
Adaptive Packet Pre-marker for TCP-based Applications
 in DiffServ Networks

Chih-Heng Ke, Ce-Kuen Shieh, *Yao-Ting Chen,*Wen-Shyang Hwang

smallko@hpds.ee.ncku.edu.tw, shieh@ee.ncku.edu.tw
timoth@wshlab2.ee.kuas.edu.tw, wshwang@mail.ee.kuas.edu.tw

Department of Electrical Engineering,
National Cheng Kung University, Taiwan R.O.C.

*Department of Electrical Engineering,
National Kaohsiung University of Applied Sciences, Taiwan R.O.C

Abstract

This paper proposes a control mechanism named PPE (Packet Pre-marking Engine)
in application layer to assist TCP-based connection flow in maintaining end-to-end
throughput in DiffServ networks. The application with PPE built in can adaptively
adjust the DSCP (DiffServ CodePoint) of user’s traffic according to the network traffic
load to inform the service provider what kind of service is needed. When the network is
light-loaded, the user’s requirement can be met and the best service is provided. As the
traffic load becomes heavy, the requirement will fail to meet, and the better level of
service is used instead. In this paper, we will implement an FTP client program with
PPE in a testing DiffServ platform to illustrate the effectiveness of this control
mechanism.

Keywords: DiffServ, TCP, PPE, application

I. Introduction

The Internet has historically offered a best-effort delivery service, where all user packets
are equally treated in the network. Under this kind of service model, it is insufficient to meet
the requirement of emerging real-time multimedia applications, and difficult to provide a
better-than-best-effort service when customers are willing to pay more. Therefore, two
different service models have been defined for network QoS by IETF [1] (Internet
Engineering Task Force): Integrated Services (IS) [2] and Differentiated Services (DS) [3]. IS
is an architecture that provides service discrimination by explicit allocation and scheduling of
resources in the network. However, the complexity and scalability problems of IS has led DS
to draw much attention to address quality of service. DS is based on a simple model where
traffic entering a network is classified and possibly conditioned at the boundaries of the
network, and assigned to different behavior aggregates that are a collection of packets with
common characteristics. Each behavior aggregate is identified by a single DSCP
(Differentiated Service CodePoint). Within the core of the network, packets are forwarded
according to the Per-Hop Behavior (PHB) associated with the DSCP. Per-flow state does not
need to be maintained in the core routers, which leads to increased scalability.

Transmission Control Protocol (TCP) is the most widely used transport layer protocol in
the Internet. Most popular applications, such as Web and file transfer use the reliable services
provided by TCP. Although the well-developed congestion and flow control mechanism of
TCP helps these applications work well in the traditional best-effort service based Internet,
customers’ need and service providers’ expect would not be satisfied. Service providers would
expect to maximize their return on investment in network infrastructure through offering
different better-than-best-effort services and charging more money. In the other hand,
customers would want to pay more to meet their requirement. Therefore, several traffic
management and packet marking mechanisms [4-8] have been proposed for improving TCP

mailto:smallko@hpds.ee.ncku.edu.tw
mailto:shieh@ee.ncku.edu.tw
mailto:timoth@wshlab2.ee.kuas.edu.tw
mailto:wshwang@mail.ee.kuas.edu.tw

performance with minimum rate guarantee in a differentiated service network. However, these
researches put more efforts on network than on applications. We argue that applications
themselves are also important and need to be evolved. The consideration of customer’s
preference is an indispensable necessity for supporting QoS within the end-system, as only
the customer is able to decide which application is important for him/her and should be
preferred. This paper assumes network provides two different levels of service according to
the Type of Service (TOS) bits of user’s traffic, and the usage-based pricing strategy is used to
discourage users from continually requesting the higher level of service. We propose a
control mechanism, which we call a packet pre-marking engine (PPE), in application layer to
help the individual connection flow maintain end-to-end throughput while keeping the service
expenditure as low as possible. PPE measures the return speed of acknowledgement packet of
TCP that approximately represents network status and then adaptively adjusts ToS bits when
sending out customer’s traffic. If the network is light-loaded and measured transfer rate is
above the requested rate, the best-effort packets are generated. When traffic load becomes
heavy and the measured rate falls below the minimum target rate, the ToS bits are set to
inform service provider the higher service is needed.

