
Testable Design and BIST Schemes for FIR Filter Structures

Shyue-Kung Lu, Ying-Mou Chen, and Mau-Jung Lu

Department of Electronic Engineering

 Fu-Jen Catholic University, Taipei, Taiwan

Abstract
This paper presents testable design and built-in

self-test (BIST) schemes for digital finite impulse
response (FIR) filters. According to the characteristics
of the bijective cell function, pseudoexhaustive test
patterns can be applied to each module in the filter and
faulty effects can be propagated to the primary outputs.
The test pattern generator can be implemented with a
simple binary counter. We use the checksum approach
for output response analysis. In order to make the filter
testable, simple ad-hoc DFT modifications should be
made. Our approach is also suitable for diagnosis of a
faulty module. In order to verify our approach, a cell-
based design of the BISTed filter has been
implemented and verified. Experimental results show
that 100% fault coverage is achieved. The hardware
overhead is 7.12% and 5.53% for wordlength = 16 and
24, respectively.

1. Introduction

Digital filters have being widely used in many DSP
applications. These include data compression,
biomedical signal processing, speech processing, image
processing, digital audio, telephone echo cancellation,
etc.) [1, 2]. Among various types of digital filters, finite
impulse response (FIR) filters feature an output
response only over a finite range of inputs. The general
characteristics of FIR filters are linear phase, low
output noise, and inherent stability. The basic FIR filter
is characterized by the following equation:

∑
−

=

−=
1

0

)()()(
N

k

knxkhny (1)

where h(k), k=0, 1, 2, …, N-1, are the impulse response
coefficients of the filter, and N is the filter length which
represents the number of filter coefficients. This
equation is a time domain equation and describes FIR
filters in a non-recursive form: the current output
sample, y(n), is a function of only the past and present
values of the inputs, x(n). A typical 16-order linear

phase FIR filter is shown in Fig. 1.

+

X

+

X

1/Z

1/Z

1/Z

1/Z

+

X

+

X

1/Z

1/Z

1/Z

1/Z

+

X

+

X

1/Z

1/Z

1/Z

1/Z

+

X

+

X

1/Z

1/Z 1/Z

h0 h1 h2 h3 h4 h5 h6 h7

+ + + + + + + +
O utput

Input

Fig. 1: 16-order linear phase FIR filter.

In order to achieve high-quality products, testing
becomes an inevitable task. However, the low
controllability and observability of filter modules
deeply embedded in system chips and their high
complexity impose serious testability problems.
Therefore, seeking an efficient BIST scheme is the best
solution for us. It is well known that the general logic
testing problem is NP-complete [3]. However, it is
easier to deal with the testing problem for ILA
(iterative logic arrays). We call an ILA testable with a
constant number of test patterns a C-testable array.
Therefore, we treat the FIR filter as a heterogeneous
ILA. A heterogeneous ILA is an array, which contains
different types of cells.

Several kinds of testing schemes for FIR filters
have been proposed. In [4], a class of redundant faults
that naturally derive from the structure and behavior of
these filters are examined, and design-for-test (DFT)
techniques based on scaling theory are used to
eliminate the redundancies. Eliminating these
redundancies makes it possible for Built-In Self-Test
(BIST) approaches to reach 100% fault coverage.
Moreover, ATPG-based approaches can benefit by
more than an order of magnitude reduction in test
generation time. In [5, 6], they presented a
pseudoexhaustive test methodology for FIR filters. The
proposed scheme can be employed to detect any
combinational faults within the basic cell of the
functional units occurring in linear phase comb filters,
trees of sign-extended adders, and phase-shift
multipliers. It uses additive generators [7] as the source
of pseudo-exhaustive patterns to systematically test all

building blocks in the filter.

In this paper, we present testable design and
built-in self-test schemes for FIR filters. The
characteristic of a bijective cell function is used to
make the filter array easily testable. According to this
approach, pseudoexhaustive test patterns can be
applied to each module in the filter and faulty effects
can be propagated to the primary outputs. The test
pattern generator can be implemented with a simple
binary counter and the output response analyzer is
implemented with a checksum accumulator. In order to
make the filter easily testable, some Design-for-
testability techniques should be made. Our approach is
also suitable for diagnosis of a faulty module. In order
to verify our approach, a cell-based design of the
BISTed filter has been implemented. Experimental
results show that 100% fault coverage is achieved. The
hardware overhead is 7.12% and 5.53% for wordlength
= 16 and 24, respectively.

