
 1

Two-Phase Quality Measurement Model for Reusable Class Component

Sen-Tarng Lai

Department of Information Technology, National PingTung Institute of Commerce
51 Min Sheng E. Road, PingTung, 900 Taiwan

E-mail: stlai@npic.edu.tw

ABSTRACT

Software reuse is an important approach to increase software quality and productivity.

In object-oriented software system, class component is a primitive element and a critical

product. A class component with high reuse potential and high quality can to be a reusable

class component. Domain experts and senior software engineers can identify the class

component with high reuse potential. However, how to assure a class component with high

quality becomes an important issue in software reuse. In this paper, static and dynamic

metric data will be collected to measure the quality characteristics of class component.

Modularity, complexity and document attributes are three major characteristics to affect the

static quality of class component. Test completeness and performance evaluation are two

major characteristics for the dynamic quality of class component. Individual software metric

cannot measure the overall quality of the class component. Therefore, the software metrics

must be combined, and conflicts among the software metrics must be reduced. For this, a

Two-Phase Quality Measurement (TPQM) model that covers static view and dynamic view

will be proposed in this paper. Applying this model, a highly flexible and practical metric

combination approach can be created, the conflicts among individual primitive metrics can

be reduced.

Keywords: reusable class component, software metrics, rule-based system, TPQM.

1. Introduction

There are many approaches to improve the software quality and productivity [3].

However, software reuse is one of most directly and efficiency approach. In [16], McClure

 2

suggests several possibilities to be a software component such as program code, design

specifications, plans, documentation, expertise and experience, and any information used to

create software and software documentation. In [13], Langergan and Grasso discussed the

design reuse and code reuse in software development. A code component in a reuse library

is likely to be of little value; however, the detailed design documents should be very

valuable for the adaptation to new applications. Thus, to be a suitable software component,

Tracz [20] recommended that the detailed design documents should be associated with code

modules. Class component is a primitive element of object-oriented software system that is

produced by detailed design phase and accomplished by implementation phase. In this paper,

the class component is regarded as the reusable component that includes class design

specification, source code, and related documents.

Reuse potential and quality are two necessary conditions that make a class to be a

Reusable Class Component (RCC). Domain expert and senior software engineer can

identify the class component with high reuse potential. However, how to assure a class

component with high quality becomes an important issue in class component reuse. Quality

of class component not only has high relation to the class design, but also concerns the class

implementation. There are several papers that discuss the hierarchical model of software

quality [1, 8]. However, they put stress on the relationships between two quality

characteristic levels, but do not investigate the relationships between quality characteristics

and software metrics. Modularity, complexity and documents attributes are three major

characteristics of design quality that can be measured by static metric data. Test coverage

and performance evaluation are two major characteristics of implementation quality that can

be measured by dynamic metric data. However, individual software metric cannot measure

the overall quality characteristics of the class component. Therefore, the primitive metrics

must be combined, and conflicts among the primitive metrics must be reduced. In this paper,

static metric data will be collected and combined for measuring the design quality of class

component and dynamic metric data will be collected and combined for measuring the

implementation quality of class component. Based on the static and dynamic quality

 3

measurement, a two-phase quality measurement model will be proposed.

In object-oriented design, there are many CASE (Computer Aided Software

Engineering) tools to support the design methodologies that are proposed by the scholars or

experts [4, 9]. The purpose of CASE tools is to improve design quality and productivity in

object-oriented design. However, major quality characteristics of class component, which

have high influence for the following phases, almost are neglected by the CASE tools. The

class component without high quality may cause more development effort and cost of

following phases and also cannot to be a potential RCC. In class design and implementation,

several important quality characteristics will be fused to the class component. The quality

characteristics of class component are depended on some primitive metrics. For measuring

and controlling the quality of class component, in this paper, the primitive metrics collection

will be surveyed and discussed then a quality measurement model will be proposed. In

section 2, the detailed tasks of class component design and implementation will be

identified and specified. Then, some criterions that determine the design and

implementation quality of class component will be described, and some primitive metrics to

measure the quality of class component will be discussed in section 3. The primitive metrics

for different characteristics have different scale measurement values. In section 4, the static

and dynamic primitive metric collection and normalization for metric combination will be

described. Two-Phase Quality Measurement (TPQM) model for the quality of RCC will be

proposed. In section 5, a rule-based system will be applied to the TPQM model for reducing

conflict situations of metrics combination. Finally, a summary and our future work are

given in the last section.

