
A Method for Systematically Building Object-Oriented Framework Based on
UML

Rong-Chin Lo1 , Chih-Chiang Wang2

1. Institute of Computer, Communication and Control,
National Taipei University of Technology, Taipei, Taiwan, R.O.C.
2. Institute of Computer Science and Information Engineering,

National Taipei University of Technology, Taipei, Taiwan, R.O.C.
Tel: (02) 2771-2171 ext. 4322, e-mail: u5506206@ms29.hinet.net

ABSTRACT

Recently, object-oriented（OO）frameworks
have been known to be highly effective and
practical for software reuse. However, most of the
current software development methodologies do not
provide effective methods and instructions for
modeling OO frameworks. Therefore, effective OO
framework modeling techniques are needed.

In this paper, we use Unified Modeling
Language（UML）as representative object-oriented
methodology to provide the OO framework
development techniques. The proposed process
consists of three typical phases: analysis, design
and implementation, and each phase is defined as a
logical sequence of development tasks. Since the
proposed process is based on UML diagrams and
the basic Objectory perspectives, we believe that
OO frameworks can be more efficiently developed
by utilizing the proposed process, and higher
quality OO frameworks can be produced. In order
to show the applicability and effectiveness of the
process, we present a case study of
Business-to-Costumer Electronic Commerce
application.
Keywords: Framework, UML, hot spot

1. INTRODUCTION

There are various definitions of object-oriented
frameworks. Roberts and Johnson [1] define that a
framework is a reusable design of all or part of a
system that is represented by a set of abstract
classes and the way their instances interact. A
framework may be a reusable, “semi-complete”
application that can be specialized to produce
custom applications [2]. It is more powerful to
reuse the design and the code rather than only
code-level reuse.

However, it is not easy to develop frameworks

as reusable software architecture. Currently, there
are no methodologies that support OO framework
development effectively and systematically. The
guidelines for the framework development have
been presented by Nikas Landan [3], Mattson [4],
Johnson R. [2], Koskimies K. [5] et al.. However,
the definite processes for the framework
development is not yet defined.

Therefore, we focus on the systematic and
procedural techniques of the OO framework
development in this paper. Basically, we present
framework design techniques based on UML [6] as
the Object Management Group (OMG) standard for
modeling language. We use the use case diagram,
the class diagram and the sequence diagram
provided by the UML to make framework diagram.
Use case diagrams provide the functional analysis,
the sequence diagrams provide the dynamic
analysis, and the class diagrams provide the
structural analysis in given domains.

In section 2, we will give an overview of
object-oriented framework, the framework diagram
notation, and the related works of framework
development methods. Section 3 explains the OO
framework development process, which is the
analysis / design / implementation method, and the
steps for building OO framework. Section 4
presents a case study of applying the method to
Business-to-Customer Electronic Commerce
domain. In section 5, we will make conclusions
about this paper and discusses the future works.

2. RELATED WORK

2.1 Overview of Object-Oriented Framework

Object-Oriented framework is often
characterized as a set of abstract and concrete
classes that collaborates, and it provides the

mailto:u5506206@ms29.hinet.net

skeleton of an implementation for an application. It
is typically implemented as a set of abstract classes
that define the core functionality of the framework
along with concrete classes for specific
applications included for completeness.

Several different means of classifying
frameworks have been proposed. Adair [7] defines
three frameworks by scope, namely application,
domain, and support frameworks. Johnson and
Foote [2] define two types of frameworks, white
box and black box by customization. Anderson
Consulting [8] defines called and calling
frameworks by how they interact with application
extensions.

2.2 Framework Diagram Notation

Frameworks consist of classes with a common
functionality and have control flows among classes
internally. Figure 1 shows a framework diagram
notation. It consists of classes, relationship among
classes, hot spots, control flows among classes and
interfaces. Interfaces play a role of a path to
communicate with other frameworks or classes.
There are six interfaces, f1(), f2(), f3(), f4(), f5(),
and f6() in Figure 2.5.

Control flows of frameworks are indicated by
forms of “interface name_control flow order”. By
this notation, we know the interfaces as starting
points of control flows and get flows of controls by
numbering.