The rest of the paper is organized as follows.
Section 2 presents the definitions and theories that will
be used in this paper. The proposed BIST scheme is
presented in Section 3. Experimental results and
comparisons are given in Section 4. Finally,
conclusions are given in Section 5.

2. Definitions and Testable Design

We assume a cell in an ILA with function f is a
combinational machine (Σ, ∆, f), where f: Σ→ ∆ is the
cell function, and Σ = ∆ = {0, 1}w, w denotes the word
length of a cell. An ILA is an array of cells.

Definition: A complete or exhaustive input sequence
σ for a cell with function f is an input sequence
consisting of all possible input combinations for the
cell. A complete output sequence is defined
analogously.

Definition: A minimal complete (exhaustive) input
sequence α for a cell is an input sequence consisting of
all possible input combinations for the cell. A minimal
complete output sequence β is defined analogously.

Definition: We say f is injective if ∀(i1 , j1) � (i2 , j2), f
(i1 , j1) � (i2 , j2). The cell function f is bijective if f is
injective andΣ = △. A C-testable array is an array
testable with a constant number of test patterns
independent of the size of the array. A cell function is
x-bijective if f (i1 , j) � (i2 , j) if f is x-injective and Σx =
△x.

Definition: A feasible complete input sequence � for a
cell is an input sequence consisting of all possible input
combinations for the cell when the primary inputs of
the ILA are applied a minimal complete input sequence.
Similarly, an unfeasible input sequence � for a cell is
an impossible input sequence for the cell ({�∪�} =
α). A feasible complete output sequence and an
unfeasible output sequence are defined analogously.

Our test approach is based on pseudoexhaustive
testing at the module level (adder modules and
multiplier modules). In other words, applying a feasible
complete input sequence to each module in the FIR
array. We assume that only one module can be faulty at
a time and that only combinational faults can
occur.That is, single-module fault model is adopted in
this paper.

Theorem: A linear phase FIR filter as shown in Fig. 1
is C-testable if the pipeline latches at the second row
are made bidirectional.
Proof: Controllability: We first examine how to apply
all possible input combinations to each module in the
filter. From Fig. 1, the pipeline latches at the second
row are made bidirectional. In test mode, they
propagate patterns from the left to the right. Therefore,
if a minimal complete input sequence is applied to the
left-most pipeline latches, then this sequence will
propagate through the pipeline latches and the adders in
the third row will receive the same minimal complete
input sequence and generate a feasible complete output
sequence. This sequence is then forwarded to the
multiplier modules at the fourth row. Since the
coefficients for the multiplier modules are directly
controllable, the multiplier modules then will receive a
feasible complete input sequence. For the adders at the
bottom row, their inputs are sent from the pipeline
latches, a minimal complete input sequence can be
scanned in through the scan chain formed by the
pipeline latches.
Observability: Apart from applying a minimal
(feasible) complete input sequence to all the modules,
we must ascertain that all faulty effects propagate
toward primary outputs and the faults are observed.
According to the fault model adopted, let’s consider all
module types and how to propagate faulty effects to the
primary outputs.
♦ Adder cells at the third row. If the single faulty
module is an adder cell in the third row, its output will
be faulty. Since the multiplier modules have an x-
bijective function, the fault will propagate to the
outputs of the multiplier module and then to the
primary outputs through the chain of adders at the

bottom row, following the sum lines).
♦ Multiplier cells at the fourth row. If the single faulty
module is a multiplier at the fourth row, Since the
outputs drive the chain of adders, faulty effects
propagate to the primary outputs (again following the
sum line) and thus are detected.
♦ Adder modules in the bottom row. When the fault
occurs in one of the adder module at the bottom row,
faulty effects propagate to the primary outputs (again
following the sum line) and thus are detected.�

