
Title: Design of Low-Cost Self-Checking Circuits

Authors: C.-F. Huang and S.-J. Wang

Affiliation: Institute of Computer Science
National Chung-Hsing University
Taichung 402, Taiwan, ROC

Corresponding Author :
Sying-Jyan Wang
Inst. of Computer Science
National Chung-Hsing University
Taichung 402, Taiwan, ROC

Phone: +886-4-2840498 Ext. 910
Fax: +886-4-2853869
E-mail: sjwang@cs.nchu.edu.tw

ABSTRACT

Self-checking circuits can detect the presence of both transient and permanent 

faults. A self-checking circuit consists of a functional circuit, which produced 

encoded output vectors, and a checker, which check the output vectors. A 

self-checking system consists of an interconnection of self-checking circuits. The 

advantage of such a system is that errors can be caught as soon as they occur; thus, 

data contamination is prevented. Previous works on self-checking circuit design try to 

restrict the synthesis procedure such that only restricted errors may appear. However, 

this approach may not be always feasible, and always requires significant hardware 

overhead. In this paper, we present a new design methodology, in which functional 

circuit is not modified. Compared with previous methods, our approach requires less 

hardware overhead, and experimental results show that the method also achieves good 

fault coverage.



1. Introduction

The advance in VLSI technology keeps on putting more and more devices into 

the same silicon area, and the trend is likely to continue. It is well known that 

transient faults are the predominant cause of system failures [1]-[3]. With the move 

towards deep-submicron technology, power supply voltage level will be further 

reduced and thus the noise margins become smaller. The reduced feature sizes also 

increase the coupling capacitance between adjacent metal lines, which makes 

cross-talk noise a growing source of transient faults. As a result, system susceptibility 

to transient faults is likely to increase.

Self-checking circuits and systems can detect the presence of both transient and 

permanent faults. A self-checking circuit consists of a functional circuit, which 

produces encoded output vectors, and a checker, which checks the vector to see if an 

error has occurred. The checker has the ability to give an error indication even when a 

fault occurs in the checker itself. The functional circuit can be either combinational or 

sequential. A self-checking system consists of an interconnection of self-checking 

circuits.

The output vectors of a self-checking functional circuit are often encoded in a 

code that detects unidirectional errors. The reason is that unidirectional errors are very 

common in VLSI [3],[4]. Such an error is said to occur when there are multiple 

transitions in either the 0à1 direction or the 1à0 direction, but not both. For 

example, in [4] it was shown that a stuck-at fault, cross-point fault, ir a short in an 

MOS programmable logic array (PLA) or read-only memory causes only a 

unidirectional error. Many codes have been proposed for detecting such errors.

Various synthesis methods have been proposed to modify the functional circuit 

so that only unidirectional errors occur [5]-[7], while other methods try to control the 



number of erroneous bits at the output by restricting fanout [8]-[10]. However, in 

some cases it may be either difficult or impossible to modify the functional circuits. 

For these circuits, some other methods are required. For example, weight-based codes 

[11] have been proposed for concurrent error checking. The drawback of this 

approach, however, is that the size of checkers can be tremendous.

In this paper, we propose a new design methodology for self-checking circuits. 

The goal is to achieve a high level of fault coverage while at the same time reduce the 

hardware overhead. This paper is organized as follows. In the next section, we give 

some background information, while in Section 3 we present our self-checking design 

methodology. The experimental results are shown in Section 4 and some concluding 

remarks are given in Section 5.

2. Preliminar ies

In this section, we provide some preliminary information.

2.1. Self-Checking Circuits

The general structure of self-checking circuits is illustrated in Fig. 1. The 

functional circuit carries out the normal operations and produces an n-bit output 

vector. The check symbol generator (CSG) generates k-bit check symbol for any 

given output vector. The checker check to see if the output vector along with the 

check bits forms a valid output code word. The outputs of checker consist of two bits 

so that a single stuck-at fault will not invalidate the checker.



Functional
Circuit

Check Symbol
Generator

Checker
inputs

outputs

error
indication

m

n

k

Fig. 1. Self-Checking Circuit Structure.