Figure 1 shows two control flows. One is X.f1()
→ f1()_1 → f1()_2 → f1()_3. And the other is
X.f3() → f3()_1 → f3()_2. “X” represents a
framework. And, f1() and f3() represent the
interfaces of framework X to communicate with
external world.

2.3 Existing Framework Development Methods

2.3.1 Design a Framework by Stepwise Generation

When they design a framework, their main
concern is to recognize things that should be kept
flexible. These are called the hot spots [9] of the
framework, i.e., the spots where the framework can
be extended. In order to identify variant parts, some
of questions are proposed as follows [5]:

(1) Which concepts of the problem domain

exist in variants and should be treat uniformly?
(2) Is it possible to find a concrete concept that

can be generalized?
(3) Which parts of the system might change?
(4) Where might a user want to hook custom

code into the framework?
The author suggests a two-phase framework

design method to build an initial version of a
framework; the first phase is called problem
generalization and the second phase is called
framework design [5].

Problem generalization starts from the
specification of a representative application of the
intended framework, and generalizes it in a
sequence of steps into the most general (sensible)
form. This phase typically makes use of the
questions (1) and (2) to find the next generalization.
During the second phase the generalization levels
of the previous phase are considered in reverse
order leading to an implementation for each level.
The second phase make use of the questions (3)
and (4) and of general design experience and
domain knowledge to find the hot spots in the
framework.

The one of limitations of this method is that
essential tasks to problem generalization or
framework design are not defined concretely. Also,
concrete guidelines to identify hot spot are not
described in this method.

Figure 1. Framework Diagram Notation

2.3.2 Developing Object-Oriented Frameworks
Using Domain Models

In this paper, they present an integrated

approach to model the domain knowledge related
to a framework and to map the identified domain
models into object-oriented concepts [10]. The
approach is described as follows:

(1) They first model the top-level structure of
frameworks using the so-called knowledge graphs.

(2) Refining each node within a top-level
knowledge graph into an acyclic sub-knowledge
graph called knowledge domain.

(3) They identify which nodes in a knowledge
domain can be included together in the top-level
knowledge graph.

(4) Verifying whether the knowledge domains
model the relevant knowledge, we match them
against the use cases identified from the user
requirements.

(5) Finally, they map knowledge domains into
object-oriented concepts.

The main claim of this paper is that the
framework refinement time may be reduced
considerably by modeling the related domain
knowledge explicitly. But, this paper just present
five phase to developing framework, and within
each phase they don’t define concrete methods or
guidelines to develop framework.

2.3.3 Framework Development with Domain
Analysis

In this paper [11], they outline how they use a
domain analysis technique – Sherlock – to extract
reusable frameworks and present a case study
regarding the development of a graphic user
interface framework for business and management
information system.

Sherlock activities are definition of the context,
domain characterization, and framework
development.

This paper present a domain analysis
methodology targeted to frameworks such as
Sherlock, which is the enabler to framework reuse.
But, this methodology is not stabilized and no clear
definition of all procedures.

3. UML-BASED OBJECT-ORIENTED
FRAMEWORK DEVELOPMENT PROCESS

3.1 Overview of Process

As given in Figure 2, the object-oriented
framework development process consists of three
phases (e.g. analysis, design, implementation), and
tasks for each phase are defined.

Analysis phase consists of making use case
models through extracting common functionality
from a set of similar applications, making activity
diagram based on use case models, and partitioning
use cases into four-module framework architecture.

Design phase consists of structural and
dynamic modeling processes. The structural
modeling consists of making class diagram based
on use case models, making sequence diagram
based on use case models, and identifying hot spots
for the framework. The dynamic modeling consists
of determining the internal control flows within
frameworks and identifying interfaces within
frameworks.

Implementation phase consists of
implementing classes and interfaces of framework
and building specific application by using
implemented framework.

Figure 2. Framework Development Process

3.2 Analysis Phase

3.2.1 Making Use Case Models

Use case models are means to communicate
requirements between customers and developers
and to structure object models into manageable
views. They offer a systematic and intuitive means
of capturing functional requirements with a focus
on value added to the user.

