
A Prototyping Technique to Verify Requirements 

 
 
 
 

Shih-Chien Chou 
Department of Computer Science and Information Engineering 

National Dong Hwa University, Hualien 974, Taiwan 
E-mail: scchou@mail.ndhu.edu.tw 

 

 

 

 

 

ABSTRACT 

This article proposes a prototyping technique to verify requirements. The technique is 

composed of a model to represent requirements and an executable language to create 

prototypes based on requirements. The requirement model is composed of use case 

diagram, activity diagram, and class diagram. The language models those diagrams as 

a prototype, which can be executed to verify requirements before they are modeled 

into a specification. Since requirement errors will propagate to the corresponding 

specification, correcting requirement errors reduces possible specification errors. 



1. INTRODUCTION 

The prototyping technique facilitates verifying specifications [1]. That is, after a 

specification has been produced, a prototype can be created based on the specification. 

The prototype can then be executed to verify the specification. 

According to our experiences in object-oriented analysis (OOA) [2-3], we feel 

that applying the prototyping technique to verify specifications may be relatively 

inefficient. A better approach is using that technique to verify requirements before 

they are modeled into a specification, because requirement errors will propagate to the 

corresponding specification. Since much time is needed in analyzing requirements 

and modeling them into a specification, correcting requirement errors consumes much 

less resources than correcting specification errors. 

We first describe a typical requirement analysis process and then propose our 

technique to verify requirements. Generally, requirement analysis starts with 

requirement capturing. Requirements are then modeled into a specification. During 

requirement capturing, the requirement workers, including customers, analysts, end 

users, domain experts, and so on, identify requirements according to their perspectives. 

The requirements identified are then analyzed and integrated in a meeting. The 

meeting results (i.e., the requirements after integration) are then represented in a 

model (perhaps the same model for the specification, or just a relatively structured 

language). The requirement workers then verify the meeting results. If errors or new 

requirements are identified, another meeting is needed. Therefore, multiple meetings 

may be necessary before the requirements become stable. The stable requirements are 

then modeled into a specification. 

The above process reveals that requirement workers should verify requirements 

and identify requirement errors. Requirements should thus be represented in a model 

that can be easily understood by every requirement worker. Since the knowledge 

background of requirement workers may diverge dramatically, identifying a model 

that can be easily understood by all the workers may be difficult. Therefore, it is 

possible that some of the workers have difficulty in understanding requirements. This 

 2



may result in unidentified requirement errors, which will propagate to the 

specification. To reduce requirement errors, we have applied the prototyping 

technique to verify requirements. That is, we create a prototype based on the 

requirements captured after each meeting. The prototype is then executed to verify the 

requirements. The prototype will evolve as the requirements are adjusted in the 

succeeding meetings. When the requirements become stable and the specification has 

been produced, the prototype becomes a prototype based on the specification (i.e., a 

prototype in the traditional approach). Therefore, our technique can also be applied in 

a traditional prototyping approach. 

Similar to most prototyping techniques [4-10], our technique uses an executable 

language to model prototypes. The language is designed for our requirement capturing 

technique [3], in which the use case diagram, activity diagram, and class diagram are 

used to represent requirements. In the following text, we first describe our 

requirement model. We then describe our prototyping language. To facilitate 

understanding the description, we use a simplified car rental system as an example 

throughout this article. 

 

2. THE MODEL 

As stated in the unified software development process [11], use cases and domain 

objects can be identified during requirement capturing. We use a use case diagram to 

depict use cases and their relationships, and a class diagram to depict domain objects 

and their relationships. Moreover, to facilitate understanding use cases, we use an 

activity diagram to represent the detailed activities of each use case. In this section, 

we first describe an example used throughout this article. We then describe our 

requirement model, including the use case diagram, the activity diagram, and the class 

diagram. Note that this article does not describe the requirement capturing process. 

 

2.1 The Example 

We use a simplified car rental system as an example throughout this article. 

 3



Requirements of the system are described below: 

 

The car rental system manages the status of cars and renters. When a 

renter rents a car, a rental record is created. A renter may be a member or not. A 

member can rent a car if he/she has no bad record. A non-member should apply 

for becoming a member or mortgage something valuable before he/she rents a 

car. Old cars can be removed and new cars can be added. 

When a rented car is returned, the car should be checked. If the car is 

damaged, the renter should compensate for that. 

The manager of the system should periodically check car status. A car with 

an age more than ten years should be removed. The manager should also 

periodically check rental records. A bad record should be created for a member 

who does not return a car in time. 

The system should also handle exceptions, which are events that cannot be 

controlled regularly. For example, a renter may decide not to rent a car during 

the handling of renting the car. In this case, the system should recover the rental. 

Since a renter may change his/her mind anytime, un-renting a car cannot be 

controlled regularly. The un-renting should thus be managed as an exception. 

 

From the requirements, we can identify two actors, namely the renter and the 

manager. Moreover, we can identify the following use cases: rent a car, return a car, 

check car status, check rental record, damage compensation, add a member, remove a 

member, add a car, and remove a car. In addition, we can at least identify an exception, 

namely un-renting a car. 

 

2.2 Use Case Diagram 

A use case diagram describes how users use a system. In the unified modeling 

language (UML) [12], a use case diagram is composed of these components: use cases, 

actors, and relationships among use cases (see Figures 1(a) through 1(d)). Initially, we 

 4



used those components in our use case diagram. We then identified that important 

features such as use case communication and exceptions cannot be modeled. We thus 

added new notations for our use case diagram. 

use case

flagactor

exception

use

extend

use relationship

extend relationship

Figure 1. Notations for use case diagram

set flag

receive flag

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

 

Figure 1(e) models exceptions. Exception names are associated with the notation. 