The most important concept developed for self-checking circuits is the totally 

self-checking (TSC) concepts [12],[13]. The following definitions can be used to 

describe a TSC system. Let F denote the set of faults, and G be the network in these 

definitions.

Definition 1: G is self-testing with respect to F if for every fault in F the circuit 

produces an output noncode word for at least one input code word.

Definition 2: G is fault-secure with respect to F if for every fault in F the circuit 

never produces an incorrect output code word for any input code word.

Definition 3: G is TSC if it is both self-testing and fault-secure.

2.2. Error  Detecting Codes

A TSC checker guarantees the detection of the first error under the single fault 

assumption, no matter where the fault is. Many TSC checker designs can be found in 

the literature. However, it is usually much more difficult to ensure TSC properties in 

the functional circuits. Many design procedures have been proposed for self-checking 

circuits. For example, in [5]-[7] the functional circuit is designed in such a way that 

only unidirectional errors may appear. The outputs of the functional circuit and the 

CSG form a unidirectional error detecting (AUED) code which can be checked by the 



checker. A circuit designed in such a way, however, may not be TSC.

Many error-detecting codes have been used to encode the circuit output. One 

commonly used code is the Berger code [14], which is the optimal systematic AUED 

code. In a Berger code, the check symbol can be obtained by counting the number of 

zeros in the information bits, and hence the encoding/decoding scheme is simple. The 

TSC checkers for Berger code have been proposed, and they are easy to implement. 

Berger code encoding is useful for circuit with regular structure such as PLA’s and 

ALU’s, in which the types of errors are restricted. However, in most multi-level 

circuits, a single fault in the circuit may produce symmetric errors at the outputs, and 

these errors may not be detectable under Berger code encoding.

For most circuits, the fault coverage achieved by Berger code encoding scheme 

is not high enough. Weight-based codes [11] were developed to deal with such a 

problem. In a weigh-based code, each output bit is assigned with a weight, and the 

check symbol is simply the sum of all output bits multiplying their respective weights. 

Berger code can be seen as a special case of the weight-based code, in which all 

weights are 1’s. The probability of alias (i.e., error masking) usually decreases as the 

number of distinct weights increases; however, the check symbol become longer and 

the checker will be much more complicated, and it may not be easy to find a set of 

good weights for a given circuit.

2.3. TSC Checkers

Many TSC checkers have been proposed for various encoding schemes. One of 

the checkers that we will use in the later part of this paper is the two-rail checker 

(TRC) [13]. Two-rail checkers satisfies the TSC properties, and they can used to 

compare whether two sets of equal-length data are identical. A 2-bit two-rail check 



(TRC2) is shown in Fig. 2, and it can be used to compare the two sets (a1b1) and (a2b2). 

Other two-rail checkers can be constructed by using TRC2 as the building blocks.

Fig. 2. A 2-bit two-rail check.

3. CED Structure

In this section, we present our concurrent error detecting structure, and give a 

basic analysis.

3.1. Proposed Structure

In the proposed method, we do not apply any specific error detecting code, as did 

in all previous methods. In contrast, we define the checker structure first, and the 

check symbols are generated accordingly. The goal is to design a self-checking 

scheme with a relative small check symbol while at the same time achieves high fault 

coverage. Let the length of the check symbol be k.  With a smaller k, the CSG is 

usually smaller, which means the hardware overhead is smaller. On the other hand, a 

small k also increases the chance of alias, so should be dealt with by a better encoding 

scheme. The general self-checking circuit structure for our method is shown in Fig. 3.



Functional
Circuit

Check Symbol
Generator

inputs

m

k

n/2

n/2

n/2-
bit

adder

n/4

n/4

n/4-
bit

adder

k-
bit

adder

k

CS

CS’

Fig. 3. Proposed Self-Checking Circuit Structure.

The n-bit outputs are divided into two parts, which are fed into an n/2-bit adder. 