The rest of the paper is organized as follows: Section II gives an overview of the data
path from application level to kernel space. Section III presents the function of packet
pre-marking engine and Section IV validates the PPE by using FTP with an adaptive packet
pre-marking mechanism. We conclude in section V.

II. Background

The Internet has two main protocols in the transport layer, TCP and UDP. TCP provides
a reliable service and UDP provides an unreliable service. Because there is a distinct
discrepancy in the socket send buffer. We can see clearly from Figure 1 and Figure 2. Every
TCP socket has a send buffer, but UDP doesn’t. In TCP, when an application calls the function
write(), the kernel copies all the data from the application buffer into the socket send buffer. If
there is insufficient room in the socket buffer for all of the application’s data (either the
application buffer is larger than the socket send buffer, or there is already data in the socket
send buffer), the process is put to sleep. The kernel will return from the function write() until
the final byte in the application buffer has been copied into the socket send buffer. Then TCP
takes the data in the socket send buffer and sends it to the peer TCP, based on all the rules of
TCP data transmission. The peer TCP must acknowledge the data from the socket send buffer.
TCP must keep a copy of the data until the peer acknowledges it. On the contrary, UDP does
not have a send buffer. When the application data is copied into a kernel buffer as it passes
down the protocol stack, this copy is discarded by the data-link layer after the data is
transmitted [9].

a p p l i c a t i o n

T C P

I P

o u t p u t q u e u e
d a t a l i n k

a p p l i c a t i o n b u f f e r (a n y s i z e)

s o c k e t s e n d b u f f e r (S O _ S N D B U F)

M S S - s i z e d T C P s e g m e n t s
M S S n o r m a l l y < = M T U -
4 0 (I P v 4)

M T U - s i z e d I P v 4 p a c k e t s

Figure 1 Steps and buffers involved when application writes to a TCP socket

a p p l i c a t i o n

U D P

I P

o u t p u t q u e u e
d a t a l i n k

a p p l i c a t i o n b u f f e r (a n y s i z e)

s o c k e t s e n d b u f f e r (S O _ S N D B U F)

M T U - s i z e d I P v 4 p a c k e t s

Figure 2 Steps and buffers involved when application writes to a UDP socket

III. Packet Pre-marking Engine (PPE)

A packet pre-marking engine (PPE) is mainly made up of two parts. One is the transfer
rate monitor and the other part is the packet pre-marking decision-maker. The transfer rate
monitor snoops on the application’s data copying from user space to kernel space and
measures its observed transfer rate. In the following, the copying rate and transfer rate mean
the same thing and will be used interchangeably. Then the measured information is then
passed to the packet pre-marking decision-maker to decide whether to pre-mark packets or
not. If the observed transfer rate is above the requested target rate, the PPE takes the role of a
passive monitor. If the measured transfer rate is below its requested target rate, the PPE takes
a more active role and starts pre-marking packets. The fraction of pre-marked packets varies
from 0 to 1 depending upon algorithm chosen in packet pre-marking decision-maker.
Selective upgrading the fraction of packets to the higher priority level will help sustain the
transfer rate close to the requested target rate and keep the number of the pre-marked packets
as low as possible.

