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abstract 

 

Channel-based message passing provides a simple and modular communication abstraction 

in parallel programs. Parallel programming language CCC provides four types of channels: 

pipes for one-to-one communication, spliters for one-to-many communication, mergers for 

many-to-one communication, and multiplexers for many-to-many communication. The 

abundance of channel types gives several merits. First, communication structures among 

parallel tasks are more comprehensive. Second, the specification of communication 

structures is easier. Third, the implementation of communication structures is more efficient. 

Fourth, the static analysis of communication structures is more effective. This paper 

describes a simple algorithm for static analysis of communication structures in CCC 

programs. This algorithm can be also applied to other parallel programming systems based 

on channel-based message passing. 

                                                 
∗ This work was supported in part by the National Science Council of R.O.C. under grant number 
NSC-89-2213-E-194-054. 



1. Introduction 

 

Message passing is one of the most commonly used communication mechanisms in parallel 

programs. Using message passing, programmers explicitly specify the transfer of messages 

among parallel tasks. There are two types of message passing schemes: task-based and 

channel-based. In task-based message passing, a task sends (or receives) messages to (or 

from) another task by directly specifying its task identification. For example, 

 

send(task-id, message); 
message = receive(task-id); 

 

Parallel programming systems that use task-based message passing are CSP [4], Occam [5], 

Ada [6] and MPI [3]. In channel-based message passing, parallel tasks transfer messages 

among them by sending (or receiving) messages to (or from) a channel or message queue. 

For example, 

 

send(channel-id, message); 
message = receive(channel-id); 

 

A parallel programming system that uses channel-based message passing is Fortran M [2]. 

 

Channel-based message passing provides a simple and modular communication 

abstraction for parallel programs. Channels can be viewed as communication links 

connecting parallel tasks. Each task can communicate with other tasks (or its environment) 

via channels. Each task only concerns with communication events rather than specific 

communication participants. This separation of communication events and communication 

participants can greatly enhance the modularity of parallel programs. 

 

Task-based message passing only allows one-to-one communication pattern. 

Many-to-one communication pattern can be achieved by using the statement-level construct: 

guarded commands. It is possible to support all of the four communication patterns: 

one-to-one, many-to-one, one-to-many, and many-to-many in channel-based message 

passing. However, current channel-based programming systems only support one-to-one 

and many-to-one communication patterns. 

 

Parallel programming language CCC provides four types of channels: pipes for 

one-to-one communication, spliters for one-to-many communication, mergers for 

many-to-one communication, and multiplexers for many-to-many communication. The 



abundance of channel types gives several merits. First, communication structures among 

parallel tasks are more comprehensive. Second, the specification of communication 

structures is easier. Third, the implementation of communication structures is more efficient. 

Fourth, the static analysis of communication structures is more effective. 

 

To allow dynamic communication structures, channels can be passed via other 

channels among parallel tasks in CCC programs. We will call a channel first-order if it is 

used to pass data. A channel is higher-order if it is used to pass channels. The inclusion of 

higher-order channels makes the static analysis of communication structures much more 

complicated. This paper will describe an algorithm for static analysis of communication 

structures in CCC programs. This algorithm can be also applied to other parallel 

programming systems using channel-based message passing. 

 

The remainder of this paper is organized as follows. Section 2 summarizes the 

terminologies used in this paper and defines the program representation used in our analysis. 

Section 3 describes the analysis for first-order channels. Section 4 describes the analysis for 

higher-order channels. Section 5 discusses the complexity of the analysis. Finally, 

conclusions are given in Section 6. 

 

2. Overview of the Analysis 

 

The communication structure of a parallel program presents the interaction relationships 

among parallel tasks in the program. The abundance of channel types in CCC provides a 

better abstraction to closely related interactions. In particular, each channel is used to 

abstract a collection of closely related interactions. CCC provides four types of channels: 

pipe for one-to-one communication, spliter for one-to-many communication, merger for 

many-to-one communication, and multiplexer for many-to-many communication. Each 

channel is used to transfer data of a specific type and is created using the function channel. 
A simple CCC program for a single-producer and multiple-consumer application is shown 

in Figure 1.  



/* A simple CCC program */ 
task::main() 
{ 
    spliter int ch; 
 
    ch = channel(); 
    par { 
        producer(ch); 
        consumer(ch); 
        consumer(ch); 
    } 
} 
 
task::producer(ch) 
spliter int ch; 
{ 
    int i; 
 
    for (i = 0; i < num_data; i++) 
        send(ch, i); 
    send(ch, end_data); 
    send(ch, end_data); 
} 
 
task::consumer(ch) 
spliter int ch; 
{ 
    int data; 
 
    while (1) { 
        data = receive(ch); 
        if (data == end_data) break; 
        process data; 
    } 
} 
 

Figure 1. This simple CCC program illustrates a single-producer and multiple-consumer 

application. 