Use case models consist of use case diagrams
and use case descriptions. A use case diagram
shows the relationship between actors and uses
cases. A use case description is structured as Figure

3., where each use case has a unique name. Use
cases may additionally be numbered for quick
identification in diagrams and in their textural
form.

Steps:
(1) Initially, identifying actors.
(2) Identifying use cases by listing all events

from the outside environment to which we
want to react.

(3) Identifying communicates relationships
between actors and use cases.

(4) Identifying shared descriptions of
functionality: In order to reduce
redundancy, this sharing can be extracted
and described in a separate use case that
can then be reused by the original use cases.
We show this reuse relation with a use
relationship.

(5) Identifying additional and optional
descriptions of functionality.

(6) Making use case descriptions for some use
cases based on the notation in Figure 3.

(7) Refining and elaborating as required.

Figure 3. UML Notation for Use Case Description

3.2.2 Making Activity Diagram based on Use Case
Models

The way the individual use cases interrelate
could be noted textually within the use case
descriptions, but would not be very clear. Activity
diagrams convey such relationships visually and
therefore in a way that is easier to see.

Activity diagrams can be subdivided into
responsibility domains, the so-called swim lanes,
which are graphically constructs that represent a

partitioned set of actions. They are used to model
the responsibilities of one or more objects for
actions within an overall activity; that is, they
divide the activity states into groups and assign
these groups to objects that must perform the
activities.

Steps:
(1) Structuring swim lanes.
(2) Corresponding each use case in use case

diagram to each activity.
(3) Identifying event flow in use case

description, we can define sequence
between activities and conditions for
outgoing transitions.

(4) If use cases are very abstract, we
decompose them into more concrete use
cases.

(5) Refining and elaborating as required.

3.2.3 Partitioning Use Cases into Four-Module
Framework Architecture

By definition, the layered approach only
allows a layer to communicate with the layers
directly above and below it. Thus, in this task, we
determine the modules of use cases on the degree
of generality and specialty for each use case. The
Framework is partitioned into four modules, which
are UI Component Module, Business Logics
Module, Data Management Module, and Common
Data Module. The four-module framework
architecture is depicted in Figure 4.

Figure 4. Four-Module Framework Architecture

3.3 Design Phase – Structural Modeling

3.3.1 Making Class Diagram based on Use Case
Models

Class diagrams are realizations of use cases. A
class is the definition of the attributes, the
operations, and the semantics of a set of objects. A
class diagram describes the types of objects in the
system and the various kinds of static relationships
that exist among them. There are two principal
kinds of static relationships:
z Associations (for example, a customer

may render a number of videos)
z Subtypes (a nurse is a kind of person)
Steps:
(1) Making individual classes according to use

cases of the four-module framework
architecture in the analysis phase.

(2) Tasks in use case descriptions are mapped
to member functions of the specific classes
in the class diagram.

(3) Regard classes found in step2 as classes of
the intended framework.

(4) Making associations between classes and
apply them to the intended framework.

(5) Refining and elaborating as required.

3.3.2 Making Sequence Diagram based on Use
Case Models

A sequence diagram shows a series of
messages exchanged by a selected set of objects in
a temporally limited situation, with an emphasis on
the chronological course of events.

Steps:
(1) Regard classes of the class diagram as

objects of the sequence diagram.
(2) Tasks in use case descriptions are

described as the messages in sequence
diagrams.

(3) Refining and elaborating as required.

3.3.3 Identifying Hot Spots for the Framework

Guideline: In order to get the hot spots, we
should extract common attributes and operations
from classes in the class diagrams. And then we
make abstract classes including them. The abstract
classes are super classes and related concrete
classes are sub classes. The abstract classes define
function signatures without function bodies and
concrete classes have implemented parts of the

functions signatures defined in the abstract classes.
The function signatures of the abstract classes can
be implemented differently according to the
various applications.

