system development. For years, developers
get advantages from using design patterns in
reducing developing time and the effort of try
errors. The MVC (Model-View Controller) is
one of design patterns,and it is a kind of
High-level Architectural Patterns[6]. The idea
of MVC is usually divided into three distinct
components by separating application
functions, such as “Model”, “View”, and
“Controller”[7]. The View is responsible for
presenting data to users and forming the
interface of the whole application system with
the controller which process the user’s
interaction. The Model represents the data of
application and the business logic. The
Controller is responsible to coordinate the
relationship between View and Model by
criteria. MVC does a good work on structured
system development and modularized
components; however; it is still inflexible on
modification especially when system
requirement change and maintenance. For

 2

solving above issue, XML is introduced into
MVC model to become an Document-based
MVC (DMVC). The benefit of DMVC is not
only improving maintainability, but more
decoupling Model、View、Controller
components.

2. Document-based MVC design pattern

 The name of the design pattern we propose
in this paper is Document-based MVC
(DMVC)design pattern.The definition of the
MVC in this paper is based on the concept of
the “web-based application”[1], which is
different from the traditional MVC design
pattern. In the traditional type of MVC design,
each View needs a Controller in order to form
the user interface. However, in our research,
the MVC will be applied to the “software
architecture”. Under each of the relative
workflow or subsystem, all Views will be
managed and assigned by one Controller, and
the Controller will then dispatch the request to

the relevant Model object.

2.1 Purpose

To provides more flexable
maintainability and looser coupling relation
between Model、View and Controller. We
define the interrelation in DMVC
components,and Controller and Model can
collaborate just by XML document.

2.2 Motivation

z To develop larger-sized application
systems which need long time
maintenance.

z To single out the static information which
easily adapt to requirement onto the XML
document in order to reduce the possibility
of a massive revision of the program when
requirement changes.

z To easily adapt to new requirement by
configuring the XML document.

z To provides a looser coupling between
Model and Controller, thus to replace the

X
M

L

View

C
li

en
t

Flow
Controller

Dispatch
Controller

Dispatch
Controller

Dispatch
Controller

Model_1

Model_2

Model_3

Model_4

Model_5

1.Request

4.Response

3.select 2.delegate
Figure 1、Document-based MVC design pattern

2

Model without influencing the Controller
by setting the XML document.

z To inquire the status of the View/Model
while the Controller is operating. This
information can also be obtained from
the XML document which is more
readable.

z When the display flow of the View is
managed by the Controller, and when
these information can be configured by
the XML document.

2.3 DMVC Architecture

The detail composition of the DMVC is
the following,and the conceptural diagram
show as Figure 1:

1.Model: In charge of the encapsulation of the
application status and the relevant business
rule. But the Model by itself does not know
how to show the data or who should be
responsible of the business rule.

2.View: Views act as an interaction interface
with the users, taking charge of showing the
data and receiving user requests.

3.Controller is divided into two types
depending on their functionalities:

● Flow Controller is used to represent the
application behavior and application
logic. In the web-based application,
Controller is focus on managing the
GET/POST functions under the HTTP.
Controller described what the
application behavior will be and which
Model should request be dispatch to.
Finally, Controller decides the
responsible Views to response to users.

DMVC hopes to single out the static
information which be easily adapt to
requirement onto the XML document in
order to reduce the possibility of a
massive revision of the program when
requirement changes. “Flow Controller”
and “Dispatch Controller” form the role
of the Controller in DMVC.

● Dispatch Controller:Façade is also one
of the Design patterns [5], and provides
a unified model manipulating interface
to “Flow Controller”. When the detail of
Model invoking is wrapped in the
“Dispatch Controller”, as Figure 2 we
can effectively reduce the level of
dependency and communication relation
between Controller and Model. “Flow
Controller” and “Dispatch Controller”
form the role of the Controller in
DMVC.