A CCC program consists of a set of functions. A function in CCC can be either a 

sequential or a parallel function. Each sequential function is a traditional C function and 

each parallel function represents a task that can be created and executed in parallel. Each 

task in CCC is specified by a keyword task. This example program has three task 

definitions. The main task is the first task of the program and it creates a producer task 

and two consumer tasks. Tasks are created in the par construct via invocations of parallel 

functions. A channel of type spliter is used to transfer data of type int from the producer 

task to the two consumer tasks. Data are sent using the function send and received using 

the function receive. The producer task sends an end_data to consumer tasks to signal 

the termination of data transfer. In addition to the interactions via the parameter passing 

between the main task (the caller) and the other tasks (the callees), this program contains 

interactions between the producer task and the two consumer tasks via the channel ch of 

type spliter. These interactions among tasks consist of the communication structure of this 

program. 

 

Even with only first-order channels, the communication structure of parallel programs 

is a dynamic property of the programs. Different runs may result in different 

communication structures. This paper will present an algorithm for static analysis of 

communication structures for CCC programs. This algorithm will focus on inferring the 

number of senders and receivers for each channel. This information can then be used to 

check whether each channel is used as it is specified. Since each channel is typed according 

it has one or many participants, the number of participants we are interested in are { 0, 1, 2} , 

where 2 is used to represent many. 

 

The analysis for a function can be divided into two parts: intraprocedural analysis, the 

analysis for this function itself, and interprocedural analysis, the analysis for the functions 

called by this function. Since data transfers occurring within a function itself must appear in 

the same task, we only need to know whether a data transfer to (or from) each channel 

occurs. It is not necessary to know where or how many times data transfers to (or from) 

each channel occur. Hence, the information about whether a data transfer to (or from) each 

channel occurs within each function itself can be gathered by traversing the program 

structure once and for all. 

 

The interprocedural analysis is much more complicated than the intraprocedural 

analysis. A parallel function call can explicitly create a task. Although a sequential function 

call does not explicitly create a task, it may implicitly create tasks by indirectly calling 

other parallel functions. Hence, both sequential and parallel function calls may have deep 

effects, but they will be dealt with in different ways. Function calls occurring inside 



different control structures may result in different effects. For example, function calls 

occurring inside the alternative control structure can only be executed mutually exclusively, 

while function calls occurring inside the repetition control structure may be executed 

multiple times. Thus, function calls occurring inside different control structures also need to 

be handled in different ways. 

 

The interprocedural analysis is performed on two program structures: a compact 

control flow graph for each function and a call graph among functions. There are five kinds 

of nodes in the compact control flow graphs. A call node represents a call to a sequential 

function. A spawn node represents a call to a parallel function. A compound node represents 

a sequence of nodes. An alternative node represents a list of nodes that are mutually 

exclusive. A repetition node represents a node that may be executed multiple times. The 

three kinds of control nodes: compound, alternative, and repetition nodes are used to 

characterize the control structures of (sequential or parallel) function calls within a 

function. 

 

The call graph presents the caller-callee relationships among functions. Each node in 

the call graph represents a function (either a sequential or a parallel function). There is an 

edge from node n to node m if function n calls function m in the program. If there is no 

mutual recursion in the program, the call graph is a directed acyclic graph. In this case, the 

interprocedural analysis can be performed on each function using the topological order of 

the call graph. Otherwise, The strongly connected components of the call graph are found 

and a strongly connected component graph, which is a directed acyclic graph, is constructed. 

Each node of the strongly connected component graph represents a strongly connected 

component. There is an edge from node n to node m if there is a function in n calls a 

function in m. The nodes in a strongly connected component represent functions that are 

mutually recursive. These mutually recursive functions need to be analyzed at the same 

time. Strongly connected components are analyzed using the topological order of the 

strongly connected component graph. We will describe the analyses for the first-order 

channels and the higher-order channels in the next two sections, respectively. 

 

3. The analysis for first-order channels 

 

This section presents the analysis for programs that only use first-order channels. For each 

channel ch declared within a function, the analysis will infer the number of tasks that send 

data to ch, ch.senders, and the number of tasks that receive data from ch, ch.receivers. 

Since each function may create tasks by calling parallel functions, for each channel ch, we 

can divide ch.senders and ch.receivers as follows. 



