
1

Optimal Tuple Reduction for Fast Two-Dimension

Packet Classification
Pi-Chung Wang*, Chia-Tai Chan, Wei-Chun Tseng and Yaw-Chung Chen

Abstract

Packet classification categorizes packets into flows based on some predefined filters. Nowadays the packet

classification techniques play an important role for many new Internet services. Rectangle search is a well-known

packet classification scheme which is based on multiple hash accesses for different filter length. It shows good

scalability with respect to the number of filters; however, the lookup performance is not fast enough. For example,

through experiments, each packet classification takes about 40 hash accesses in a 100,000-filter database and each

hash access may take more than one memory access. Obviously, this is not capable to provide gigabits throughput.

In this paper, we propose an efficientTuple Reduction Algorithm to improve the rectangle search. The

Tuple Reduction Algorithm is based on the filter duplication. In spite of the increased number of filters, the

pre-computation information is dramatically reduced, the performance has increased two times while only about

one quarter storage is required. The experimental results indicate that the proposed scheme can fulfill OC-48

throughput.

Keywords

Internet, High-Speed Network, Packet Classification.

The authors are now with the Telecommunication Laboratories, Chunghwa Telecom Co., Ltd, 7F, No. 11 Lane 74 Hsin-

Yi Rd. Sec. 4, Taipei, Taiwan, R.O.C. (TEL: +886-2-23265631, FAX: +886-2-23445700, e-mail:{abu, ctchan, wct-

seng}@cht.com.tw).

Yaw-Chung Chen is now with the Department of Computer Science and Information Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C. (e-mail: ycchen@csie.nctu.edu.tw).

2

I. I NTRODUCTION

Nowadays, the bandwidth bottleneck ties to the Internet lookup which is performed in the

router. The Internet lookup, including IP lookup and packet classification, is used to decide

the action for each incoming packet. Hashing is a widely used method to perform fast lookup.

Several hash-based schemes have been proposed to solve Internet lookup problem [1], [2]. Rect-

angle search [1] is a well-known packet classification scheme which is based on multiple hash

accesses for different filter length. It was proposed to show the lower boundO(2W − 1) of

searching for a lowest-cost matching filter, whereW is the length of the IP address. It shows

good scalability with respect to the number of filters; however, the lookup performance is not

fast enough. For example, through experiments, each packet classification takes about 40 hash

accesses in a 100,000-filter database and each hash access may take more than one memory

access. Therefore, the performance is not capable to provide gigabits throughput.

In this paper, we propose an efficientTuple Reduction Algorithm to improve the rectan-

gle search. The proposedTuple Reduction Algorithm is based on filter duplication. The

near-optimal algorithm are presented to lessen number of tuples. The number of filters is in-

creased; however, the resulting pre-computation information required in the rectangle search is

dramatically reduced. Through experiments, we show that it only uses about quarter storage

and increases throughput about two times. Furthermore, the proposed scheme can fulfill OC-48

throughput.

The rest of the paper is organized as follows. The previous works are introduced in Section

II. Section III presents the proposed scheme. The experiment setup and results are shown in IV.

Finally, a summary is given in Section V.

July 10, 2002 DRAFT

3

II. PREVIOUS WORKS

Several schemes that work well in practice have been proposed [3], [1], [4], [5]. The bit-level

parallelism scheme proposed in [5] and the Crossproducting [4] take O(N2) memory. The Re-

cursive Flow Classification algorithm presents good lookup results and a good hardware imple-

mentation with moderate memory requirements for real life databases with O(N2) memory in the

worst case. An algorithm called Hierarchical Intelligent Cuttings was proposed in [6] which per-

forms packet classification at high speeds with affordable memory utilization. A scaled model

of the filter databases based on the current databases was presented in [7]. It shown that those

algorithms which conform to the model perform packet classification well. While the above

discussion focuses on algorithmic approaches, Ternary Content Addressable Memory (TCAM)

technology has advanced significantly in the packet classification. However, it does not scale

well. Algorithms that use conventional Static Random Access Memory (SRAM) can outper-

form TCAMs when large databases have to be supported. Research in scalable algorithmic

approaches is still considered important.