4.Document for Process Flow: The dynamic
information that originally belongs to Model,
View or Controller. When the information is
abstracted from program, the complexity of
the maintenance can be reduced. Due to the
human-machine readable characteristics of
XML, the maintainer could understand the
whole system better and easier.

F

 3
igure 2、interaction after facade

2.4 DMVC Designing Steps

As shown in Figure 1, we are able to
design a Flow Controller for each workflow
in the application. We can also design a
Dispatch Controller based on different
procedures of the workflow. And the Dispatch
Controller will handle the complex duty of
invoking the back-end Model. Finally, we can
describe the sequencing of the presentation of
the Views and the information of the Dispatch
Controller in the “ProcessFlow Document”.

When users send their requests to the
application, the Flow Controller will be
responsible for managing and dispatching
requests, and will make its judgment and act
upon the requests according to the
“ProcessFlow Document”. During the
handling process, if there is a need for the
Model in performing the business rule, the
Flow Controller will then assign a proper
Model to handle the case based on the
configuration of “ProcessFlow Document”.
The way of the assignment is to pass the
requests to the Dispatch Controller so that the
Flow Controller’s only duty is to find the
proper Dispatch Controller information in the
“ProcessFlow Document” without
understanding the information of the Model.
After the requests are successfully handled,
the Flow Controller will then choose the next
phase of the View component that should be
response to the users according to the
“ProcessFlow Document”.

3. Implement Issues

We will now discuss some relevant issues

and solutions in DMVC design pattern.

3.l The dependency between Controller and
Model

When users make a request to a
Web-based application, then it compute in
several back-end Model objects. In the
process of the on-line shopping cart, for
example, user sends an order request and may
need a Model object for storing the order data.
In the same time, another checking request
will ask different kind effort of processing
database. If the Controller handles all Model
invocation, it has to know all the implement
details of all Models. Therefore, this way will
results in difficulties of maintenance.

For solving the dependency between
Controller and Model, we can add Façade
design pattern into DMVC. Façade can
provide a simple interface for the complex
back-end subsystems. This interface then
forms the bridge of communication between
Controller and Model. The information about
the sequence of invoking Model objects and
the signature of Model objects will be hide in
Façade without the acknowledgement of the
Controller. Therefore, we can reduce the
complexity of couple between Controller and
Model. Consequently, DMVC divides the
Controller’s loading into Flow Controller and
Dispatch Controller based on different
situations.

 4

AbstractModelDispatch

AbstractModelDispatch()
goDispatch()

<<abstract product>>

AbstractModelDispatchFactory

getFactory()
createModelDispatch()

<<abstract factory>>

AccountModelDispatch
<<concrete product>>

AccountModelDispatch
Factory

<<concrete factory>>

<<create>>

MemberModelDispatch
<<concrete product>>

MemberModelDispatch
Factory

<<concrete factory>>

<<create>>
<<create>>

Figure 3、the structure of Abstract Factory

3.2 Sending Parameters between
Components

As mentioned above, using Façade design
pattern reduces the dependency between
Controller and Model. However, we must
make sure that all the parameters will be
integrated at the same time. When Controller
transmits a job to Façade, Controller will
already gathered all the parameters before it
can pass the job to Façade. Such as Fiqure 2,
The FaçadeMethod() must transfer parameters
to satisfy corresponding methods. In order to
simplify the usage of Façade design pattern to
reduce the dependency relation between
Controller and Model, we can achieve this
goal by taking advantage of the characteristics
of the Web-based application. That is, to make
use of the Request and Response object that
be transmitted on the HTTP protocol between
client and server. In DMVC, Flow Controller
can pass the Request object to Dispatch
Controller. When Dispatch Controller needed
to call Model objects, there is enough
information in Request object mostly. Besides,
some of the Model objects may need several

static parameters to initiate its function, such
as the account/password or ODBC name for
connecting the database. It is not proper to get
these parameters from the Request. Therefore,
we can initial a Model object by configuring
the static parameters on XML document, as a
result of simplifying the complexity of the
maintenance of Model.