The adder outputs are divided into two parts again, and then they are fed into the 

second adder the further reduce the number of outputs. This process is repeated until 

we have a k-bit check symbol CS’. This regenerated check symbol (CS’) is then 

compared with the check symbol generated from CSG (CS) by s two-rail checker.

The encoding process can be explained by the example shown in Fig. 4. Let k be 

3. In the first example (left one), n=7 and the output vector is 0100110. This vector is 

divided into two parts and added, and the result is 01010. This process is repeated 

until we obtain a 3-bit check symbol, which is 001. In the second example, n=10 and 

the output vector is 1011010001, and the final check symbol is 101.

Fig. 4 An example.



3.2. Analysis

The quality of an encoding scheme is partially decided by how the information 

bits are mapped to the check symbols. An error will be undetectable if an alias occurs, 

so that the check symbols for faulty and fault-free output vectors are the same. For 

example, consider the Berger code, in which check symbol is simply the zero count of 

the information bits. Let n=4 and k=3. In this case, there are 16 output vectors, in 

which 6 vectors are mapped to the check symbol 010 (i.e., 2 in decimal). Check 

symbols 101, 110, and 111 are not used, since the number of 0’s is at most 4 in a 4-bit 

vector.

In Table I we show the distribution of check symbols for n=4 and k=3 under 

three different encoding schemes: Berger code, Add, and Sub. In the proposed 

self-checking scheme, adders are used to compress output vectors into check symbols. 

Since an adder can conduct both addition and subtraction operations, both operations 

are tried in the encoding scheme. The 8 different check symbols are listed, and the 

number of output vectors mapped to the symbol are shown in the Table. The number 

given in each parenthesis is the minimum Hamming distance between any two vectors 

whose check symbols are identical. This is the minimum number of erroneous bits 

enquired to create an alias. In this Table, it can be seen that the distribution of 

Hamming code encoding is not uniform and many check symbols are not used. 

Therefore, Hamming code encoding may encounter more serious error-masking 

problem under symmetric errors.



Table I. Distribution of check symbols.

Check bit Berger Add Sub

000 1(-) 1(-) -

001 4(2) 2(2) 1(-)

010 6(2) 3(2) 2(2)

011 4(2) 4(2) 3(2)

100 1(-) 3(2) 4(2)

101 - 2(2) 3(2)

110 - 1(-) 2(2)

111 - - 1(-)

In terms of the hardware overhead due to checkers, the proposed method is close 

to Hamming code encoding. In both schemes, the checkers consist of full adders, and 

the numbers of required checkers for several different vector lengths are listed in 

Table II. Three encoding schemes are given, Berger code, Add(3) (for k=3) and Add(4) 

(for k=4). Note that, in our scheme, the adders can be used to conduct either addition 

or subtraction, so the hardware overhead is identical for both methods. In the column 

under Berger, the number given in each parenthesis is the length of the corresponding 

check symbol.

Table II. Hardware overhead.

# of bit  Berger  Add(3)  Add(4)

6    4(3)    5     3

12   11(4)   15    13

28   26(5)   32    30

54   57(6)   59    57



On the other hand, the hardware overhead due to CSG is usually proportional to 

the length of check symbol. Since in our method the check symbols are usually 

smaller than or equal to the check symbols for Berger code, the overall hardware 

overhead due to our method is smaller. Note that the checker design for weight-based 

code is much more complicated than that of Berger code encoding, the hardware 

overhead due to weight-based code is always larger than the proposed method.

4. Exper imental Results

In order to verify the effectiveness of the proposed method, we conduct 

experiments on 10 ISCAS85 benchmark circuits. The statistics of these benchmark 

circuits are listed in Table III.

Table III. Benchmark statistics.