The tuple space search is one of the packet classification algorithms. A tuple is a collection

of filters with specific prefix length. For example, the two-dimension filtersF = (10∗, 110∗)

andG = (11∗, 001∗) will both map to tupleT [2, 3]. For the sake of efficiency, the search within

a tuple is performed by hashing since the key lengths are identical. Thus each tuple access

indicates one hash access which might need multiple memory accesses. The resulting set of

tuples is called astuple space(TS). When searching for a best matching filter, it can examine

all the tuples in the tuple space. It is observed that the number of tuples in a real database is

much smaller than the number of filters. For a large filter database, the scale of the tuple space is

unlikely to grow beyond few hundreds. This is because the most databases use only few prefix

July 10, 2002 DRAFT

4

lengths corresponding to CIDR.

When Match

When Miss

T

TS (Tuple Space)
1

W

1
W When the probe returns

Match, the set of tuples
above T is eliminated
by precomputations

When probe returns Miss,
the set of tuples to the
right of T is eliminated by
marking

(A)

(B)Start

End

T 'T

T
T '

: The remain tuple that has not be probed
: The tuple that has been probed

: The searching path of the rectangle search

: The tuple that has been eliminated by markers
: The tuple that has been eliminated by precomputations

Fig. 1. The Rectangle Search Algorithm.

In [1], the rectangle search was proposed to further improve the lower bound of tuple lookup.

It was proved that the lower bound is O(2W − 1) for a O(W × W) rectangular tuple space,

whereW is the number of distinct prefix lengths. The main idea is using each tuple probing

to eliminate a set of the tuples which is shown in Figure 1. While probing tupleT , the tuples

aboveT would be eliminated if it returns a”Match” . Otherwise, the tuples in the right side of

tupleT would be discarded. To archive this goal, the markers and pre-computation mechanism

are required. Assume the number of filters isN , the rectangle search requires O(NW) memory

space. The detail information about the markers will be introduced in the next section. Note that

if the number of distinct lengths reduces, the lookup performance will increase as well. Also,

the number of generated markers could be eliminated under certain conditions.

July 10, 2002 DRAFT

5

III. T UPLE REDUCTION ALGORITHM

As described above, pre-computation and markers are used to perform rectangle search. In

Figure 2, it shows the relationship between the filters and markers. The filter database contains

203 filters which occupy across 5 tuples. Each filter has to generate one marker to each left-

side tuple for indicating that there exists a potential match with longer length. Accordingly, 703

markers will be generated and result in 906 entries totally. Due to the unbalanced length distri-

bution of routing prefixes, it is highly possible to incur a size explosion in the filter databases.

Consequently, we will presents how to lessen the number of tuples to advance the native rectan-

gle search.

1
202

100
0

100
100

1
200

1
201

1 10010011

x
y

x: the number of filters
y: the number of markers

203 filters spread in
consecutive 5 tuples

703 markers are generated
for rectangle search

Generate Markers

Fig. 2. The Relationship Between Filters and Markers.

A. Filter Expansion

The lookup performance of the rectangle search can be improved by reducing the distinct

lengths of both dimensions. To achieve this, a well-known skill based on entry duplication can

be used. For example, as described in [8], the authors improve the lookup performance by

lessening the distinct prefix lengths. To minimize the increasing storage resulted from the entry

duplication, the dynamic programming is deployed. The other algorithms [9], [10], [11] are

based on the similar mechanism but with different compression schemes. Briefly, the algorithms

July 10, 2002 DRAFT

6

in this category either need larger storage or complex compression logic as tradeoff to achieve

higher throughput.

By applying the concept to the rectangle search, it is possible to obtain faster lookup while

retains close or even smaller storage. This is because that the tuple reduction results in fewer

generated markers. We use the example in Figure 2 to explain. As shown in Figure 3, the three

shorter filters are expanded to the fourth tuple which corresponds to longer filter. The required

markers are reduced dramatically since the lookup will start from the fourth tuple which contains

the duplicate filters of original ones.

Filter expansion

Generate Markers

100
0

114
100

1 11 100100

1 10010011

1 -> 8
1 -> 4

1 -> 2

After filter expansion, the totol number of
filters and markers reduced to 314.

Fig. 3. The Tuple Space Search with the Filter Expansion.