3.3 Hiding details of the assigned Model

Application will then have many specific
categories of Dispatch Controller to
implement various strategy of invoking Model
objects. In order to separate the Model details
from the Flow Controller, we need to apply
the Abstract Factory design pattern [5] to
create instances of matched Dispatch
Controller object.

The Abstract Factory provides a way to
create instances of those abstract classes from
a corresponding set of concrete subclasses. In
this situation, an abstract factory class defines
methods to create an instance of each abstract
class that represents a Dispatch Controller.
Concrete factories are concrete subclasses of
an abstract factory that implement its method

 5

to create instances of concrete Dispatch
Controller classes, as shown in Figure 3. Thus,
by using the Abstract Factory interface, Flow
Controller does not need to know which or
how concrete factory object creates which
specific Dispatch Controller.

3.4 Design of the ProcessFlow Document

The Process Flow is the logic of the
application process. The Controller can derive
the information from this kind of XML
document in order to better know how to
control the system and handle demands. There
is some information in ProcessFlow
Document as the following:

● System Procedure Information: That is,
the order of the application process.
Controller will be able to tell which view
is in the next procedure from this
information. These procedures may be the
workflow of the users from the
perspective of an enterprise, and they need
to be constantly adjusted according to the
change of the business environment.
Therefore, when we describe these
procedures in XML document, Controller
will be able to choose a proper View
accordingly in response to users
requirement.

● Model Information: Under the design of
DMVC, Flow Controller just has to pass
the request to specific Dispatch Controller,
and delegate Dispatch Controller to call
Model objects. Therefore, when we
describe the information of a specific
Dispatch Controller needed for each

procedure in the “Process Flow
Document”, Flow Controller will analyze
the information in the XML document and
then use abstract factory method to create
proper Dispatch Controller object, but
Flow Controller doesn’t know which
Dispatch Controller had been created.

● Initiative parameter of Model: We may
need some static parameters to initiate the
Model objects, such as the information of
the database account name and password.
By putting these parameter in the
“ProcessFlow Document” like
Deployment Descriptor in Java Servlet [9].
We can re-deployment the Model objects
without influencing Controller and View.

● Status Information: This type of
information records the different reaction
of a Controller under different Model
status or user status. These statuses will
actively change according to the
application process. Controller must
respond accordingly or choose a different
view based upon different system status.
By describing the summarized information
in the XML document, Controller can then
choose a responsive and proper way to
handle the situation. For example, when
verifying the data which users input, there
will be two statuses in application: the
success or failure of data verification,
under this situation Controller may have to
make either one of the responses: one is to
continue with the next application process;
the other is to go back to the previous

 6

application process that requires the users
to put in accuracy information.

We can describe this workflow process by the

XML method. Please see the figure 4 as

followed:

As a result of XML document, the application

process can be flexibly adapted to the change of

the workflow.

4.Conclusion

In order to facilitate testability and
prove maintainability, developer must
tablish a extended software architecture by
odular development method. In this way,
aintainer also can handle all situation
ickly and maintain effectively.

This paper proposes a document-based
VC design pattern to improve Web-based
plication development. MVC separates
plication functions into three distinct
mponents, clearly decoupling data
esentation, data representation and
plication operations. It’s also a good way to
velop a Web-based application. As a result
im
es
m
m
qu

M
ap
ap
co
pr
ap
de
3.5 Implement Consequences

1. Clearly distinguish the business rule from
the requests processing.

2. Clearly define the job of a Web Page
designer and that of a programmer.

3. Decoupling the Controller and Model.
Developer can simply replacing or
revising the Model through the
configuration of XML document.

4. Increase the maintainability by dividing
the Controller’s role into two parts: Flow
Controller and Dispatch Controller.

5. When the Model changes, we only need to
revise or update the Dispatch Controller
without influencing the View and the Flow
Controller.