3.3.4 Relationships among Diagrams for Structural
Modeling

In Figure 5, the use case description consists of
six tasks, from T1 to T6. All of the tasks in use case
description are mapped to the messages of the
sequence diagrams. For example, T3 is mapped to
F1 and T5 is mapped to F4. All of the messages in
the sequence diagrams are mapped to the member
functions of the classes. For example, F1 is mapped
to function f1() in Class C and F4 is mapped to f4()
in class A. Therefore, the tasks in use case
description are mapped to the member functions of
the classes in class diagrams. For example, T3 is
mapped to f1() of class C and task T5 is mapped to
f4() of class A. In the class diagram, an extracted
hot spot is presented.

Figure 5. Relationships among Diagrams for
Structural Modeling

3.4 Design Phase – Dynamic Modeling

3.4.1 Defining the Internal Control Flows within
Frameworks

Steps:
(1) Find the messages of the sequence

diagrams mapped to the tasks of the use
case description.

(2) Find the message flows of the sequence

diagrams mapped to the control flows of
the frameworks.

3.4.2 Identifying Interfaces within Frameworks

Steps:
(1) Find the method that is the starting point of

the control flow.
(2) Regard the found method as the interface

of the framework.

3.4.3 Relationships among Diagrams for Dynamic
Modeling

Figure 6 shows the relationships between the
use case descriptions and the sequence diagrams.
Both the use case diagrams and the sequence
diagrams are used to extract the control flows of
the frameworks. In Figure 3.12., the flow of events
of the use case description is T1 → T2 → T4 →
T5 → T6. The flow of events is represented as the
message flows of the sequence diagram, F1 → F2
→ F3 → F4 → F5. The message flows in the
sequence diagrams are mapped to the control flows
among framework classes. In Figure 3.12., the flow
of events in the use case descriptions is mapped to
the control flow, f1()_1 → f1()_2 → f1()_3 →
f1()_4f → f1()_5. X.f1() represents the framework
interface.

Figure 6. Relationships among Diagrams for
Dynamic Modeling

3.5 Implementation Phase

Implementation phase consists of two tasks.
First task is to implement classes and interfaces of

framework. Implementing framework interface is
to implement control flows between classes
contained in a framework. Second task is to build
specific application by using implemented
framework. This task applies framework to specific
application and implements hook method through
sub-classing hot spot in the case of white box
approach and through composing object into
framework in the case of black box approach.

3.5.1 Implementing Classes and Interfaces of
Framework

Steps:
(1) First of all, choosing the appropriate

programming platform and language.
(2) Architectural implementation: we

implement the four-module framework
architecture.

(3) Outlining the file components: the source
code that implements a class resides in a
file component. Thus we must outline the
file component and consider its scope,
namely namespace.

(4) Generating code from the operations and
attributes that are defined in the class
diagram.

(5) Making the file component provide the
right interfaces.

3.5.2 Building Specific Application by Using
Implemented Framework

Steps:
(1) First, implementing Common Data Module

of implemented framework through
inheritance or composition and overriding
hook methods.

(2) Next, implementing Data Management
Module of implemented framework
through inheritance or composition and
overriding hook methods with suitable data
management algorithms.

(3) Next, implementing Business Logics
Module of implemented framework
through inheritance or composition and
overriding hook methods with algorithms
of business logics.

(4) Finally, implementing UI Component
Module of implemented framework and
reusing the UI components of implemented
framework or adding specific user
interfaces of your own application.

4. CASE STUDY

In this section, we apply the mapping
techniques between UML diagrams and framework
diagrams to the Business-to-Consumer Electronic
Commerce (EC) domain. Currently, EC is a
spotlighted field and it will be very useful for
development of applications if efficient EC
frameworks are developed.

Many of web applications for B2C EC domain
have been established. Therefore, we collected
similar application requirement specifications and
extracted common functions from them. The
common functions are ‘Searching For Products’,
‘Browsing Catalog’, ‘Account’, ‘Shopping Cart’,
and ‘Checkout’.

The use case diagram for these functions is
depicted in Figure 7. Figure 8 shows a use case
description for use case Search for Products.