A. The transfer rate monitor

The main task of the transfer rate monitor is used to measure the data’s copying rate
from user space to kernel space. The measured information implies the end-to-end network
traffic load which can be fed into the packet pre-marking decision-maker that has to decide
whether to pre-mark packets or not. From section 2, we know that the sender using TCP to
transmit data will keep its sending data in the kernel space buffer until the acknowledgements
from the receiver is received. But the sending buffer is limited. Therefore when the
end-to-end network traffic load is heavy and then the speed of the acknowledgement from the
receiver is slow, the sender’s copying rate is also slow because the buffer is filled with the
unacknowledged data. In the other hand, when the end-to-end network traffic is light-loaded
and then the speed of acknowledgement from the receiver is fast, the sender’s copying rate is
also fast because the unacknowledged data is easy to wipe out. From a network application’s
point of view, the copying rate is easy to get. Every time the function write() which is usually
used to send data based on TCP is called and the return value which means the actual data
bytes copying from user space to kernel space is recorded. Then we can get average transfer
rate by dividing the altogether bytes with total transfer time.

B. The packet pre-marking decision-maker

The main purpose of the packet pre-marking decision-maker is to adaptively adjust the
packet pre-marking rate based on the measured transfer rate. We will introduce two different
algorithms to implement the decision-maker. One is the probabilistic marking scheme
proposed in [4] and the other one is 2-bit-states method. In probabilistic marking scheme,
packets are randomly pre-marked and the marking probability (prob) is periodically updated
depending on measured transfer rate and requested target rate. Figure 3 shows the algorithm
when we use the probabilistic marking scheme. Giving an instance to explain the algorithm.
Suppose that initially the prob is set to 70% to pre-mark packets when the transfer rate is less

than the target rate, and the target rate is 100 Kbytes/sec. If the measured transfer rate is
90Kbytes/sec, the prob will become 73%. If the measured transfer rate is 110Kbytes/sec, the
prob will become 27%. One advantage of this algorithm is to decrease the prob quickly when
the transfer rate is higher than the target rate. This helps the number of pre-marked packets as
low as possible. Once the prob is given, a random number generator is used to generate a
number to compare with the prob and then to determine whether to pre-mark packets or not. If
it needs to change the sending service, the function setsockopt() is called to change the ToS
bits in the IP header.

Every update interval
If (transfer_rate < target_rate){

scale = (target_rate- transfer_rate) / target_rate;
prob = porb + scale * (100 - prob);

}
else {

scale = (transfer_rate - target_rate) / transfer_rate;
prob = (100 - prob) * (1 - scale) ;

}

Figure 3 probability marking scheme

 But [4] also shows that probabilistic marking will result in potential network instability
in the network due to large swings in the number of marked and unmarked packets. So we
propose a 2-bit-states method to mitigate the problem mentioned above. Figure 4 shows our
method. The basic idea behind this method is that we use some transient states to minimize
the changes from unmarked packets to pre-marked packets or vice versa so frequently. We use
two counters in our algorithm, and each counter has 4 different states, i.e. 00, 01, 10, and 11.
Upgrade counter is used when network traffic becomes heavy and measured rate is below the
target rate. Downgrade counter is used when network status becomes better and measured rate
is above target rate. 00 represents the default state and best effort service is used. 11 state
means that the current best-effort service is not sufficient to meet the user’s requirement, so
we have to pre-mark packets to indicate the ISP that higher priority service is needed. 01 and
10 are the transient states. Initially, the state is 00. When the measured rate is less than the
target rate, state will change from 00 to 01. But we don’t pre-mark packets immediately. The
network may be congested just for a short period. We just start to pre-mark packets when the
measured rate is below the target rate successively observed 3 times. Likewise, when the
network status becomes better, we don’t use best-effort service packets until the state
changing from 11 to 00.

01

10

11

Measured rate < target rate

Measured rate > target rate

Pre-mark packets

00

01

10

11

heavy-loaded network status light-loaded network status

upgrade counterdowngrade counter

00

Measured rate > target rate

Measured rate > target rate

Measured rate < target rate

Measured rate < target rate

Pre-mark packets

Pre-mark packets

Pre-mark packets

Unmark packetsUnmark packets

Unmark packets

Unmark packets

Figure 4 2-bit-states method

IV. Experimental Results
 To verify our PPE and compare the performance of different methods chosen in packet
pre-marking decision-maker, we use Cisco routers to construct a DiffServ testbed. Figure 5
shows the experimental environment. We will run FTP client programs with PPE built in on