Circuits # Primary 
Inputs

# Primary 
outputs

# Total Fault 
Detected

C432     36      7   282582

  C499     41     32  1260334

  C880     60     26   167976

  C1355     41     32  1547371

  C1908     33    25  1402446

  C2670    233   140  2934479

  C3540     50    22  2121782

  C5315    178   123  3773836

  C6288     32    32 15745993

  C7552    207   107  5934156

The experiments are executed as follows. We generate 10000 random input 

vectors for each circuit, and conduct fault simulation for all single stuck-at faults in 

the circuit under test. Whenever there are errors in the output vector, we verify if the 



regenerated check symbol CS’ is the same as the fault-free check symbol. If the 

results are the same, the error is undetectable. Let Ne be the number of erroneous 

output vectors due to single stuck-at faults, and Nd be the number of erroneous output 

vectors that are not masked. The fault coverage then can be defined as Nd/Ne. The 

fault coverage for basic encoding schemes are given in Table IV. The conventions 

used in this Table are similar to those used in previous Tables. For encoding schemes 

are used: Berger code, output compression with addition (k=3), subtraction (k=3), and 

both (k=6). Note that in the last column, the method “Mix” gives a 6-bit check symbol, 

in which 3 bits are the same as Add(3) while the other 3 are the same as Sub(3).

Table IV. Fault coverage: basic encoding schemes.

circuits  Berger   Add(3)   Sub(3)   Mix(6)

C432 88.79(3) 80.80 90.77 98.74

C499 90.37(6) 86.53   91.84   97.07

C880 85.67(5)   79.98   87.51   96.84

C1355 90.07(6)   84.92   89.20   96.20

C1908 87.31(5)   76.65   84.46   94.69

C2670 86.20(8)   80.25   85.23   95.54

C3540 86.54(5)   70.47   82.26   93.89

C5315 84.85(7)   78.94   86.10   95.81

C6288 86.35(6)   73.61   82.69   95.48

C7552 96.25(7)   71.13   78.05   93.38

average 88.24   78.33   85.81   95.77

It can be seen from table IV that Subtraction gives better than Addition operation. 

However, the fault coverage achieved in either Add(3) or Sub(3) is worse than that of 

Berger code’s, and the fault coverage tends to become lower as the vector length 



getting larger. The reason is simple: too many level of data compression creates more 

alias problems. On the other hand, the fault coverage achieved in the last column is 

much higher than either Add(3) or Sub(3), which implies only a few errors are 

masked in both cases.

Higher fault coverage can be achieved with longer check symbols. If we increase 

the length of check symbol from 3 to 4 in our methods, the number of adder stages is 

reduced by 1 and thus the fault coverage becomes higher. The results are shown in 

Table V. It can be seen that the fault coverage becomes higher in all cases for k=4.

Table V. Fault coverage: longer check symbols.

circuits   Add(3)   Sub(3)   Add(4)   Sub(4)   Mix(6)   Mix(8)

C432 80.80 90.77 88.82 93.61 98.74 99.46

C499 86.53   91.84 96.65   97.00   97.07   98.99

C880   79.98   87.51   84.83   90.45   96.84   97.92

C1355   84.92   89.20   96.84   96.91   96.20   99.09

C1908   76.65   84.46   84.64   88.18   94.69   96.88

C2670   80.25   85.23   87.45   91.25   95.54   97.23

C3540   70.47   82.26   78.24   85.55   93.89   96.05

C5315   78.94   86.10   91.14   93.83   95.81   98.61

C6288   73.61   82.69   88.50   90.52   95.48   98.83

C7552   71.13   78.05   84.69   86.38   93.38   96.67

average   78.33   85.81   88.18   91.37   95.77   97.98

Finally, in Table VI we compare our design methods with previous methods, 

including encoding with Berger code and Weight-based code [11]. Note that for the 

weight-based code we select weights according to those given in [11]; however, the 

weights are randomly assigned to outputs. It can be seen that Sub(4) achieves a higher 



fault coverage than Berger code encoding, while the number of bits in check symbols 

is smaller in most cases. However, the fault coverage may not be good enough. Mix(6) 

provides a fault coverage close to that of weight-based code with fewer check 

symbols and simpler checker design.