2. Class Design and Implementation

Life cycle of class component is class definition, class design, class implementation

and class application. Class design and class implementation are two important steps to

determine the usability and quality of class component.

 4

2.1 Major Tasks of Class Design

Class component is a primitive element and key product in object-oriented software

system. Class prototype is defined in class diagram of the object-oriented architecture

design and class specification is designed in the class detailed design. Based on the

principle of object-oriented design [4], five detailed design tasks for performing the class

design can be described as follows:

(1) Class inheritance design: Inheritance is major feature in the object-oriented

programming. For expressing the inheritance feature, in object-oriented design, the

diagram of class hierarchy defines the inheritance relationship among the class

components. Well-designed class inheritance can increase the productivity and

maintainability, however, the misused inheritance relationship may cause high

complexity and low flexibility.

(2) Class interface design: Like structured design [19], calling relation among the class

components has to be defined in class component design. Message passing and calling

hierarchy are two major tasks for performing the class interface design.

(3) Member functions and data members design: A class component is composed of

several member functions and data members. For producing the high quality

programming specification, it is a necessary task to clearly and correctly define and

specify the member functions and data members of class component.

(4) Detailed logic structure design: After member functions have been defined, the

detailed logic of member functions shall be designed. In this task, the detailed logic of

member functions in class components shall be specified by PDL (Program Design

Language) or pseudo code clearly.

(5) Detailed data structure design: After member data have been defined, the detailed

data structure of member functions shall be designed. In this task, the detailed data

structure of member functions in class components shall be specified by variable name,

data type and storage space clearly.

The results of five class design tasks may affect the quality and operations of following

 5

phases. The operations of implementation, testing and maintenance phases have tight

relation with the tasks of class design. The contrastive relation between class design tasks

and following phase operations is shown in Table 1. In class design, several quality

characteristics which include modality, complexity and document attributes are fused to the

class component.

2.2 Major Tasks of Class implementation

Pass through the class detailed design review, the development procedure will enter the

class implementation phase. Class design specification should be transferred into the

compactable source program, and the source program should be assured workable and

correct in the class implementation phase. Based on the steps of class implementation, two

implementation tasks for performing the class implementation can be described as follows:

(1) Source code implementation: According to class design specification and specific

target language, the source program will be written and run on the target machine.

(2) Class complement testing: According to design specification, all kinds of test data

should be generated and fed to the class component. Each test data has the specific

object to find the hiding bugs and avoid the failure occurrence.

In class implementation, two quality characteristics which include test completeness and

functional performance are fused to the class component.

3. Quality Characteristics of Class Component

In class design and implementation, several important quality characteristics, which

will affect quality of class component, are fused to the class component.

3.1 Quality Characteristics of Class Design

The detailed design results of class component have high influence with the operations

of following phases. Therefore, the quality of class component design becomes an important

issue for the quality and productivity of overall software system. Several quality

characteristics, which are modularity, complexity, document correctness, completeness, and

 6

consistency, can be applied to measure the design quality of class component. Misused

inheritance relation (for example multiple inheritance or more level inheritance), crude

calling hierarchy design, and uncertain scope definition of member functions and data

members may cause the class component with low modularity. The class component with

low modularity not only may reduce the capability of extension and modification, but also

may lose testability and productivity of following phases. In order to improve the

maintainability, testability and productivity of following phases, the modularity of class

component should be controlled effectively. Immature class logic structure and data

structure design may cause the class component with high complexity. The class component

with high complexity may always produce high error rates in the implementation phase and

make low productivity in testing phase. For reducing the development cost and time in

implementation and testing phases, complexity of class component should be reduced.

Documents of class component have the objective to propagate the results of class design to

the following phases. For continuing the results and design quality of class component,

several quality characteristics of class component documents, which are correctness,

completeness, and consistency, should be enhanced and controlled concretely.