3. Built-In Self-Test

Phase II: Testingx1

Phase I: Testing & 10

Normal00

Function ModeMode

Phase II: Testingx1

Phase I: Testing & 10

Normal00

Function ModeMode

+ X

+

:unidirectional buffer

:bi-directional buffer

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

0
1

1/Z

+ +

+

h0 h1 h2 h3 h4 h5 h6 h7

M 2 M 2 M 2 M 2 M 2 M 2 M 2
v0 v1 v2 v3 v4 v5 v6 v7

1
0

1
0

1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

v0 v1 v2 v3 v4 v5 v6 v7

1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

h0 h1 h2 h3 h4 h5 h6 h7

C oefficient

T est Pattern_2

N orm al Input

T est Pattern_1

Test Pattern_2

C oefficient

M ode (M 1,M 2)

2

B IST
C ontroller

1/Z

1/Z

M 1

M 1

M 2

M 1

1/Z

1/Z

Enable = M 1∪M 2

:unidirectional buffer

:bi-directional buffer

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

1/Z

1/Z

+

X

0 1

+

+

X

0 1

1/Z

1/Z

0
1

1/Z

+ +

+

h0 h1 h2 h3 h4 h5 h6 h7

M 2 M 2 M 2 M 2 M 2 M 2 M 2
v0 v1 v2 v3 v4 v5 v6 v7

1
0

1
0

1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

v0 v1 v2 v3 v4 v5 v6 v7

1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

h0 h1 h2 h3 h4 h5 h6 h7

C oefficient

T est Pattern_2
1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

v0 v1 v2 v3 v4 v5 v6 v7

1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z 1/Z

h0 h1 h2 h3 h4 h5 h6 h7

C oefficient

T est Pattern_2

N orm al Input

T est Pattern_1

Test Pattern_2

C oefficient

M ode (M 1,M 2)

2

B IST
C ontroller

1/Z

1/Z

M 1

M 1

M 2

M 1

1/Z

1/Z

Enable = M 1∪M 2

Fig. 2: Architecture of the BIST-based FIR filter.

In Fig. 2, we show the architecture of the
proposed BIST-based FIR filter, which consists of the
BIST controller and the testable design of the FIR filter
described above. The adders at the bottom row are tree-
connected. In other words, the FIR filter performs a
series of additions in a sequential fashion to obtain the
final output. The performance of the filter can be
significantly improved by executing some of these
additions in parallel, as the tree of adders in Fig. 2 [5].
The BIST controller coordinates the testing procedures
and the generation of test patterns. The filter has three
operating modes—Normal mode, Phase-I BIST mode
and Phase-II BIST mode. When the filter operates in
Normal mode, multiplexers are set to make the filter
work as Fig. 1. The BIST modes of the filter are

described as follows.

3.1 Phase-I BIST mode

Phase-I BIST mode is adopted to test the adder
modules at the third row and multiplier modules. The
filter we discuss here is assumed coefficients-fixed
such that test patterns for the coefficient inputs in the
multiplier are hardwired. Based on Thm. 1, if all
injective adders and multipliers are applied their
feasible complete input sequences, they are then well
tested. As a result, the BIST controller in our scheme
sends the minimal complete input sequences to the
inputs of the filter such that all injective adders and
multipliers receive their feasible complete input
sequences, and are well tested. The accumulator at the
last stage of the filter generates a check-sum for the
resulted outputs. Fig. 3 shows the filter’s architecture
during Phase-I BIST mode. Test_pattern 1 denotes a
minimal complete input sequence sent from the
controller.

+

X

0 1

+

+

X

0 1

6

0

5

0

+

X

0 1

+

+

X

0 1

4

0

3

0

+

X

0 1

+

+

X

0 1

2

0

1

0

+

X

0 1

+

+

X

0 1

0

0

1
0

1/Z

+ +

+

h0 h1 h2 h3 h4 h5 h6 h7

0 0 0 0 0 0 0

v0 v1 v2 v3 v4 v5 v6 v7

1
0

0
1

0

0

0

0

Test Pattern_1

1/Z

E nable = 1

Fig. 3: The FIR filter in Phase-I BIST mode.