The arrow points to the handler of the exception, which is generally a use case. Figure 

2 shows an example of exception modeling, which depicts that the exception 

“un-rent” may occur anytime when the use case “Rent a car” is executing. If that 

exception occurs, the use case “Rental recovery” is executed to recover the rental. 

Here, the use case “Rental recovery” is the handler of the exception. 

 5



Rent a car
Rental recoveryun-rent

renter Manager

Figure 2. Exception

 

Flags (Figures 1(f) through 1(h)) model use case communication. For example, 

in the simplified car rental system, when the use case “Rent a car” is executing (i.e., 

when a renter rents a car), it should inform the use case “Check car status” to check 

whether the car is available. The communication between the above two use cases is 

shown in Figure 3, which depicts that the flag “checkCarF” is set by the use case 

“Rent a car” and received by “Check car status”. The setting and receiving of flags 

accomplishes use case communication. When a use case receives a flag, the use case 

will be executed. Note that a flag may cause only partial activities of the receiver to 

execute. For example, although the use case “Check car status” checks the status of 

every car, the flag “checkCarF” causes that use case to check only a specific car (i.e., 

the car to rent). 

 6



Figure 3. Use case communication

Rent a car

Check car status
checkCarF

renter Manager

 

Rent a car

Check car status

Check rental record

Add a member
Remove a member

Check existence
of a member

Add a carRemove a car

Check existence
of a car

Return a car

Damage compensation

Rental recovery

checkMemF

checkCarF

addMemF

removeCarF
un-rent

renter

Manager
useuse

useuse

extend

Figure 4. Use case model for the simplified  car rental system

 

Using the notations in Figure 1, the use case diagram of the simplified car rental 

system is shown in Figure 4. Nine use cases in the figure have been mentioned in 

section 2.1. As to the use case “Rental recovery”, it handles the exception “un-rent”. 

Moreover, the use cases “Check existence of a member” and “Check existence of a 

car” are used by multiple use cases. The figure also shows use case communication 

using flags. For example, the use case “Rent a car” communicates with “Add a 

 7



member” via the flag “addMemF”. Communication details among use cases will be 

shown in the activity diagrams of use cases. 

 

2.3 Activity Diagram 

Activity diagrams describe the detailed activities of use cases. This facilitates further 

understanding use cases. Notations used in an activity diagram are shown in Figure 5. 

They are explained below: 

*

condition

non-primitive
activity

activity
sequence

parallel execution
of activities

multiple
trigger

connector

use case
invocation

flag

set flag

receive flag

signal flag

wait for flag

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 5. notations for activity diagram

primitive
activity

(m)

activity name

class operations

selection

 

1) Figure 5(a) models non-primitive activities, which are complicated and should be 

decomposed to improve understandability. 

2) Figure 5(b) models primitive activities, which are rather simple and therefore need 

not be decomposed. 

Some primitive activities can be accomplished by invoking class 

operations. For example, the activity “Remove a car” can be accomplished by 

invoking the operation “remove” of the class “carClass”. If a primitive activity 

can be accomplished by invoking class operations, the left notation in Figure 5(b) 

is used. The notation is partitioned into two fields. The first field shows the 

activity name and the second shows class operations. Placing class operations in 

 8



primitive activities maintains traceability between use cases and classes, with 

which changing use cases can trace back to the affected classes, and vice versa. 

If a primitive activity is not accomplished by invoking class operations, 

the right notation in Figure 5(b) is used. 

3) Figure 5(c) models use case invocation, which is used in the “use” and “extend” 

relationships among use cases. For example (see Figure 4), with the “extend” 

relationship between the use cases “Return a car” and “Damage compensation”, 

the activity diagrams for “Return a car” is shown in Figure 6, in which the use 

case “Damage compensation” is invoked if the car is damaged. As another 

example, with the “use” relationship between the use cases “Add a car” and 

“Check existence of a car”, the activity diagrams for “Add a car” is shown in 

Figure 7, in which the use case “Check existence of a car” is invoked. 

Damage compensation

Return
a car

Delete rental record

rentalRecordClass.remove

Exit

car damaged

not damaged

collateral security
taken

Return collateral security

mortgageRecordClass.remove

Figure 6. Activity diagram of the use case “Return a car”

no collateral security
taken

 

4) Figure 5(d) models activity sequence. That is, for the activities connected by solid 

arrows, the successors can be executed only when the predecessors are finished. 

Conditions can be associated with the notation. For example (see Figure 6), if a 

car is damaged when it is returned, the use case “Damage compensation” will be 

invoked before the activity “Delete rental record” executes. 

 9



Add a
car

Check existence of
a car

Exit

existing

not existing

Add the car

constructor of carClass

Figure 7. Activity diagram of the use case “ Add a car”

 

Rental
recovery

Exit

rental record created or
collateral security taken

rental record
created collateral security

taken

no rental record created and
no collateral security taken

Remove rental record

rentalRecordClass.remove

Return collateral security

mortgageRecordClass.remove

Figure 8. Activity diagram of the use case “Rental recovery”

 

5) Figure 5(e) models parallel execution of activities. For example, Figure 8 shows 

the activity diagram of the use case “Rental recovery”. It depicts that if a rental 

record has been created or collateral security has been taken, then the activities 

“Remove rental record” and “Return collateral security” can be executed in 

parallel. 

6) Figure 5(f) models multiple triggers. For example, Figure 9 shows the activity 

 10



diagram for the use case “Check car status”. Since every car should be checked 

and the number of cars is unknown, a multiple trigger can be used here. The 

figure depicts that multiple copies of the activities “Check if the car is older than 

10 years” and “Add a car status record” can be performed in parallel. 