3.2. Quality Characteristics of Class Implementation

Class implementation is a key step to transfer the class design specification into the

source code. In order to verify the step of class implementation can satisfy the specification

of class design, class testing becomes a necessary step to assure the result of class

implementation. Function correctness and execution efficiency are two critical factors that

affect the implementation quality of class component. Test completeness and performance

evaluation are two major indications for measuring the implementation quality of class

component. Hiding errors and implicit faults always make class component loss function

correctness. Class component with incorrect function may cause the software system can

not work normally. Class component with low performance may cause the software system

can not meet requirement specification. Inefficiency instruction and not optimization source

 7

code always make class component loss performance.

4. Two-Phase Quality Measurement Model

In this Section, static metric data will be combined for measuring the class design

quality, dynamic metric data will be combined for measuring the class implementation

quality and quality measurement model for RCC will be purposed.

4.1 Relationship between primitive metric and quality characteristic

Primitive software metrics for different quality characteristics has different

measurement styles. For measuring the class design quality, the primitive metric data is

called static metric that should be collected in class component no executing status.

Modularity measurement can be combined with coupling metric and cohesion metric [7, 18,

19]. Class component with more level of inheritance or more source number of inheritance

shall cause the class component with high coupling [7, 14, 18]. Class component with more

level of calling relation or more source number of calling relation also shall cause the class

component with high coupling. Inheritance and calling relation analysis tool for class

component can help collect the coupling metric of class component. Analyzing the relative

degree of all member functions in a specific class component can help collect the cohesion

metric of class component. Complexity of a class component is depended on the logic

structure, data structure and nesting depth level of program construct of member functions.

For measuring the complexity of class component, McCable’s Cyclomatic complexity

metrics [15], Halstead's Software Science [10] and program nesting level metric can be

considered and collected. Documents attributes of class component has high influence with

the quality and operations of following phases [6, 17]. Correctness, completeness and

consistency are three major attributes to measure the documents quality of class component.

In order to collect the metrics of correctness, completeness and consistency of class

component documents, cautious document review and checklists of correctness,

completeness and consistency should be applied to each document audit. The contrastive

 8

relation among class design tasks, related quality metrics and affected operations is shown

in Table 2.

For measuring the class implementation quality, the primitive metric data is called

dynamic metric that should be collected in class component executing status. Test

completeness is a major indicator for measuring the completeness of class testing. A class

complement with high test completeness can also deduct this component with high function

correctness. Statement coverage, branch coverage and member function coverage are three

dynamic metrics for measuring the characteristic of class test completeness. Function

performance is an important quality characteristic for the real-time or E-commerce software

system. Best case, worst case and average case response time are three dynamic metrics for

measuring the characteristic of class performance. In class component execution status, best

case, worst case and average case response time of specific member functions can be

collected. The contrastive relation among class implementation tasks, related quality metrics

and affected operations is shown in Table 3.

4.2 Primitive metrics normalization

In the general case, a potential software quality characteristic is combined with several

primitive metrics. Some primitive metrics, which are concerned with the quality

characteristics of class component, have different scale measurement values in their

representation. To combine these primitive metrics, which have different scale values in

their representation, we recommend that all measure scale values of each primitive metric

should be normalized to a value between 0 and 1. Close to 1 represents the most desirable

value, and close to 0 represents the least desirable value. After normalization, the properties

of correctness, objectivity, usability, and reliability for different primitive metrics should

still be kept.

4.3 Two-phase quality measurement model

 9

In the preceding section, static primitive metrics were identified to measure the design

quality of class component and dynamic primitive metrics were identified to measure the

implementation quality of class component. The primitive metrics play an individual role to

measure the individual quality characteristic of class component. The individual

measurements of quality characteristics cannot provide an overall picture of the quality

measurement of class component. Thus, it leads to the consideration of combining them.

Static primitive metrics must be combined for an overall static quality measurement of class

component. Dynamic primitive metrics also have to be combined for an overall dynamic

quality measurement of class component. For this, a metrics combination model that is

based on the dynamically weighted linear combination is proposed. For measuring the static

quality of class component, eight static primitive metrics are separated into three sets and

combined as follows:

Set 1: Combine the cohesion and coupling metric into Modularity Measurement (MM) as

Formula (1).