3.2 Phase-II BIST mode

Phase-II BIST mode is adopted to test the tree of
adders in the FIR filter. Based on Thm. 1, if all
injective adders in the tree are applied their feasible
complete input sequences, they are then well tested.
The BIST controller in our scheme sends the minimal
complete input sequences to the inputs of the adder tree
such that all injective adders receive their feasible
complete input sequences and are well tested. Fig. 4
shows the FIR filter’s architecture during Phase-II
BIST mode. In this figure, Test Pattern_2 denotes a
minimal complete input sequence comes from the
BIST controller. The blocks at the top row in the figure
denote pipeline latches. The adder at the bottom row
acts as a accumulator to calculate the checksum of the
resulted outputs. The final checksum in the adder is

sent to the controller to make the pass/fail decision.

0 1

+

0 1

6 5

0 1

+

0 1

4 3

0 1

+

0 1

2 1

0 1

+

0 1

0

+ +

+

1 1 1 1 1 1 1
v0 v1 v2 v3 v4 v5 v6 v7
1

1/Z

Enable = 1

7

T est Pattern_2

Fig. 4. Phase-II BIST mode.

In our BIST scheme, test patterns are simply
generated by a binary counter. It helps a lot to reduce
the hardware overhead for the BIST design.
Furthermore, feasible complete input sequence is used
to test the FIR filer, which saves much unnecessary
simulation time caused by unfeasible input sequences.

4. Experimental Results and Comparisons

In order to verify our approach, a cell-based
experimental chip is implemented with Synopsys tools.
The chip layout is shown in Fig. 5 and all the BIST
modes have been verified. The chip size is about 2.3 ×
2.3 mm2. The hardware overhead of our approach is
shown in Table 1. From this table, it is obvious that the
hardware overhead decreases as the wordlength
increases. The simulation time to test the first stage
adders and multipliers of FIR filter in our scheme is
only a half of [5]’s. The simulation time to test the tree
of adders is 8 times faster as compared with [5]’s.
Moreover, the test patterns used in [5] are generated by
an arithmetic additive generator. It will cause larger
hardware overhead to implement the BIST structure.

Fig. 5: The chip layout of the BISTed FIR filter.

Table 1: Hardware overhead of the BISTed FIR filter.

Wordlength Length Hardware Overhead
16 7.12%
24 5.53%
32 4.43%

5. Conclusions

This paper presents testable design and built-in
self-test schemes for digital finite impulse response
(FIR) filters. According to the characteristics of a
bijective cell function, feasible (minimal) complete test
patterns can be applied to each module in the filter and
faulty effects can be propagated to the primary outputs.
The test pattern generator can be implemented with a
simple binary counter. We use the checksum approach
for output response analysis. In order to verify our
approach, a cell-based design of the BISTed filter has
been implemented. Experimental results show that
100% fault coverage is achieved. The hardware
overhead is 7.12% and 5.53% for wordlength = 16 and
24, respectively. These results show that our BIST
scheme is more efficient than the external testing
method proposed in [5]. The hardware overhead is also
less then that in [5].

Reference
[1] R. J. Higgins, Digital Signal Processing in VLSI.

Prentice Hall, 1990.
[2] E. C. Ifeachor and B. W. Jervis, Digital Signal

Processing/ A Practical Approach. Addisin-Wesley,
1993.

[3] H. Fujiwara and S. Toida, “The complexity of fault
detection problems for combinational logic circuits,”
IEEE Trans. Computers, vol. C-31, pp. 555-560, June
1982.

[4] Laurence Goodby and Alex Orailoglu, “Towards 100%
Testable FIR Digital Filters,” Proc. Int’l Test
Conference, pp. 394-402, 1995.

[5] N. Technologies, J. Rajski, and J. Tyszer,
“Parameterizable Testing Scheme for FIR Filters,”
Proc. Int’l Test Conference, pp. 694-703, 1997.

[6] N. Technologies, J. Rajski, and J. Tyszer, “Testing
Schemes for FIR Filter Structures,” IEEE Trans.
Computers, vol. 50, no. 7, pp. 674-688, July, 2001.

[7] S. Gupta, J. Rajski, and J. Tyszer, “Arithmetic Additive
Generators of Pseudo-Exhaustive Test Patterns,” IEEE
Trans. Computers, vol. 45, no. 8, pp. 939-949, August,
1996.

[8] C. W. Wu and P. R. Cappello, “Easily Testable Iterative
Logic Arrays,” IEEE Trans. Computers, vol. 39, pp.
640-652, May 1990.