Check if the car is older
than 10 years

Check
car

status

removeCarFcheckCarF

*

*

older than 10 years

not older than 10 years

Exit

Add a car status record

constructor of carStatusClass

Figure 9. Activity diagram of the use case “Check car status”

 

Rent
the car

Exit

Create rental record

constructor of rentalRecordClass

Establish association relationships
among the rental record,
the car being rented,
and the renter renting the car

Figure 10. Activity diagram for the activity
                  “Rent the car” in Figure 11

 

7) Figure 5(g) denotes a connector, which shows the name of the use case represented 

by an activity diagram. The notation also shows the exit of an activity diagram. 

 11



For example, the upper connector in Figure 9 depicts that the diagram represents 

the use case “Check car status”, whereas the lower connector is the exit of the 

diagram. Connectors also show decomposition relationships among activities. 

For example, Figure 10 shows the activity diagram obtained by decomposing 

the activity “Rent the car” in Figure 11. Naming the upper connector as “Rent 

the car” shows the activity decomposition relationship. 

Rent
a car

checkMemF checkCarF

Rent the car

car available
no bad record

addMemF

Exit

car unavailable

bad record identified

checkCarF

car available

car unavailable

member nonmember

Take collateral security

constructor of mortgageRecordClass

Figure 11. Activity diagram for the use case “Rent a car”

 

8) Figure 5(h) models flags for use case communication. Although the use case 

diagram shows the setting and receiving of flags among use cases (see Figure 4), 

that diagram does not show when and how the flags are set and received. 

Detailed flag operations are modeled in activity diagrams, in which Figures 5(i) 

through 5(l) model setting, receiving, signaling, and waiting for flags. 

Figure 5(i) models the setting of a flag. The dotted arrow points to the flag 

to set. The setting of a flag is used by a use case to communicate with other use 

cases. For example (see Figure 11), the use case “Rent a car” sets the flags 

“checkCarF”, “checkMemF”, and “addMemF” to communicate with the use 

cases “Check car status” (Figure 9), “Check rental record” (Figure 12), and 

“Add a member” (Figure 13). To identify which use case receives a flag, Figure 

 12



5(j) is used. 

Check if time expired

Check
rental
record

checkMemF

*

Exit

*

*

time expired

time not expired

Add a bad record

constructor of badRecordClass

Figure 12. Activity diagram for the use case “Check rental record”

 

Add a
member

Check existence of
a member

Exit

member
existing

renter existing
but not member

addMemF

Change to be member

renterClass.changeToMember

Figure 13. Activity diagram for the use case “Add a member”

Add the member

constructor of renterClass

not existing

 

Figure 5(j) models the receiving of a flag. The dotted arrow points to the 

activity that should be executed when the flag is received. For example, when 

the use case “Rent a car” sets the flag “checkMemF”, the activity “Check if time 

expired” of the use case “Check rental record” (Figure 12) should be executed. 

Note that it may be unnecessary to execute the entire use case when a flag is 

 13



received. For example, when the use case “Check rental record” receives the 

flag “checkMemF”, it executes only the activity “Check if time expired”. 

Generally, when the use case that receives a flag finishes executing the 

activities required by the flag, the use case should inform the use case that set 

the flag. This informing is accomplished by signaling a flag, which is modeled 

by Figure 5(k). The dotted arrow pointed to the flag to signal. For example, 

Figure 9 depicts that the flag “checkCarF” requires the executing of the activity 

“Check if the car is older then 10 years”. When the activity is finished, that flag 

is signaled. A signaled flag will be detected by the use case waiting for the flag. 

Waiting for a flag is used when a use case that sets a flag can proceed only 

when the flag is signaled. That waiting is modeled by Figure 5(l). The dotted 

arrow points to the activity to proceed when the flag is signaled. For example, in 

the left side of Figure 11, when the use case “Rent a car” sets the flag 

“checkCarF”, it waits for the flag to be signaled. When the flag is signaled, the 

use case proceeds by exiting the use case (in case that the car is unavailable) or 

proceeds to the synchronization bar. 

9) Figure 5(m) models selection. For example, Figure 11 depicts that a non-member 

can rent a car by either becoming a member or mortgaging something valuable. 

In the figure, the selection bar depicts that either, but not both, the flag 

“addMemF” is set (to register the renter as a member) or the activity “Take 

collateral security” is executed (to mortgage something valuable). 

 

Using the notations in Figure 5, the activity diagrams of some use cases in the 

car rental system are modeled as those in Figures 6 through 13. We use the use case 

“Rent a car” (Figure 11) as an example to explain the usage of the notations. The 

figure depicts that when a renter wants to rent a car, he/she is first checked to see 

whether he/she is a member. If he/she is a member, two flags, namely “checkMemF” 

and “checkCarF”, are concurrently set. The former informs the use case “Check rental 

record” (Figure 12) to check whether there is a bad record associated with the member. 

 14



The latter flag informs the use case “Check car status” (Figure 9) to check whether the 

car is available. If no bad record is associated with the member and the car is 

available, the renter rents the car. The renting is accomplished by invoking the 

non-primitive activity “Rent the car” (Figure 10). If the renter is not a member, he/she 

can apply for becoming a member (i.e., the system sets the flag “addMemF” to inform 

the use case “Add a member” in Figure 13 to register the member) and then rents the 

car. If the renter does not want to become a member, he/she should mortgage 

something valuable before renting the car. 