CPM: Metrics of Coupling Wp: Weight of CPM

CHM: Metrics of Cohesion Wh: Weight of CHM

MM = Wp * CPM + Wh *CHM (1)

Set 2: Combine logic structure metric, data structure metric and nesting level of program

construct into Complexity Measurement (CM) as Formula (2).

LSM: Metric of Logic Structure Wls: Weight of LSM

DSM: Metric of Data Structure Wds: Weight of DSM

NDM: Metric of Nesting Depth Wnd :Weight of NDM

CM = Wls * LSM + Wds * DSM + Wnd * NDM (2)

Set 3: Combine the correctness, completeness, and consistency metrics into Documents

Quality Measurement (DQM) as Formula (3).

C1M: Metrics of Correctness Wc1: Weight of C1M

C2M: Metrics of Completeness Wc2: Weight of C2M

C3M: Metrics of Consistency Wc3: Weight of C3M

 10

DQM = Wc1* C1M + Wc2* C2M + Wc3* C3M (3)

Then, three static high-level measurements (MM, CM, DQM) are combined into a static

quality measurement of class component (STQM) as Formula (4).

MM: Modularity Measurement Wmm: Weight of MM

CM: Complexity Measurement Wcm: Weight of CM

DQM: Documents Quality Measurement Wdqm: Weight of DQM

STQM = Wmm * MM + Wcm *CM + Wdqm * DQM (4)

For measuring the dynamic quality of class component, six dynamic primitive metrics are

separated into two sets, and combined as follows:

Set 1: Combine the statement coverage, branch coverage and member function coverage

into test completeness measurement as Formula (5).

STC: Statement Coverage Wstc: Weight of STC

BRC: Branch Coverage Wbrc: Weight of BRC

MFC: Member Function Coverage Wmfc: Weight of MFC

TCM = Wstc * STC + Wbrc *BRC + Wmfc * MFC (5)

Set 2: Combine the best case, worst case and average case of response time into

performance evaluation measurement of class component as Formula (6).

BTC: Best Case Response Time Wbtc: Weight of BTC

WTC: Worst Case Response Time Wwtc: Weight of WTC

AVC: Average Case Response Time Wavc: Weight of AVC

PEM = Wbtc * BTC + Wwtc *WTC + Wavc * AVC (6)

Then, two dynamic high-level measurements (CTM, PEM) are combined into a dynamic

quality measurement of class component (DYQM) as Formula (7).

TCM: Test Completeness Measurement Wctm: Weight of CTM

PEM: Performance Evaluation Measurement Wpem: Weight of PEM

DYQM = Wctm * TCM + Wpem *PEM (7)

Finally, static quality measurement and dynamic quality measurement are combined into a

quality measurement for RCC (QMRCC) as Formula (8).

 11

STQM: Static Quality Measurement Wstqm: Weight of STQM

DYQM: Dynamic Quality Measurement Wdyqm: Weight of DYQM

QMRCC = Wctm * CTM + Wpem *PEM (8)

We call this measurement scheme a Two-Phase Quality Measurement (TPQM) Model (see

Figure 1).

5. Rule-based metrics combination to reduce the conflicts

In TPQM Model, some conflict situations may occur in metrics or high level

measurements combination, expertise and experience of object-oriented software

engineering domain can help reduce the conflicts.

5.1 Conflict situations in metrics combination

According to the TPQM model, the conflict situations may occur in three formulas of

primitive metrics combination as follows:

(1) There are two conflict situations between coupling and cohesion metrics of class

component as follows:

• High coupling: If a class component has high coupling, then the influence of cohesion

may be reduced. It is because high cohesion cannot increase the modularity of

a class component that has high coupling.

• Low cohesion: If a class component has low cohesion, then the influence of coupling

may be reduced. It is because low coupling cannot increase the modularity of

a class component that has low cohesion.

 (2) There are three conflict situations among complexity metrics as follows:

• High data structure complexity: If a class component has high data structure complexity,

then the influence of depth of nesting and logic complexity may be reduced. It

is because the depth of nesting and logic complexity can not reduce the high

data structure complexity.