Table VI: Comparison.

circuits   Mix(6)   Sub(4)  Berger weight[11]

C432 98.74 93.61 88.79(3) 97.70(5)

C499   97.07   97.00 90.37(6) 97.11(7)

C880   96.84   90.45 85.67(5)   94.46(6)

C1355   96.20   96.91 90.07(6)   96.89(6)

C1908   94.69   88.18 87.31(5)   96.97(7)

C2670   95.54   91.25 86.20(8)   93.54(8)

C3540   93.89   85.55 86.54(5)   96.77(7)

C5315   95.81   93.83 84.85(7)   94.53(9)

C6288   95.48   90.52 86.35(6)   91.16(6)

C7552   93.38   86.38 96.25(7)   99.05(9)

average   95.77   91.37 88.24    95.82

5. Concluding Remarks

In this paper, we presented a new design method for self-checking circuits. This 

concurrent error-checking scheme employs a simple and structured checker, which is 

usually smaller and easy to implement. This method also provides a trade-off between 

fault coverage and area overhead. Compared with previous methods, this method can 

achieve a higher fault coverage with lower area overhead.



References

[1] X. Castillo, S.R. McConnel, and D.P. Siewiorek, “Derivation and calibration of a 
transient error reliability model,” IEEE Trans. Comput., vol. C-31, pp. 658-671, 
July 1982.

[2] Y. Savaria, N.C. Rumin, J.F. Hayes, and V.K. Agarwal, “Soft-error filtering: A 
solution to the reliability problem of future VLSI digital circuits,” IEEE Proc., 
vol. 74, no. 5, pp. 669-683, May 1986.

[3] M.M. Yen, W.K. Fuchs, and J.A. Abraham, “Designing for concurrent error 
detection in VLSI: Application to a microprogram control-unit,” IEEE J. 
Solid-State Circuits, vol. SC-22, pp. 595-605, Aug. 1987.

[4] G.P. Mak, J.A. Abraham, and E.S. Davidson, “The design of PLAs with 
concurrent error detection,” in Proc. Int’l Symp. Fault-Tolerant Comput., June 
1982, pp. 303-310.

[5] N. K. Jha, and S.Wang, “Design and synthesis of self-checking VLSI circuits,” 
IEEE Trans. Computer-Aided Design, Vol. 12, No.6, pp. 878-887, Jun. 1993.

[6] K. De, C. Natarajan, D. Nair, and P. Banerjee, “RSYN: A system for automated 
synthesis of reliable multilevel circuits,” IEEE Trans. VLSI Systems, pp. 186-195, 
Jun. 1994.

[7] P.P. Saposhnikov, A. Morosov, and M. Goessel, “A new design method for 
self-checking unidirectional combinational circuits,” J. Electronic Testing: 
Theory and Application, pp. 41-53, 1998.

[8] N. A. Touba, and E.J. McCluskey, “Logic synthesis techniques for reduced area 
implementation of multilevel circuits with concurrent error detection,” Int’l Conf. 
Computer-Aided Design, pp. 651-654, 1994.

[9] N.A. Touba, and E.J. McCluskey, “Logic synthesis of multilevel circuits with 
concurrent error detection, ” IEEE Transactions on Computer-Aided Design, vol. 
16, no. 7, pp. 783-789, Jul. 1997.

[10] D. Das and N. A. Touba, “Synthesis of low-cost concurrent error detection based 
on bose-lin codes,” Proc. VLSI Test Symp., pp. 309-315, 1998.

[11] D. Das, and N. A. Touba, “Weight-based codes and their application to 
concurrent error detection of multilevel circuits”, Proc. of VLSI Test Symp., pp. 
370-376, 1999.

[12] W.C. Carter and P.R. Schneider, “Design of dynamically checked computers,” in 
Proc. IFIP’68, vol. 2, Aug. 1968, pp. 878-883.

[13] D.A. Anderson and G. Metze, “Design of totally self-checking circuits for 
m-out-of-n codes,” IEEE Trans. Comput. vol. C-22, pp. 263-269, Mar. 1973.

[14] J. M. Berger, “A note on error detection codes for asymmetric binary channels”, 
Inform. Contr., pp 68-73, Mar. 1961.


	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14