 

2.4 Class Diagram 

The class diagram models classes and their relationships. Notations used in the class 

diagram are depicted in Figure 14. Figure 14(a) sketches the notations for classes. The 

left one displays only a class name. It is used when class attributes and operations 

need not be shown. The right notation is used when class attributes and operations are 

needed. Figure 14(b) sketches an inheritance relationship, where the super class is 

drawn on top of its subclasses. Figure 14(c) depicts a composition relationship, where 

the composite class is next to the diamond shape. Figure 14(d) depicts association 

relationships, which are those other than the inheritance and composition 

relationships. 

Figure 15 depicts the class diagram of the car rental system. To simplify the 

figure, class attributes and operations are not shown. 

 15



Class name

Attributes

Operations

Super class

Subclass

Composite
class

Component
class

Subclass

Class 1 Class 2

(a) Class
(b) Inheritance
      relationship

(c) Composition relationship (d) Association relationship

Figure 14. Class diagram notations

Class name

 

rentalRecordClass

mortgageRecordClass

renterClass

carStatusClass

badRecordClass

compensationRecordClasscarClass

Figure 15. Class diagram for the simplified car rental system

 

3. THE PROTOTYPING LANGUAGE 

We first describe the design philosophy of our prototyping technique and then 

describe our prototyping language. 

 

3.1 Design philosophy 

To create a prototype based on requirements, the use case diagram, activity diagrams, 

 16



and class diagram are represented in our prototyping language. A prototype should 

facilitate verifying the functions of a system, because a software system provides 

functions to fulfill customer requirements. Since the functions of a system in our 

model are captured by use cases, our technique executes use cases for requirement 

verification. 

When executing a use case, users (either customers or analysts) provide input 

data. After the execution, output data are produced, which can be compared with the 

expected output to verify the use case. In verifying a use case, our technique goes a 

step further to show the state transitions of objects. Object state transitions facilitate 

understanding use case behavior because a use case may invoke objects for service. 

For example, renting a car will invoke a renter object to check whether he/she can rent 

the car, invoke a car object to check whether the car is available, and invoke a rental 

record object to record the rental. Accordingly, inspecting the state transitions of the 

renter, the car, and the rental record facilitates understanding the behavior of the use 

case “Rent a car”. Since checking use case behavior facilitates verifying use cases, 

showing object state transitions facilitates verifying prototypes. To conclude, when a 

prototype is executed, its use cases are selected to execute. When executing a use case, 

users provide input data and verify the use case by inspecting output data and state 

transitions of objects invoked by the use case. A prototype is regarded as verified if all 

its use cases are verified. 

 

3.2 The language 

Figure 16 shows a subset of the BNF-like grammar of the language, which depicts 

that a prototype is primarily composed of use cases and classes (Grammar 1 in Figure 

16). Use cases model the use case diagram, whereas classes model the class diagram. 

As to the activity diagrams, they are modeled as statements in use cases. Grammar 1 

also shows that non-primitive activities may also exist. The modeling of a 

non-primitive activity is not described below because it is similar to a use case. 

Differences between modeling a use case and a non-primitive activity are described as 

 17



follows: 

 

1) The keyword used in a use case is “usecase” whereas that in a non-primitive 

activity is “activity” (Grammar 2). 

2) Exceptions can be associated with a use case but cannot be associated with a 

non-primitive activity. 

1. Prototype ::= {UseCase | Class | NonPrimitiveActivity}  /* A prototype is composed of use cases, classes, and non-primitive activities */
2. NonPrimitiveActivity ::= “activity” ActivityName “(“ (Parameter) “)” “{“ {Data} {Statement} “}”
3. UseCase ::= “usecase” UseCaseName “(“ (Parameter) “)” “{“ {Data} {Statement} (Exception) “}”
4. Exception ::=  “exception” ExceptionName “{“ {Statement} “}”
5. Statement ::= ForEachStat |  RetrieveStat | FlagStat | InvokeObjectOp | InvokeNonPrimitiveStat | InvokeUseCase
                            | ClassInstance | ConcurrencyStat | SelectionStat | Relationship | GeneralStat
/* The “InvokeObjectOp” statement invokes object operations. */
/* The “InvokeNonPrimitiveStat” invokes non-primitive statements */
/* The “InvokeUseCase” statement invokes use cases. It can be used to implement the “use” and “extend” relationships among use cases */
/* “GeneralStat” are general statements such as “if” statement, assignment statements, and so on */
/* “Relationship” define relationships among objects */
/* “ClassInstance” instantiates objects from classes */
6. ForEachStat ::= “for each” ObjectName “in” ClassName “{“ {Statement} “}”
7. RetrieveState ::= “retrieve” ObjectName “from” ClassName” “with” AttCond “;”
/* “AttCond” limits the object to retrieve, e.g,, “retrieve . . . with name == “aa” retrieves the object whose attribute “name” has the value “aa” */
8. ConcurrencyStat ::= “concurrency” “{“ { “{“ {Statement} “}” } “}”
9.  SelectionStat ::= “selection” “{“ { “{“ {Statement} “}” } “}”
10. FlagStat ::= SetFlag | ReceiveFlag | SignalFlag | WaitForFlag
11. SetFlag ::= “setflag” FlagName “(“ (Parameter) “)” “;”
12. ReceiveFlag ::= “flagentry  “(“ (Parameter) “)” “:”
13. SignalFlag ::= “signalflag “(“ (Parameter) “)” “;”
14. WaitForFlag ::= “waitflag” “(“ (Parameter) “)” “;”
15. Class ::= ClassDef   “{“   (Attribute)   Constructor   (Operation)   “}”
       /* A class is composed of  attributes, a constructor, and operations. */
16. ClassDef ::= “class”   ClassName   [“extends”   ClassName]
      /* “extends” defines inheritance relationships*/
17. Operation ::= [DataType]   OperationName   “(“   (Parameter)   “)”   “{“   {Statement}   “}”

Symbol                                  Meaning
::=                                                       is defined as
|                                                           alternative
[X]                                                      zero or one instance of X
(X)                                                      zero or more instance of X
{X}                                                     one or more instance of X
/* . . . */                                              comments
un-quoted symbols                          non-terminals
quoted symbols                                terminals

Figure 16. A subset of BNF-like syntax for a prototype. (a) Syntax, (b) Symbols used in the syntax

(a)

(b)

 

The modeling of use cases and classes in a prototype are respectively described 

below. 