• High logic structure complexity: If a class component has high logic structure

 12

complexity, then the influence of depth of nesting and data structure

complexity may be reduced. It is because depth of nesting and data structure

complexity can not reduce the high logic structure complexity.

• High logic and data structure complexity: If a class component has high logic and data

structure complexity, then the influence of depth of nesting may be reduced. It

is because the depth of nesting can not reduce the high logic and high data

structure complexity.

(3) There are three conflict situations among test completeness measurement as follows:

• Low statement coverage: If a class component has low statement coverage in class test,

then the influence of branch coverage and member function coverage may be

reduced. It is because branch coverage and member function coverage can not

increase the completeness of class test that has low statement coverage.

• Low branch coverage: If a class component has low branch coverage in class test, then

the influence of statement coverage and member function coverage may be

reduced. It is because statement coverage and member function coverage can

not increase the completeness of class test that has low branch coverage.

• Low member function coverage: If a class component has low member function

coverage in class test, then the influence of statement coverage and branch

coverage may be reduced. It is because statement coverage and branch

coverage can not increase the completeness of class test that has low member

function coverage.

According to the TPQM model, the conflict situations may occur in a formula of high

level measurements combination. In static quality measurement, there are three conflict

situations among modularity measurement, complexity measurement and documents quality

measurement as follows:

• Very low modularity measurement: If a class component has very low modularity

measurement, then the influence of complexity measurement and documents

quality measurement may be reduced. It is because a class component with

 13

very low modularity measurement cannot become a high quality class

component.

• Very low complexity measurement: If a class component has very low complexity

measurement, then the influence of modularity measurement and documents

quality measurement may be reduced. It is because a class component with

very low complexity measurement cannot become a high quality class

component.

• Very low documents quality measurement: If a class component has very low

documents quality measurement, then the influence of modularity

measurement and complexity measurement may be reduced. It is because a

class component with very low documents quality measurement cannot

become a high quality class component.

5.2 Rule-based metrics combination

For adjusting weight values to reduce conflict situations, the experience and knowledge

of senior software engineers and domain experts should be acquired. Questionnaires,

description of the preceding section, and relative formulas are provided to the senior

software engineers and domain experts to collect the expertise. Based on the expertise and

relative formulas, the production rules can be applied to the TPQM model. First, the

production rules are applied to three formulas of primitive metrics combination for reducing

the conflicts. According to Formula (1) and weight values, two production rules can be

generated as follows:

Wp= 0.55, Wh = 0.45; (set initial weight values)

R11: IF CPM ≤ 0.3 (high coupling)THEN Wp = 0.95, Wh = 0.05;

R12: IF CHM ≤ 0.3 (low cohesion)THEN Wp = 0.08, Wh = 0.92;

According to Formula (2) and weight values, three production rules can be generated as

follows:

Wls = 0.39, Wds = 0.34, Wnd = 0.27; (set initial values)

 14

R21: IF LSM ≤ 0.3 (high logic structure complexity)

THEN Wls = 0.91, Wds = 0.06, Wnd = 0.03;

R22: IF DSM ≤ 0.3 (high data structure complexity)

THEN Wls = 0.07, Wds = 0.88, Wnd = 0.05;

R23: IF LSM ≤ 0.3 (high logic structure complexity) and

DSM ≤ 0.3 (high data structure complexity)

THEN Wls = 0.51, Wds = 0.44, Wnd = 0.05;

According to Formula (5) and weight values, three production rules can be generated as

follows:

Wstc = 0.3, Wbrc = 0.33, Wmfc = 0.37; (set initial values)

R31: IF STC ≤ 0.3 (low statement coverage)

THEN Wstc = 0.91, Wbrc = 0.03, Wmfc = 0.06;

R32: IF BRC ≤ 0.3 (low branch coverage)

THEN Wstc = 0.02, Wbrc = 0.94, Wmfc = 0.04;

R33: IF MFC ≤ 0.3 (low member function coverage)

THEN Wstc = 0.02, Wbrc = 0.03, Wmfc = 0.95;

Second, the production rules are applied to a formula of high level measurements

combination for reducing the conflicts. According to Formula (4) and weight values, three

production rules can be generated as follows:

Wmm = 0.33, Wcm = 0.32, Wdqm = 0.35; (set initial values)

R41: IF MM ≤ 0.3 (very low modularity measurement)

THEN Wmm = 0.94, Wcm = 0.02, Wdqm = 0.04;

R42: IF CM ≤ 0.3 (very low complexity measurement)

THEN Wmm = 0.04, Wcm = 0.90, Wdqm = 0.06;

R43: IF DQM ≤ 0.3 (very low documents quality measurement)

THEN Wmm = 0.03, Wcm = 0.02, Wdqm = 0.95;

High flexibility is a major feature of the production rules. Applying rule-based system to

TPQM model can reduce conflict situations in metrics and measurements combination. In

 15

addition, the rule-based system can isolate and identify the unqualified primitive metrics or

unqualified quality characteristics that cause the low quality class component. Based on the

clear evidences, the detailed defects should be found and the modification and adjustment

plan should be proposed for improving the quality of class component.

6. Conclusions

Software reuse is an important approach to increase software quality and productivity.

In object-oriented software system, class component is a primitive element and an important

product. A class component with high reuse potential and high quality can be a RCC. For

assuring class component quality, major tasks of class design and implementation are

described in this paper. Based on the class design tasks, static metrics can be collected and

quality characteristics can be measured for the design quality of class component. In this

paper, the static quality characteristics of class component are separated into three sets as

follows:

(1) Coupling and cohesion metrics for modularity measurement.

(2) Logic structure, data structure and nesting depth for complexity measurement.

(3) Correctness, completeness and consistency metrics for documents quality

measurement.

Based on the class implementation tasks, dynamic metrics can be collected and quality

characteristics can be measured for the implementation quality of class component. The

dynamic quality characteristics of class component are separated into two sets as follows:

(1) Statement coverage, branch coverage and member functions coverage for test

completeness measurement.

(2) Best cast, worst case and average case response time for performance measurement.

In addition, several primitive metrics for measuring the quality characteristics of class

component are surveyed and discussed. The individual metric cannot measure the overall

quality characteristic of class component. Therefore, the primitive metrics must be

combined and conflict situations in metric combination should be reduced. In this paper, a

 16

TPQM model was proposed. The model is based on the dynamically weight linear

combination for primitive metrics, and applies the rule-based system to reduce the conflict

situations in metrics combination. The advantage of TPQM model is to collect static and

dynamic metric data for measuring the quality of RCC. High flexibility, high practicality,

high adaptability and easy formulation are major features of TPQM model, and these

features seem to be better than the other metric combination models [2, 5, 11, 12]. Several

idea of TPQM model has been applied to software projects such as reusable component

extraction and maintenance of service order processing system [11, 12]. Our feature work is

to collect and analyze the feedback data to improve the TPQM model.

References

[1] Boehm, B. W., J. R. Brown, and M. Lipow, “Quantitative Evaluation of Software

Quality”, in Proceedings of the Secondary ICSE, pp. 592-605. (1976)

[2] Boehm, B. W., Software Engineering Economics, New Jersey: Prentice-Hall Inc. Pub.

(1981)

[3] Boehm, B. W., M. H. Penedo, “A Software Development Environment for Improving

Productivity,” IEEE Computer, Vol. 17, No. 6, pp. 30-44 (1984)

[4] Booch, G., Object-Oriented Analysis and Design with Application, Menlo Park:

Benjamin/ Cummings Inc. Pub. (1994).

[5] Conte, S.D., H.E. Dunsmore, and V.Y. Shen, Software Engineering Metrics and Models,

Menlo Park: Benjamin/Cummings Inc. Pub. (1986)

[6] Deutsch, M. S. and R. R. Willis, Software Quality Engineering: A Total Technical and

Management Approach, New Jersey: Prentice-Hall Inc. Pub. (1988)

[7] Fenton, N.E., Software Metrics - A Rigorous Approach, Chapman & Hall. (1991)

[8] Gillies, A.C.,Software Quality - Theory and Management, Chapman & Hall Inc. Pub.

(1992)

[9] Graham, I., Object-Oriented Methods, Workingham, England: Addison-Wesley, Pub.