We further illustrate the filter expansion with two dimension in Figure 4. The filterf(11∗, 10∗)

at the tupleT2,2 will be expanded to the destination tupleT3,3. Firstly, the source prefix of fil-

ter is expanded from 11* to the set of prefixes 110* and 111*. With the same procedure, the

destination prefix of filter is expanded from 10* to 100* and 101*. After expanding both the

source and destination prefix, we cross-product 2 set of prefixes and get a set of new filters

f1(110∗, 100∗), f2(111∗, 100∗), f3(110∗, 101∗) andf4(111∗, 101∗), which is equal to the origi-

nal filterf(11∗, 10∗).

July 10, 2002 DRAFT

7

F

F'

F={f}, f=(11*,10*)

F'={f1,f2,f3,f4},
f1=(110*,100*)
f2=(110*,101*)
f3=(111*,100*)
f4=(111*,101*)Four filters are duplicated for the

expansion from tuple [i,j] to tuple [i+1,j+1].

Fig. 4. The Filter Expansion.

B. Dynamic Programming

To obtain the optimal filter expansion, the dynamic programming can be applied to minimize

the cost of filter expansion. To determine the filter expansion in the tuple space, the original

filters, the duplicate filters and the markers should be considered. Figure 5 illustrates the cost for

a filter expansion. Several decisive factors should be included. The first one is the duplicated fil-

ters from the expansion as described above. The second one is the number of generated markers

in the source tuple. These markers will be eliminated due to the tuple expansion. Consequently,

the number of markers for the duplicated filters is counted. The minimal expansion cost can

be formulated as a recursive equation, as listed below. The cost will be derived to determine

whether the expansion is effective.

Tsrc

Tdest

Expansion Cost=Duplicate Filter
+New Markers

Number of
Occupied Markers

Fig. 5. The Dynamic Programming for the Filter Expansion.

July 10, 2002 DRAFT

8

DynaP (TS) = min
|TS|
i=1 {DynaP (TS − Ti)

+ min
|TS|
j=1 {Expansion(Ti, Tj)

−Sum of Filters(Ti)}};

(1)

Where

Expansion(Tsrc, Tdest) = 2Dist(Tsrc,Tdest) × |Tsrc|

×Left Tuples(Tdest); (2)

Sum Of Filters(TR,C) =
C≤W∑
col=C

|TR,col|; (3)

Left Tuples(T) = Number of tuples

in the left side of T ; (4)

Though the optimal solution can be derived, the main drawback of the dynamic programming

is its time complexity. The formula can be expressed asf(m) = mf(m− 1) + m2, wherem is

the number of the tuples andm2 is the complexity of determining where a tuple is expanded to.

Thus it results in a exponential cost-functionf(m) ≤ 2m.

C. Semi-Optimization Algorithm

In the previous subsection, we describe the dynamic programming scheme to derive the opti-

mal expansion. However, the complexity is too high to be practical. Consequently, we propose

a heuristic semi-optimization algorithm by restricting the expansion. In the new algorithm, the

tuples are only expanded to those with more filters. This is because the expansion cost for those

tuples with more filters are usually higher. Thus we start the expansion from the tuples with

July 10, 2002 DRAFT

9

least filter. The expansion combinations can be significantly reduced toM × M whereM is

the number of tuples. We further restrict the maximum expansion distance. For each tuples, the

expansion is allowed within a predefine region, such as a3× 3 region from the source tupleTx,y

to Tx+2,y+2. The semi-optimization algorithm is listed below. The tuples are sorted by the num-

ber of filters. In the iterationi (1 ≤ i ≤ M), Cost Old indicates the current cost ofTi without

expansion.Tdest is the best expansion tuple for tupleTi within the restricted region.Cost New

indicates the cost after expanding tupleTi to Tdest. If the Cost New is greater, it does nothing

and continues to process the next iteration. Otherwise, the filters inTi are expanded toTdest.

Semi-Optimization Algorithm

[Functions]

Markers(T) : Generated markers for the filters in tuple T.

Optimal Expansion(T) : Optimal expansion for tuple T

within the restricted region.