 

3.2.1 Use cases 

A use case is composed of data definitions, executable statements, and zero or more 

exceptions (Grammar 3). Parameters can be passed in/out a use case. Example 1 

shows the use case “rentACar”, which models the use case “Rent a car” in Figure 11. 

Statements used in the use case will be described later. Moreover, a detailed 

explanation of the use case can be found in section 4. The example shows that the use 

 18



case consumes three input parameters and reacts to the exception “unRent”. From 

Figure 11 and Example 1, one can see that the mapping between an activity diagram 

and the corresponding language description is clear. 

 

Example 1. The use case “rentACar” 
 
usecase rentACar(in String renterID, in String carID, in String mortgageItem) { 
  renterClass renter; 
  carClass car; 
  mortgageRecordClass mortgageRecord; 
  String msg1, msg2; 
 
  retrieve renter from renterClass with ID == renterID; 
  retrieve car from carClass with ID == carID; 
  if(renter.member == ”y”) { // the renter is a member 
    concurrency { 
    { 
      { 
        setflag checkMemF(renter); 
        waitflag checkMemF(msg1); 
      } 
      { 
        setflag checkCarF(car); 
        waitflag checkCarF(msg2); 
      } 
    } // end of concurrency 
    if (msg1 == “ok”) and (msg2 == “available”) { 
      rentTheCar(renterID, carID); // invoke the non-primitive activity “rentTheCar” 
    } 
  } 
  else { // the renter is not a member 
    setflag checkCarF(car); 
    waitflag checkCarF(msg2); 
    if (msg2 == “available”) { 
      selection { 
        { // selection 1 
          setflag addMemF(renter); 
          rentTheCar(renterID, carID); 
        } 
        { // selection 2 
          mortgageRecord = new mortgageRecordClass(renterID, mortgageItem); 
          rentTheCar(renterID, carID); 
        } 
      } 
    } 
  } 
   
  exception unRent { 
    // If the exception “unRent” occurs, invoke the use case “rentalRecovery” to recover the rental. 
    rentalRecovery(renterID, carID); 
  } 
} 

 19



 

As shown in Example 1, activities of a use case are described using executable 

statements. In addition to general statements such as the “if” statement, our language 

provides the following statements for use cases: 

 

1) The “for each” statement (Grammar 6) is used when every instance of a class 

should be managed in the same way. This statement can be used to model 

multiple triggers in an activity diagram. For example, the multiple trigger in 

Figure 9 can be modeled using the “for each” statement in Example 2. The 

example depicts that every car in the “carClass” will be manipulated as follows: 

(1) check the car’s age and (2) create a status record for the car. 
 
Example 2. A use case containing the “for each” statement 
 
usecase checkCarStatus(){ // check the status of every car 
  // data declarations 
  carClass car; 
  rentalRecordClass rentalRecord; 
  carStatusClass carStatus; 
 
  for each car in carClass { 
    flagentry checkCarF(in carClass car): 
    // On receiving the flag “checkCarF”, the use case is executed from here. 
    if car.year>10 { 
      // Set the flag “removeCarF” to remove a car that is older than ten years. 
      // The flag will be received by the use case “removeACar”. 
      setflag removeCarF(car); 
    } 
    // If the use case is initiated by the flag “checkCarF”, the use case finishes here. 
    signalflag checkCarF(car.status); 
 
    // Add a status record for each car 
    retrieve rentalRecord from rentalRecordClass with carID = car.ID; 
    if (rentalRecord != -1) { // the car is rented 
      carStatus = new carStatusClass(car.ID, “rented”, rentalRecord.renterID, 
           rentalRecord.deadline); 
    } 
    else { // the car is not rented 
      carStatus = new carStatusClass(car.ID, “available”, NULL, NULL); 
    } 
  } // end of for each statement 
} // end of use case 
 

 20



2) The “retrieve” statement (Grammar 7) retrieves an instance of a class that matches 

a condition. The condition generally limits the values of one or more attributes 

of the class. For example, the following statement retrieves a renterClass 

instance whose ID value equals to “renterID”. The retrieved instance is set to the 

variable “renter”. If the retrieval fails, the value “-1” will be placed into 

“renter”. 

 
retrieve renter from renterClass with ID == renterID; 

 

3) Flag statements model use case communication. The “setflag” statement (Grammar 

11) sets flags. Setting a flag causes a use case or parts of a use case to execute. 

Parameters can be associated with the “setflag” statement. For example, the 

statement “setflag checkCarF(car);” in Example 1 sets the flag “checkCarF” and 

passes the parameter “car”. 

The “flagentry” statement (Grammar 12) receives flags. It actually is an 

entry of a use case. For example, the flag “checkCarF” set by the use case 

“rentACar” (see Example 1) will be received by the use case “checkCarStatus” 

(see Example 2) by the statement “flagentry checkCarF(in carClass car):”. When 

the use case “checkCarStatus” receives the flag “checkCarF”, the use case will 

be executed starting from the “flagentry” statement. Note that a use case has one 

and only one normal entry, which is for normally executing the use case. The 

use case, on the other hand, can have arbitrary number of flag entries for 

receiving flags, in which a flag entry is for a flag. In this regard, setting a flag 

corresponds to executing the statements starting from the corresponding flag 

entry. 