(1991)

 17

[10] Halstead, M.H., Elements of Software Science, New York: North-Holland Inc. Pub.

(1977).

[11] Lai, S.T. and C.C. Yang, “A Software Metric Combination Model for Software Reuse,”

Proceedings of 1998 Asia-Pacific Software Engineering Conference (APSEC’98), pp.

70-77. (1998)

[12] Lai, S.T., “A Quality Measurement Model for Software Maintenance,” Proceeding of

the Second World Congress on Software Quality (2WCSQ), Sept.2000, Japan. (2000)

[13] Lanergan, R.G., and C.A. Grasso, “Software Engineering with Reusable Designs and

Code,” IEEE Trans. Software Eng., Vol 10 No 5, pp.498-501. (1984)

[14] Lorenz, M. and J. Kidd, Object-Oriented Software Metrics: A practical Guide, New

Jersey: Prentice-Hall Inc. Pub. (1994)

[15] McCabe, T.J., “A Complexity Measure,” IEEE Trans. Software Eng., Vol 2, No 4

pp.308-320. (1976)

[16] McClure, C.L., The Three Rs of Software Automation: Re-engineering, Repository,

Reusability, Prentice Hall. (1992)

[17] Pressman, R.S., Software Engineering: A Practitioner’s Approach, New York:

McGraw-Hill Inc. Pub. (1993)

[18] Schach, S. R., Classical and Objec-Oriented Software Engineering With UML and Java,

McGraw-Hill Companies (1999).

[19] Stevens, W., G. Myers, and L. Constantine, ”Structured Design,” IBM Systems Journal,

vol. 13, no. 2, pp.115-139. (1974)

[20] Tracz, W., “Software Reuse Myths,” ACM SIGSOFT Software Emgineering Notes

Vol.3, (1), pp.17-21. (1988)

 18

Table 1. A contrastive relation table for class design tasks and following phase operations

Testing Phase

Maintenance Phase Related operations

Class design tasks

Implementation
Phase

Class test Integration
(System) test

Extension Modification

Inheritance design

Calling relation design

Member functions and
data members design

Logic design

Data structure design

 19

Table 2. A contrastive relation table for class design tasks, quality metrics and affected
operations

Related Metrics &

Operations

Five Class Design Tasks

Related Quality Metrics

Affected Operations

Inheritance design

• Coupling Metric
• Document Correctness
• Document Completeness
• Document Consistency

• Modification
• Extension
• Integration test

Calling relation design

• Coupling Metric
• Document Correctness
• Document Completeness
• Document Consistency

• Modification
• Extension
• Integration test

Member functions and
data members design

• Cohesion Metric
• Document Correctness
• Document Completeness
• Document Consistency

• Modification
• Implementation
• Class testing

Detailed logic design

• Logic Structure Metric
• Nesting Depth Metric
• Document Correctness
• Document Completeness
• Document Consistency

• Implementation
• Class testing
• Revision

Detailed data structure design

• Data Structure Metric
• Document Correctness
• Document Completeness
• Document Consistency

• Implementation
• Class testing
• Revision

Table 3. A contrastive relation table for class implementation tasks, quality metrics and

affected operations

Related Metrics &
Operations

Class Implementation Tasks

Related Quality Metrics

Affected Operations

Source Code Implementation

• Data Structure Metric
• Best Case Response Time
• Worst Case Response Time
• Average Case Response Time

• Modification
• Extension
• Revision
• Integration test

Class Complement Testing

• Statement Coverage
• Branch Coverage
• Member Function Coverage
• Document Correctness
• Document Completeness
• Document Consistency

• Modification
• Extension
• Revision
• Integration test

 20

Figure 1. Two-Phase Quality Measurement Model for RCC

Quality Measurement for RCC

Modularity

Coupling Metrics

Cohesion Metrics

Complexity

Logic Complexity Metrics

Data Structure Complexity Metric

Nesting level of Program

Document attributes

Correctness

Completeness

Consistency

Class test Completeness

Statement Coverage Metric

Branch Coverage Metric

Member Function Coverage Metric

Performance Evaluation

Best Case Response Time

Worst Case Response Time

Average Case Response Time

Static Quality Measurement

Dynamic Quality Measurement