 

ch.senders = ch.self.senders + ch.others.senders 
ch.receivers = ch.self.receivers + ch.others.receivers 

 

where, ch.self.senders and ch.self.receivers denote the task executing the function and 

can have values { 0, 1} , and ch.others.senders and ch.others.receivers denote the tasks 

created by the function and can have vales { 0, 1, 2} . We will call the four-tuple 

{ ch.self.senders, ch.self.receivers, ch.others.senders, ch.others.receivers}  the mode 

of ch. 

 

A channel variable can only be assigned a channel value by creating a channel using 

the function channel or by receiving a channel from a higher-order channel. Without 

higher-order channels, channels can be passed to other functions only via parameter passing. 

Hence, the aliasing of channels can only occur through parameter passing. The analysis will 

first perform a simple context-insensitive aliasing analysis to compute the channel aliases 

induced solely by parameter passing [1]. 

 

We consider each strongly connected component in order. For each channel ch, the 

dataflow equations for the mode of ch at each node of the compact control flow graph can 

be derived as follows. 

 

For each compound node n, let L be the sequence of nodes inside n. Initially, 

 

chn.self.senders = the values obtained from the intraprocedural analysis, 
chn.self.receivers = the values obtained from the intraprocedural analysis, 
chn.others.senders = 0, 
chn.others.receivers = 0, 

 

if n is the initial node of the compact control flow graph; otherwise, 

 

chn.self.senders = 0, 
chn.self.receivers = 0, 
chn.others.senders = 0, 
chn.others.receivers = 0. 

 

Then, 

 

chn.self.senders = chn.self.senders || ΩΩΩΩx ∈∈∈∈ L chx.self.senders, 



chn.self.receivers = chn.self.receivers || ΩΩΩΩx ∈∈∈∈ L chx.self.receivers, 
chn.others.senders = min(2, chn.others.senders + ΣΣΣΣx ∈∈∈∈ L chx.others.senders), 
chn.others.receivers = min(2, chn.other.receivers + ΣΣΣΣx ∈∈∈∈ L chx.others.receivers), 

 

where ΩΩΩΩ denotes logical or and ΣΣΣΣ denotes summation. 

 

For each call node n, let A be the set of channels that are aliased with a channel 

argument ch at n. Then, 

 

chn.self.senders = ΩΩΩΩx ∈∈∈∈ A x.self.senders, 
chn.self.receivers = ΩΩΩΩx ∈∈∈∈ A x.self.receivers, 
chn.others.senders = min(2, ΣΣΣΣx ∈∈∈∈ A x.others.senders), 
chn.others.receivers = min(2, ΣΣΣΣx ∈∈∈∈ A x.others.receivers). 

 

For each spawn node n, let A be the set of channels that are aliased with a channel 

argument ch at n. Then, 

 

chn.self.senders = 0, 
chn.self.receivers = 0, 
chn.others.senders = min(2, ΩΩΩΩx ∈∈∈∈ A x.self.senders + ΣΣΣΣx ∈∈∈∈ A x.others.senders), 
chn.others.receivers = min(2, ΩΩΩΩx ∈∈∈∈ A x.self.receivers + ΣΣΣΣx ∈∈∈∈ A x.others.receivers). 
 

For each alternative node n, let L be the list of nodes inside n. Then, 

 

chn.self.senders = maxx ∈∈∈∈ L chx.self.senders, 
chn.self.receivers = maxx ∈∈∈∈ L chx.self.receivers, 
chn.others.senders = min(2, maxx ∈∈∈∈ L chx.others.senders), 
chn.others.receivers = min(2, maxx ∈∈∈∈ L chx.others.receivers). 
 

For each repetition node n, let m be the node inside n. Then, 

 

chn.self.senders = chm.self.senders, 
chn.self.receivers = chm.self.receivers, 
chn.others.senders = if (chm.others.senders == 0) then 0 else 2, 
chn.others.receivers = if (chm.others.receivers == 0) then 0 else 2. 

 

For each function in a strongly connected component, the mode for each channel is 

computed as specified above. This computation will continue until a fixed point is reached. 



Strongly connected components are analyzed following the topological order of the 

strongly connected component graph. 

 

4. The analysis for higher-order channels 

 

This section presents the analysis for programs that also use higher-order channels. In such 

programs, a channel variable can be assigned a channel value by either creating a channel 

using the function channel or receiving a channel from a higher-order channel. With 

higher-order channels, the aliasing of channels can thus occur through either parameter 

passing or message passing. For simplicity, we will consider only second-order channels, 

which are used to transfer first-order channels. The approach can be extended to 

higher-order channels. 