The “signalflag” statement (Grammar 13) signals a flag, which means that 

the activities required to execute by a flag is finished. For example, the 

statement “signalflag checkCarF(car.status);” in Example 2 depicts that if the 

use case “checkCarStatus” is executed by receiving the flag “checkCarF”, the 

 21



execution ends in this statement. That is, the flag “checkCarF” cause the 

following statements to execute (see Example 2). 

 
    flagentry checkCarF(in carClass car): 
    if car.year>10 { 
      // Set the flag “removeCarF” to remove a car that is older than ten years. 
      setflag removeCarF(car); 
    } 
    signalflag checkCarF(car.status); 

 

Note that the “flagentry” and “signalflag” statements will be executed only 

if the use case is executed by receiving flags. If multiple flag entries are defined 

in a use case, only the corresponding “flagentry” and “signalflag” statements 

will be executed when a flag is received. A “signalflag” statement can return 

values if necessary. For example, the statement “signalflag 

checkCarF(car.status);” returns the value “car.status”. 

The “waitflag” statement (Grammar 14) waits for flags. It is used when a 

use case can proceed only when a flag is signaled. For example, the statement 

“waitflag checkCarF(msg2);” in Example 1 depicts that after setting the flag 

“checkCarF”, the use case “rentACar” can proceed only when that flag is 

signaled. The “waitflag” statement can get return values. For example, the 

statement “waitflag checkCarF(msg2);” gets the return value “msg2”. 

4) The statement to invoke an object operation is used when an activity of a use case 

should invoke that operation. This statement has the syntax 

“object_name.operation_name(parameters);”. 

5) The statement to invoke a use case is used when the use case should be invoked to 

accomplish another use case. This statement is generally used when the “use” or 

“extend” relationships exist among use cases. The statement has the syntax 

“use_case_name(parameters);”. 

6) The statement to instantiate an instance from a class is used when the instance is 

needed. For example, the following statement (see Example 1) instantiates an 

instance from the class “mortgageRecordClass”. 

 22



 
mortgageRecord = new mortgageRecordClass(renterID, mortgageItem); 

 

7) The “concurrency” statement (Grammar 8) is use to specify concurrent execution 

of statements. For example, the following statements (see Example 1 and Figure 

11) depict that the flags “checkMemF” and “checkCarF” are set and waited in 

parallel. 

 
    concurrency { 
    { 
      { 
        setflag checkMemF(renter); 
        waitflag checkMemF(msg1); 
      } 
      { 
        setflag checkCarF(car); 
        waitflag checkCarF(msg2); 
      } 
    } // end of concurrency 

 

8) The “selection” statement (Grammar 9) is used to specify selections. For example, 

the following statements (see Example 1) model two selections depicted in 

Figure 11. 

 
      selection { 
        { // selection 1 
          setflag addMemF(renter); 
          rentTheCar(renterID, carID); 
        } 
        { // selection 2 
          mortgageRecord = new mortgageRecordClass(renterID, mortgageItem); 
          rentTheCar(renterID, carID); 
        } 
      } 

 

As mentioned in section 2.2, exceptions may occur during the execution of a use 

case. The “exception” statement (Grammar 4) defines exceptions and their handlers. 

Example 1 shows the handler of the exception “unRent” defined in the use case 

“rentACar”. The handler is composed of a statement to invoke the use case 

“rentRecovery” as shown in Example 3. 

 23



 
 
Example 3. The use case “rentalRecovery” 
 
usecase rentalRecovery(in String rID, in cID){ 
  rentalRecordClass rentalRecord; 
  mortgageRecordClass mortgageRecord; 
 
  retrieve rentalRecord from rentalRecordClass with 
         renterID == rID and carID == cID; 
  retrieve mortgageRecord from mortgageRecordClass with 
         renterID == rID; 
  concurrency 
    if (rentalRecord != -1) rentalRecord.remove(); 
    if (mortgageRecord != -1) mortgageRecord.remove(); 
  } 
} 

 

3.2.2 Classes 

As shown in Grammar 15 of Figure 16, a class is composed of attributes, constructor, 

and operations. The constructor of a class, which has the same name as the class, is an 

operation to instantiate instances from the class. Note that each class has the implicit 

operation “remove” to remove an instance of the class. Example 4 models the class 

“renterClass”, which depicts that it has two attributes, namely “ID” and “member”. 

Moreover, the class has an operation “changeToMember” other than the constructor. 

 

Example 4. The class “renterClass” 
 
class renterClass { 
  String ID, member; 
 
  renterClass(in String renterID, in String memberOrNot){ 
    ID = renterID; 
    member = memberOrNot; 
  } 
 
  // operations 
  changeToMember(){ 
    member = “y”; 
  } 
} 

 

4. EXAMPLE 

 24



The use case diagram of the simplified car rental system is shown in Figure 4, in 

which twelve use cases, two actors, four flags, and one exception are depicted. The 

activity diagrams of some use cases are respectively shown in Figures 6 through 13. 

Moreover, the class diagram is shown in Figure 15. See the previous two sections for 

the explanation of those diagrams. 

A prototype based on those diagrams is shown in Appendix 1. To prevent 

wasting space, the appendix shows only partial use cases and classes. The use case 

“rentACar” is traced below to facilitate understanding the prototype. Please take 

Figure 11 as a reference in the following tracing. 

In the beginning of the use case, the information of the renter and the car is 

retrieved from the corresponding classes. The use case then checks whether the renter 

is a member. If he/she is a member, the use case concurrently sets and waits for the 

flags “checkMemF” and “checkCarF” (see the concurrency block). The former flag 

causes the use case “checkRentalRecord” to check whether a bad record is associated 

with the member. The latter flag causes the use case “checkCarStatus” to check 

whether the car is available. After the flags are signaled (i.e., after the “waitflag” 

statements are finished), the use case “rentACar” inspects the checking result, if no 

bad record is associated with the renter and the car is available, the renter rents the car. 