PC sender 1 and PC sender 2. PC Receiver is the destination of traffic sent from these two
senders and has a FTP server program on it. We also use a library libpcap on Linux platform
to implement the Packet Monitor 1 and Packet Monitor 2 to record the information of data
transmission. The network itself consists of 4 Cisco routers. The egress routers, Router 1 and
Router 2, and the ingress router, Router3, are Cisco 1700 routers. The core router, Router 4, is
a Cisco 2621 router which has Weighted Fair Queueing enabled. The bottleneck link of
capacity is 250 Kbytes/sec and lies between Router 4 and Router 3. Other links of capacity is
10 Mbps.

Router 1

Router 2

Router 4 Router 3

PC sender 1

Pc sender 2

PC Receiver

Hub

Hub

Packet Monitor 1

Packet Monitor 2
Figure 5 Experimental Environment

 In the first experiment, we set the target transfer rate of flow 1 on PC sender 1 to
150Kbytes/sec and of flow 2 to 50Kbytes/sec on PC sender 2. The transmitted file length is
10598400 bytes for both senders. First we use probability marking based packet pre-marker
on PC sender 1 and PC sender 2 to transmit files and then record the observation of flow 1 on
PC monitor 1 and of flow 2 on PC monitor 2. Following, we use 2-bit-states marking based
packet pre-marker. Figure 6 and Figure 7 show the observations. From these two figures, we
can clearly see that both probability and 2-bit-states methods can achieve the target rate, 150
Kbytes/sec and 50 Kbytes/sec respectively. It also can be shown that the transfer rate of
2-bit-states method is more stable than that of probability method. But it is interesting to note
that flow 2 achieves about 100Kbytes/sec transmission rate when flow 1 is on. Unlike other
research [7] which aims to make all flows get a share of excess bandwidth proportional to
their target rates in an under-subscribed network. Our goal is to keep the number of
pre-marked packets as low as possible when the target rate of every flow can be achieved. So
flow 1 just needs to get some bandwidth from flow 2 through pre-marking some packets to
achieve 150Kbytes/sec. Then flow 2 gets the remaining bandwidth and achieves the
transmission rate of 100Kbytes/sec when flow 1 is on. Take a closer look in this experiment,
we shows the number of unmarked and pre-marked packets in Figure 8 and Figure 9. We can
find that the number of pre-marked packets of 2-bit-states method is less than that of
probability method. This is because the transient states smooth out the variation and then
reduce the number of pre-marked packets.

0

50

100

150

200

250

0 36 912151821242730333639424548515457606366697275788184

time(s)

tr
an
s
m
i
s
s
i
on

rat
e(
K
B
/s
ec)

2-bit-states

prob

Figure 6 the transmission rate of flow 1 observed by packet monitor 1

0

50

100

150

200

250

300

036912151821242730333639424548515457606366697275788184879093969910

2

time(s)

tr
an
s
m
i
s
s
i
on

rat
e(
K
B
/s
ec)

2-bit-states

prob

Figure 7 the transmission rate of flow 2 observed by packet monitor 2

0

1000

2000

3000

4000

5000

2-bit-states prob

Types

Pa
c
k
e
ts

unmarked

pre-marked

Figure 8 the number of unmarked and pre-marked packets in flow 1

0

1000

2000

3000

4000

5000

6000

7000

8000

2-bit-states prob

Types

P
ack
et
s

unmarked

pre-marked

Figure 9 the number of unmarked and pre-marked packets in flow 2

 Following experiment, we set the target transfer rate of flow 1 on PC sender 1 to
200Kbytes/sec and of flow 2 to 150Kbytes/sec on PC sender 2. This will cause the aggregate
target rate above the capacity of bottleneck link between Router 4 and Router 3. Figure 10
and Figure 11 show that both methods can not meet the requested rate. So we propose to use
two thresholds in packet pre-marking decision-maker to alleviate this problem. One is the
target transfer rate threshold which is the user’s requirement. The other one is the minimum
acceptable sending rate threshold which means that user is willing to start paying more money
to compete for better-than-best-effort service. Therefore we do the experiment again but with
minimum acceptable sending rate set. The target transfer rate and minimum acceptable