Figure 7. Use Case Diagram for B2C EC Domain

Sequence and workflow of among use cases in
a framework are described through activity
diagram, which is depicted in Figure 9. We

structure the activity diagram into swim lanes that
are Main Process, Business Logics, and Data
Management. We also decompose the use cases of
the use case diagram in Figure 7 to more concrete
use cases to fulfill the purpose of swim lanes.

Figure 8. Use Case Description for Search for
Products

After determining activity diagram, we

partition the use cases into four-module framework
architecture, which is depicted in Figure 10.

In the structural modeling of design phase, we
should construct a class diagram (Figure 11) based
on four-module framework architecture that is
depicted in Figure 10. Then, we make sequence
diagrams (Figure 12) for different use cases. Next,
we identify the hot spots of the intended framework
(Figure 13).

Figure 9. Activity Diagram for B2C EC Domain

Figure 10. The Four-Module Framework
Architecture for B2C EC Domain

Figure 11. The Class Diagram for B2C EC Domain

Figure 14 shows the final framework diagram.
The start points of the internal control flows of the
framework are the interfaces of the framework.

In the implementation phase, we choose
Microsoft .NET Framework as the platform and
VB.NET as the programming language. Then we
implement all classes and interfaces of the Framework
B2C that are depicted in Figure 14. Next, we build the
specific application by using the implemented
Framework B2C. We inherit the abstract classes and
override the hook method from the Framework B2C.

Figure 12. Sequence Diagram for Use Case Search
for Products

Figure 13. Identifying Hot Spots for B2C EC
Domain

Figure 14. The Final Framework Diagram for B2C
EC Domain

5. CONCLUSIONS

In this paper, we proposed a practical

object-oriented framework development process
that is based on UML notations and semantics. We
defined development phases (analysis, design,
implementation) and tasks for each phases. We
defined essential tasks for framework development
and applied UML notations to each task. Each task
is given a set of steps on how to carry out the task.
Since the proposed process is based on UML
diagrams and the basic Objectory process, we
believe that object-oriented frameworks can be
more efficiently developed by utilizing the
proposed process, and higher quality
object-oriented frameworks can be produced.

6. REFERENCES

[1] Roberts D., Johnson R., Evolving Frameworks:
A Pattern Language for Developing
Object-Oriented Frameworks, Proc. of
PloP’96, Third Annual Conference on the
Pattern Languages of Programs, 1996.

[2] Johnson, R. and Foote, B., Designing reusable
classes, J. Object Oriented Program. 2(1),
22-35, 1988.

[3] Nikas Landan, Axel Nikasson, Development of
Object-Oriented Frameworks, Master Thesis,
Dept. of Communication Systems, Lund Univ.,
Sweden, 1995.

[4] Jan Bosch, Peter Molin, Michael Matsson,
PerOlof Bengtsson, Object-Oriented
Frameworks – Problem & Experiences, Dept.
of CS & BA, Univ. of Karlskrona, Sweden,
1999.

[5] K. Koskimies, H. Mossenbock, “Design a
Framework by Stepwise Generalization”,
1997.

[6] Martin Fowler, UML Distilled, 2nd Edition,
Addison-Wesley, 2000.

[7] Adair, D., Building object-oriented
frameworks, AIXpert, Feb. 1995.

[8] Sparks, S., Benner, K., and Faris, C.,
Managing object-oriented framework reuse,
IEEE Comp., 29(9), 52-62, 1996.

[9] W. Pree, “Meat Patterns – A means for
capturing the essential of reusable
object-oriented design,” Proceedings of the 8th
European Conference on Object-Oriented
Programming, Bologna, Italy, 1994.

[10] M. Aksit, F. Marcelloni, B. Tekinerdogan,

Developing Object-Oriented Frameworks
Using Domain Models, ACM Computer
Surveys (CSUR), March, 2000.

[11] G. Succi, A. Valerio, T. Vernazza, M. Fenaroli,
P. Predonzani, “Framework Extraction with
Domain Analysis”, ACM Computing Surveys,
Vol.32, No.1, March 2000.

	ABSTRACT
	INTRODUCTION
	2. RELATED WORK