The renting is accomplished by invoking the non-primitive activity “rentTheCar”. 

If the renter is not a member, the use case “checkACar” first checks whether the 

car is available by setting and waiting for the flag “checkCarF”. If the car is available, 

a selection block is used for the renter to decide whether he/she wants to become a 

member. If he/she want to become a member, the use case sets the flag “addMemF” to 

inform the use case “ addAMember” to register the renter as a member. The renter 

then rents the car. If the renter does not want to be a member, he/she should mortgage 

something valuable before he/she rents the car. 

In addition to the above normal activity, the use case “rentACar” reacts to the 

exception “unRent”. When the exception occurs, the use case “rentalRecovery” will 

be executed to handle the exception. 

 25



Figure 17. The main window to execute a prototype
 

Figure 18. Execution results of the use case “rentACar”

 

Figure 17 shows the window for executing a prototype, the left side lists the use 

cases to execute, and the right side lists the exceptions that may occur during 

prototype execution. Figure 18 shows the window after the execution of a use case. 

The left side displays output data, while the right side depicts object state transitions. 

In displaying an object state transition, variables used in the transition are first 

 26



displayed. The variables are generally the attributes of the object. The state transition 

is then displayed, in which the state before the symbol “-->” is the initial state 

whereas that after the symbol is the state after the use case has been executed. Note 

that the special state “NULL” denotes an un-existing object. With this, the state 

transition of the object “rentalRecord_1” in Figure 18 means that the object is created 

after the use case is executed. 

 

5. COLCLUSIONS 

This article proposes a technique to verify requirements before they are modeled into 

a specification. With this technique, requirement workers, including the customers, 

analysts, end users, domain experts, and so on, first identify requirements according to 

their perspectives. The captured requirements are then analyzed and integrated in a 

meeting. The meeting results (i.e., the requirements after integration) are then 

represented in our requirement model, which is composed of use case diagram, 

activity diagram, and class diagram. Requirements represented in the model can be 

transformed into a prototype using our prototyping language. The prototype can then 

be executed to verify the requirements. During the verification, use cases are selected 

to execute, When executing a use case, users (e.g., the analysts or customers) provide 

input data. They then inspect output data and object state transitions (which facilitate 

understanding use case behavior) to verify the use case. When all use cases are 

verified, the prototype is verified. 

Our technique offers the following features: 

1) Requirement errors can be identified before a specification is produced. Since 

requirement errors will propagate to the corresponding specification, correcting 

requirement errors reduces possible specification errors. 

2) The requirement model models necessary components of requirements, including 

use cases and their relationships, use case communication, exceptions, and 

domain objects and their relationships. 

3) The mapping between the requirement model and the prototyping language is clear. 

 27



Therefore, using the language to prototype requirements should be easy. 

 

 

ACKNOWLEDGMENT 

This research is sponsored by the National Science Council in Taiwan under grant 

number NSC89-2213-E-259-012 
 
 
 
REFERENCES 
1. Luqi and W. Royce, “Status Report: Computer-Aided Prototyping”, IEEE Software, 

pp. 77-81, November, 1991. 
2. S. -C. Chou and J. -Y. Chen, “An Object-Oriented Analysis method Based on 

parallel Decomposition of Function and Data”, Report on Object Analysis and 
Design, vol 2, No 6, pp22-35, 1996. 

3. S. -C. Chou and J.-Y. J. Chen, “An Object-oriented Analysis Technique Based on 
Unified Modeling Language”, to appear in the Journal of Object-Oriented 
Programming. 

4. P. G. Wijayarathna, Y. Kawata, A. Santosa, K. Isogai, M. Maekawa, “GSL: A 
Requirements Specification Language for End-user Intelligibility”, Software - 
Practice and Experience, vol. 28, no. 13, pp. 1387-1414, 1998. 

5. M. B. Ozcan, “Use of Executable Formal Specifications in User Validation”, 
Software - Practice and Experience, vol. 28, no. 13, pp. 1359-1385, 1998. 

6. S. -C. Chou, J. -Y. Chen, and C. -G. Chung, “An Executable Specification 
Language for Specification Understanding in Object-Oriented Specification 
Reuse”, Info. Software Technolo., Vol 38, No 6, pp419-434, June 1996. 

7. S. Tyszberowicz and A. Yehudai, “OBSERV - A Prototyping Language and 
Environment”, ACM Transactions on Software Engineering and Methodology, vol. 
1, no. 3, pp. 269-309, july 1992. 

8. M. Baldassari and G. Bruno, “PROTOB: An Object Oriented Methodology For 
Developing Discrete Event Dynamic Systems”, Computer Languages, vol. 16, no. 
1, pp. 39-63, 1991. 

9. R. -J. Lea and C. -G. Chung, “Rapid Prototyping from Structured Analysis: 
Executable Specification Approach”, Information and Software Technology, vol. 
32, no. 9, pp. 589-597, 1990. 

10. Luqi, V. Berzins, and R. Yeh, “A prototyping language for real-time software”, 

 28



IEEE Transactions on Software Engineering, vol. 14, no. 10 , pp. 1409-1423, 
October 1988. 

11. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development 
Process, Addison-Wesley, 1999. 

12. Martin Fowler and Kendall Scott, UML Distilled, Applying the Standard Object 
Modeling Language, Addison-Wesley, 1997. 