Figure 4、example of ProcessFlow Document of the XML ability of interoperability and
human-machine readable, we can separate the
information of application process into the
XML document. By this way, it not only
improves maintainability, but more
decoupling Model、View、Controller
components.

In DMVC, we using “Abstract Factory”
and “Façade” design pattern in the interaction
between Model and Controller to reduce the
dependency. Therefore, Controller and Model
can collaborate just by XML document.
Besides we describe the information of
process flow by XML document, so the logic
of view display can be flexibility adapt when
workflow or requirement change. Moreover,

 7

the view design is independent of application
logic.

We should consider the system
requirement when apply design pattern to
develop application. DMVC design pattern is
suitable for application with a long lifetime.
And it also increases the degree of complex
and reduces the efficiency when developing
small size application. Future work should
aim at establishing the validity of these idea
by applying them to new application. It would
also be valuable to apply DMVC idea to
develop framework.

 Additionally, this paper describes how to
establish a scalable, manageable software
architecture using DMVC. By these
characteristics, it’s maybe suitable to develop
user-driven Web Services using DMVC
architecture. And the details of
implementation are good issue to discuss in
Future.

5.Reference
1. Avraham Leff, James T Rayfield ,

“Web-Application Development Using the
Model/View/Controller Design Pattern” ,
Enterprise Distributed Object Computing

Conference, 2001. Proceedings. Fifth

IEEE International , 2001.
2. Barracuda:Open source Presentation

Framework,
http://barracuda.enhydra.org/,2001.

3. Carla Sadtler et al., “Patterns for
e-business: User-to-Business Patterns for
Topology 1 and 2 using WebSphere
Advanced Edition,” IBM Redbooks

publication, 2000.
4. Enhydra XMLC 2.1 ,

http://xmlc.enhydra.org/.
5. E. Gamma, R. Helm, R. Johnson, and J.

Vlissides, “Design Patterns:Elements of
Reusable Object-Oriented Software”,
Addison-Wesley,1995.

6. F. Buschmann, H. Rohnert, M. Stal, P.
Sommerlad and R. Meunier,
“Pattern-Oriented Software Architecture:
A System of Patterns,” John Wiley & Sons,
1996.,123-168.

7. G.E. Krasner and S.T. Pope, “A Cookbook
for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80,”
26-49, Journal of Object-Oriented
Programming, Auguest/September, 1988.

8. Inderjeet Singh, Beth Stearns,Mark
Johnson, and the Enterprise Team,
“Designing Enterprise Applications with
the J2EE Platform, Second Edition,”
Addison-Wesley, March 2002 ,Ch 4.4.

9. Java Servlet Technology Implementations
& Specification,
http://java.sun.com/products/servlet/down-
load.html#specs , 2001.

10. M.J Mahemoff, L.J Johnston, “Handling
multiple domain objects with
Model-View-Controller,” Technology of
Object-Oriented Languages and Systems,
1999. TOOLS 32. Proceedings ,
1999 ,Page(s): 28 -39

11. Michael Ball, “Dispatcher eases workflow
implementation”, http://JavaWorld.com,
October 19 2001

12. S.Bodoff, D.Green, Khaase, E.Jendrock,

 8

M,Pawlan, B.Strearns, “The J2EE
Tutorial,” Copyright 2002,
Addison-Wesley,
“http://java.sun.com/j2ee/tutorial”.

13. Simon Bennett, Steve McRobb, Ray
Farmer, “Object-Oriented System Analysis
and Design Using UML,”
McGRAW-HILL International Editions,
1999.

14. Struts,http://jakarta.apache.org/struts/index
.html, 2001

15. WebWork,
http://sourceforge.net/projects/webwork,
2001

16. World-Wide Web Consortium, An
introduction to XSL,
1998,http://www.w3c.org/Style/XSL.

17. World-Wide Web Consortium, XML 1.0,
February 1998,http://www.w3.org/XML.

 9