sending rate of flow 1 is set to 200Kbytes/sec and 150Kbytes/sec respectively. And the target
transfer rate and minimum acceptable sending rate of flow 2 is set to 150Kbytes/sec and
100Kbytes/sec respectively. Figure 12 and Figure 13 show the results. When flow1 still fails
to achieve the minimum acceptable sending rate, flow 1 gives up the competition for
bandwidth. Then the flow 2 will get the bandwidth and achieve the target rate, 150Kbytes/sec.

0

50

100

150

200

250

036912151821242730333639424548515457606366697275788184879093969910

2

time(s)

tr
a
nsm
i
ssi
on

rat
e
(
K
B
/s
ec
)

2-bit-states

prob

Figure 10 the transmission rate of flow 1

0

50

100

150

200

250

300

036912151821242730333639424548515457606366697275788184879093969910

2

10

5

time(s)

tr
a
nsm
i
ssi
on

rat
e
(
K
B
/s
ec
)

2-bit-states

prob

Figure 11 the transmission rate of flow 2

0

50

100

150

200

250

300

0 3 6 912151821242730333639424548515457606366697275788184879093969910

2

time(s)

tr
an
s
m
i
s
s
i
on

rat
e(
K
B
/s
ec)

Figure 12 the transmission rate of flow 1 with minimum acceptable sending rate set

0

50

100

150

200

250

0 3 6 912151821242730333639424548515457606366697275788184

time(s)

tr
an
s
m
i
s
s
i
on

rat
e(
K
B
/s
ec)

Figure 13 the transmission rate of flow 2 with minimum acceptable sending rate set

V. Conclusion and Future Work

In this paper, we have presented two important components of the packet pre-marking
engine (PPE): the transfer rate monitor and the packet pre-marking decision-maker. The FTP
client program with PPE built in is used to study different requested transfer rate. The
experimental results show the effectiveness of our PPE and the 2-bit-states method is a better
choice to implement the pre-marking decision-maker.

In the future, we will extend the two-priority ToS scheme to multiple priorities. We will
also validate the PPE on more complicated network topology.

References
[1] “IETF home page,” http://www.ietf.org/.
[2] R. Braden, L.Zhang, S. Berson, S. Herzong, and S. Jamin, “ Resource ReSerVation
protocol (RSVP)－Version 1 functional specification,” RFC 2205, Sept. 1997.

[3] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav, E. Davies, B.
Ohlman, and D. Berma, “A framework for differentiated services,” Internet Draft, Feb. 1999
[4] Wu-Chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin, “Adaptive Packet
Marking for Maintaining End-to-End Throughput in a Differentiated-Services Internet,”
IEEE/ACM Transactions on Networking Vol. 7, No. 5, October 1999.
[5] David D. Clark, and Wenjia Fang, “Explicit allocation of best-effort packet delivery
service,” IEEE/ACM Transactions on Networking, Vol. 6, No. 4, August 1998
[6] Xiaoning He, Hao Che, ” Achieving end-to-end throughput guarantee for TCP flows in a
differentiated services network,” Computer Communications and Networks, 2000.
[7] Mohamed A. El-Gendy, Kang G. Shin, “Equation-Based Packet Marking for Assured
Forwarding Services,” IEEE INFOCOM, 2002
[8] K.R. Renjish Kumar, A.L. Ananda, Lillykutty Jacob, “TCP-friendly traffic conditioning
in DiffServ networks: a memory-based approach,” Computer Networks, 2002
[9] W. Richard Steven, “Unix Network Programming,” Volume 1, Networking APIs:Sockets
and XTI, second edition, Prentice Hall Inc., 1998

http://www.ietf.org/