 29



APPENDIX 1. A prototype of the simplified car rental system. 
 
usecase checkCarStatus(){ // check the status of every car 
  // data declarations 
  carClass car; 
  rentalRecordClass rentalRecord; 
  carStatusClass carStatus; 
 
  for each car in carClass { 
    flagentry checkCarF(in carClass car): 
    // On receiving the flag “checkCarF”, the use case is executed from here. 
    if car.year>10 { 
      // Set the flag “removeCarF” to a car that is older than ten years. 
      // The flag will be received by the use case “Remove a car”. 
      setflag removeCarF(car); 
    } 
    // If the use case is initiated by the flag “checkCarF”, the use case finishes here. 
    signalflag checkCarF(car.status); 
 
    // Add a status record for each car 
    retrieve rentalRecord from rentalRecordClass with carID = car.ID; 
    if (rentalRecord != -1) { // the car is rented 
      carStatus = new carStatusClass(car.ID, “rented”, rentalRecord.renterID, 
           rentalRecord.deadline); 
    } 
    else { // the car is not rented 
      carStatus = new carStatusClass(car.ID, “available”, NULL, NULL); 
    } 
  } // end of for each statement 
} // end of use case 
 
usecase checkRentalRecord() { 
  renterClass renter; 
  rentalRecordClass rentalRecord; 
  badRecordClass badRecord; 
  for each renter in renterClass with renter.member == “y” { 
    flagentry checkMemF(in renterClass renter): 
    for each rentalRecord in rentalRecordClass with renterID = renter.ID { 
      if (rentalRecord.deadline < system.currentDate) { 
        signalflag checkMemF(“bad”); 
        badRecord = new badRecordClass(renter.ID, rentalRecord.carID, 
                 rentalRecord.deadline); 
      } 
    } 
    signalflag checkMemF(“ok”); 
  } 
} 
 
usecase rentACar(in String renterID, in String carID, in String mortgageItem) { 
  renterClass renter; 
  carClass car; 
  mortgageRecordClass mortgageRecord; 
  String msg1, msg2; 
 
  retrieve renter from renterClass with ID == renterID; 
  retrieve car from carClass with ID == carID; 
  if(renter.member == ”y”) { // the renter is a member 

 30



    concurrency { 
    { 
      { 
        setflag checkMemF(renter); 
        waitflag checkMemF(msg1); 
      } 
      { 
        setflag checkCarF(car); 
        waitflag checkCarF(msg2); 
      } 
    } // end of concurrency 
    if (msg1 == “ok”) and (msg2 == “available”) { 
      rentTheCar(renterID, carID); // invoke the non-primitive activity “rentTheCar” 
    } 
  } 
  else { // the renter is not a member 
    setflag checkCarF(car); 
    waitflag checkCarF(msg2); 
    if (msg2 == “available”) { 
      selection { 
        { // selection 1 
          setflag addMemF(renter); 
          rentTheCar(renterID, carID); 
        } 
        { // selection 2 
          mortgageRecord = new mortgageRecordClass(renterID, mortgageItem); 
          rentTheCar(renterID, carID); 
        } 
      } 
    } 
  } 
   
  exception unRent { 
    // If the exception “unRent” occurs, invoke the use case “rentalRecovery” to 
    // recover the rental. 
    rentalRecovery(renterID, carID); 
  } 
} 
 
usecase rentalRecovery(in String rID, in cID){ 
  rentalRecordClass rentalRecord; 
  mortgageRecordClass mortgageRecord; 
 
  retrieve rentalRecord from rentalRecordClass with 
         renterID == rID and carID == cID; 
  retrieve mortgageRecord from mortgageRecordClass with 
         renterID == rID; 
  concurrency 
    if (rentalRecord != -1) rentalRecord.remove(); 
    if (mortgageRecord != -1) mortgageRecord.remove(); 
  } 
} 
 
activity rentTheCar(in String renterID, in String carID) { 
  rentalRecordClass rentalRecord; 
  renterClass renter; 
  carClass car; 
 

 31



  rentalRecord = new rentalRecordClass(renterID, carID); 
  retrieve renter from renterClass with ID == renterID; 
  retrieve car from carClass with ID == carID; 
  // establish relationships 
  renter associateWith rentalRecord; 
  car associateWith rentalRecord; 
} 
 
usecase addAMember(renterID) { 
  String msg; 
  renterClass renter; 
 
  // invoke the use case “checkExiatenceOfAMember” 
  checkExiatenceOfAMember(renterID, renter, msg); 
  if (msg == “existing but not member”) { 
    falgentry addMemF(renter); 
    renter.changeToMember(); 
    signalflag addMemF(); 
  } 
  else if (msg == “not existing”) { 
    renter = new renterClass(ID, ”y”); // create a renter and set it to be a member 
  } 
} 
 
usecase checkExistenceOfAMember(in String renterID, out renterClass renter, out 

String msg) { 
  retrieve renter from renterClass with ID == ID; 
  if (renter == -1) { 
    msg = “not existing”; 
  } 
  else if (renter.member == “y”) { 
    msg = “existing”; 
  } 
  else { 
    msg = “existing but not member”; 
  } 
  return; 
} 
 
// other use cases are omitted 
 
class carClass { 
  // define attributes below 
  String ID, status; 
  int year; 
 
  // constructor 
  carClass(in String carID, in String carStatus, in int carYear) { 
    ID = carID; 
    status = carStatus; 
    year = carYear; 
  } 
 
class renterClass { 
  String ID, member; 
 
  renterClass(in String renterID, in String memberOrNot){ 
    ID = renterID; 

 32



 33

    member = memberOrNot; 
  } 
 
  // operations 
  changeToMember(){ 
    member = “y”; 
  } 
} 
 
// other classes are omitted 

 


	Shih-Chien Chou