 

For each second-order channel ch, in addition to the mode of ch, the analysis will 

also infer the set of channels sent to ch, ch.sendSet, and the set of channels received from 

ch, ch.receiveSet, to handle the aliasing occurring through message passing. In 

intraprocedural analysis, for each function f, if there is a channel x sent to second-order 

channel ch, then (f, x) is added into ch.sendSet, and if there is a channel x received from 

ch, then (f, x) is added into ch.receiveSet. 
 

In interprocedural analysis, for each second-order channel ch, the dataflow equations 

for ch.sendSet and ch.receiveSet of ch at each node of the compact control flow graph 

can be derived as follows. 

 

For each compound node n, let L be the sequence of nodes inside n. Initially, 

 

chn.sendSet = the values obtained from the intraprocedural analysis, 
chn.receiveSet = the values obtained from the intraprocedural analysis, 

 

if n is the initial node of the compact control flow graph; otherwise, 

 

chn.sendSet = ∅, 
chn.receiveSet = ∅. 

 

Then, 

 

chn.sendSet = chn.sendSet ∪ ∪∪∪∪x ∈∈∈∈ L chx.sendSet, 
chn.receiveSet = chn.receiveSet ∪ ∪∪∪∪x ∈∈∈∈ L chx.receiveSet. 



 

For each call node or spawn node n, let A be the set of channels that are aliased with a 

channel argument ch at n. Also, let C be the set of channel parameters at n, and for each p ∈ 

C, let µ(p) represent the corresponding channel argument of p at n. Then, 

 

chn.sendSet = ∪∪∪∪x ∈∈∈∈ A x.sendSet{∀p∈C ,p/µµµµ(p)} , 
chn.receiveSet = ∪∪∪∪x ∈∈∈∈ A x.receiveSet{∀p∈C ,p/µµµµ(p)} . 

 

Where S{ ∀p∈C ,p/q}  denotes a set obtained from the set S by substituting p by q for each 

p∈C occurring in the elements of S. 

 

For each alternative node n, let L be the list of nodes inside n. Then, 

 

chn.sendSet = ∪∪∪∪x ∈∈∈∈ L chx.sendSet, 
chn.receiveSet = ∪∪∪∪x ∈∈∈∈ L chx.receiveSet. 
 

For each repetition node n, let m be the node inside n. Then, 

 

chn.sendSet = chm.sendSet, 
chn.receiveSet = chm.receiveSet. 
 
For each function in a strongly connected component, ch.sendSet and 

ch.receiveSet for each second-order channel ch is computed as specified above. This 

computation will continue until a fixed point is reached. Strongly connected components 

are analyzed following the topological order of the strongly connected component graph. 

 

Given ch.sendSet and ch.receiveSet for each second-order channel ch, we can then 

take into account the aliasing caused by message passing. For each x in ch.sendSet, x may 

be aliased with each y in ch.receiveSet because of message passing. Let α(x) be the set of 

z in ch.sendSet that are aliased with x. Then, for each c in α(x) or ch.receiveSet, 
 

c.self.senders = ΩΩΩΩd ∈∈∈∈ α(x) ∪ ch.receiveSet d.self.senders, 
c.self.receivers = ΩΩΩΩd ∈∈∈∈ α(x) ∪ ch.receiveSet d.self.receivers, 
c.others.senders = min(2, ΣΣΣΣd ∈∈∈∈ α(x) ∪ ch.receiveSet d.others.senders), 
c.others.receivers = min(2, ΣΣΣΣd ∈∈∈∈ α(x) ∪ ch.receiveSet d.others.receivers). 

 

The aliasing becomes more complicated if a channel may be transferred among 

functions via more than one second-order channel. For example, a channel c may be sent 



from function f via a second-order channel ch1 to function g, then c is passed from function 

g via another second-order channel ch2 to function h. In this case, the channels in 

ch1.sendSet may be aliased with the channels in ch2. receiveSet due to the transitivity of 

the aliasing. Hence, if some channel in ch1.receiveSet is aliased with some channel in 

ch2.sendSet, each channel ch1.sendSet in is aliased with every channel in ch1.receiveSet 
∪ ch2. receiveSet. 

 

5. Conclusions 

 

This paper has described an algorithm for static analysis of communication structures in 

CCC programs. For each channel ch declared within the program, this algorithm infers the 

number of tasks that send data to ch, and the number of tasks that receive data from ch. 

This information can then be used to check whether each channel is used as it is specified. 

This algorithm uses a simple approach to exploiting both the aliasing caused by parameter 

passing and by message passing. 
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