[Input] Ascending-ordered Tuples{T1, T2, . . . , TM}

[Output] The Optimized Tuples

For (i = 1; i ≤ M ; i + +) {

Cost Old = |Ti|+ Markers(Ti) + Sum of Filters(Ti);

Tdest = Optimal Expansion(Ti);

Cost New = Expansion(Ti, Tdest);

If (Cost Old ≥ Cost New)

Expand TupleTi to Tdest;

}

July 10, 2002 DRAFT

10

D. Tuple Reduction in Sparse Area

In the section III-C, we eliminate the required storage for the rectangle search to a near-

optimum level. For the sake of higher lookup speed, we present how to eliminate the number

of tuples in advance by using reasonable storage as a tradeoff. In the Internet, the length of

the routing prefixes are always unbalanced-distribution. Thus most existing IP routing lookup

scheme have to deal with this. Although the large filter databases are not commonly available

yet, we believe that the unbalanced-distribution will sustain. We use the random generated filter

database with 100K filters to examine the affection. As shown in Figure 6, we found that the

most filters are located on the region from the up-left tupleT16,16 to the bottom-right tupleT24,24.

This is because the routing prefixes are mainly with length 16-24 bits [2]. By separatin theTS

into nine regions, one can see that only fraction of tuples are occupied by few filters in region

A,B,C,D,G. Though the most tuples in the regionF,H,I are occupied, the number of filters is

relatively sparse as compared to the tuples in regionE. These tuples with few filters are the main

obstacle to the search speed since even with only one filter, one tuple access is still required.

To deal with this, we propose an enhancement to collect filters within the sparse regions. We

set a valueMAX FILTERSand choose a target tuple in the region. Consequently, the nearest

non-empty tuple is expanded to the target tuple. If the number of the filters in the target tuple

does not exceedMAX FILTERS, the procedure will repeat. Otherwise, another target tuple in

this region are chosen and perform the procedure again.

IV. PERFORMANCEEVALUATION

In this section, we show the results of the experiments to demonstrate that the tuple reduction

algorithm can improve both the lookup performance and the memory requirement. To evalu-

July 10, 2002 DRAFT

11

I

A B C

D E F

G H

According to the density of the filters, we can
separate the tuple space into 9 regions.

Fig. 6. The Unbalanced Filter Distribution.

ate the performance of the proposed scheme, we generate the filter databases from the routing

table downloaded from the NLANR [12], which contains 102,309 prefixes with 30 next-hops.

This is because the real filter database is usually considered as secret data in commerce. Ten

〈source prefix, destination prefix〉 filter databases are produced by sampling the routing prefixes

randomly. The minimal database contains 10,000 filters, and the size of database increases by

10,000 filters until it reaches 100,000 filters.

In Figure 7, it shows the filter distributions in theTS for the 100K-filter database. After

applying the semi-optimization algorithm, the remaining tuples are decreased to 85, as shown

in Figure 7(b). But there still remains many tuples which contain few filters (< 100 filters). In

the other words, it takes half memory accesses to probe these 20% filters in theTS. By using

the tuple reduction for the sparse region, the number of the tuples can be reduced dramatically,

as shown in Figure 7(c). The number of occupied tuples is reduced to 45, which shows an

improvement with factor of eight.

July 10, 2002 DRAFT

12

 (a) The distribution of the original database

(350 tuples). It is easy to see that there are
many tuple with few filters and the
performance of searching is poor.

(b) After the semi-optimization, the
number of tuples is significatly reduced,
but there are still some tuples with few
filters.

(c) After collecting the filters on the sparse
regions, the number of the filters is usually
reduced below 50.

Fig. 7. The Filter Distribution after the Filter Expansion.

Consequently, we use the proposed scheme as the combination of the semi-optimization algo-

rithm and the sparse-region reduction. Figure 8 shows the number of the filters and the generated

markers. It is easy to see that the proposed scheme outperforms the native rectangle search since

the number of markers is significantly reduced. The proposed scheme only require about one

quarter storage as compared to the native rectangle search.

1,0
00

5,0
00

10,
000

20,
000

30,
000

40,
000

50,
000

60,
000

70,
000

80,
000

90,
000

100
,00

0

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Nu
mb

er
 of

 F
ilte

rs
+

Ma
rke

rs

Filters

Filter Database
Proposed Scheme
Rectangle Search

Fig. 8. The Memory Requirement.

July 10, 2002 DRAFT

13

To demonstrate the lookup speed of the proposed scheme, we generate 10 million packets

randomly and record the number of the hash probes. The search performance is shown in Figure

9. The proposed scheme probes about half tuples than the native rectangle search to find a

lowest-cost filter. Furthermore, we can find that the curves in the figure is very stable. This is

because that the number of the tuples is not proportional to the number of filters.

1,0
00

5,0
00

10,
000

20,
000

30,
000

40,
000

50,
000

60,
000

70,
000

80,
000

90,
000

100
,00

0

0

50

100

150

200

250

300

350

400

Pr
ob

es

FiltersLinear Search
Rectangle Search
Proposed Scheme

Fig. 9. The Search Performance.

Table I shows the detailed results of the examination. The memory requirements are derived

by using the 80-bit filter. (32 bits source prefix, 32 bits destination prefix, 8 bits cost and 8

bits for the nexthop.) For the proposed scheme, it can achieve about twice throughput as the

rectangle search while only quarter storage is required. By using the commercial available 30-

ns DRAM, the proposed scheme can accomplish one lookup within 570 ns, i.e., provide OC-48

throughput with 256-byte average packet size.

July 10, 2002 DRAFT

14

TABLE I

PERFORMANCECOMPARISONS.

Filter Rectangle Tuple Reduction

Count Search Algorithm

Entries 100,000 1,288,823 335,882

Tuples 366 366 55

Max Probes NA 59 26

Min Probes NA 28 15

Avg Probes NA 44 19

Size (KBytes) 976 12,586 3,280

V. CONCLUSION

In this work, we propose a near-optimal scheme to improve the rectangle search algorithm

in both performance and the storage. We address how the filter expansion can be applied to

the rectangle search to reduce the number of markers and tuples. Due to the high cost of dy-

namic programming, we propose a semi-optimization algorithm by restricting the expansions.

The tuple reduction for the sparse area are introduced to further eliminate the number of tuples.

Through experiments, the proposed scheme can achieve twice throughput while only about quar-

ter storage is required. Furthermore, the proposed scheme can fulfill OC-48 throughput with the

100K-filer database.

REFERENCES

[1] V. Srinivasan, G. Varghese and S. Suri, “Packet Classification using Tuple Space Search,” inACM SIGCOMM, September

1999, pp. 135–146.

July 10, 2002 DRAFT

15

[2] M. Waldvogel, G. Varghese, J. Turner and B. Plattner, “Scalable High Speed IP Routing Lookups,” inACM SIGCOMM,

September 1997, pp. 25–36.

[3] Pankaj Gupta and Nick McKeown, “Packet Classification on Multiple Fields,” inACM SIGCOMM, September 1999, pp.

147–160.

[4] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, “Fast Scalable Level Four Switching,” inACM SIGCOMM,

September 1998, pp. 191–202.

[5] T.V. Lakshman and D. Stidialis, “High Speed Policy-based Packet Forwarding Using Efficient Multi-dimensional Range

Matching,” inACM SIGCOMM, September 1998, pp. 203–214.

[6] Pankaj Gupta and Nick McKeown, “Packet Classification using Hierarchical Intelligent Cuttings,” inHot Interconnects

VII, August 1999.

[7] Thomas Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” inIEEE INFOCOM, March 2000,

pp. 1213–1222.

[8] V. Srinivasan and G. Varghese, “Fast IP lookups using controlled prefix expansion,”ACM Trans. On Computers, vol. 17,

pp. 1–40, Febuary 1999.

[9] M. Degermark, A. Brodnik, S.Carlsson, and S. Pink, “Small Forwarding Tables for Fast Routing Lookups,” inACM

SIGCOMM, September 1997, pp. 3–14.

[10] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory Access Speeds,” inIEEE INFOCOM,

March 1999, pp. 1240–1247.

[11] S. Nilsson and G. Karlsson, “IP-Address Lookup UsingLC − Tries,” IEEE JSAC, vol. 17, no. 6, pp. 1083–1092, June

1999.

[12] NLANR Project, “National Laboratory for Applied Network Research.,” Seehttp : //www.nlanr.net.

July 10, 2002 DRAFT

