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Abstract 

This paper presents a routing algorithm with linear time complexity for 

computing the shortest path between a given set of cells on a digital electronic map 

(raster plane). By incorporating the nuclear fission chain reaction scheme, the path 

connection confined to a rectilinear movement in Lee’s algorithm, probably the 

most widely used method for finding paths on printed circuited boards and planning 

robot paths on grid spaces, is therefore overcome by the proposed method. Instead 

of Lee’s rectilinear or staircase approach, an oblique line method is employed to 

obtain the shortest path of two planar cells that is much closer to the actual path on 

the geographical map. This method can be extended to find the shortest paths for q 

vessels with the time complexity of O(qN), where N is the number of cells in the 

raster electronic charts. 
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1.  INTRODUCTION 

In recent years, digital electronic maps (DEM) and ECDIS (electronic chart 

display information systems) have been widely used in marine navigation, GPS 

applications and geographic information systems. Finding the shortest path from 
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any origin, without crossing any barriers, to all destinations in a digital electronic 

map is of great significance. In ECDIS marine navigation, the most common 

application is to determine the shortest or the most economical path leading from 

any original point (cell, port) to the final destination without crossing any landmass 

(also called obstacle or barrier) including shoals.  

Quite a few researchers have explored this field. Lee presented a 

shortest-route algorithm using planar cells applied to electronic circuit arrangements, 

maze games and raster map search problems [1][2][3]. Lee’s algorithm introduced a 

series of 4 cell-connected neighborhoods to determine the shortest path between the 

start and end points. Two linked lists L and L1 are defined to speed up the search and 

trace procedures. In this method the cell list L is an ordered list containing the cell 

names. The auxiliary list L1 is provided for momentary cell name storage. Lee’s 

algorithm has space and time complexities of O(N) for the determining the shortest 

path between two cells. The deficiency in Lee’s algorithm is that it is implemented 

onto a set of square cells in which equal distances are constrained between each cell 

and its’ neighborhood. The cells in his algorithm are therefore limited to extension 

in only four directions and the shortest path is thus limited to a rectilinear instead of 

an oblique line. 

The endeavor in the staircase approach in the free space has never been 

suspended since Lee’s presentation. Recently, Jan [4] applied a radiation scheme to 

the raster map. This method is more extensive in searching for the shortest route 

because an 8 cell-connected neighborhood is used with diagonal cells. However, 

this algorithm increases the time complexity to O(N2) with the same space 

complexity.  

The shortest path algorithm presented in this paper is a substantial 
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improvement of Jan’s previous algorithm by reducing the time complexity to O(N) 

with a combination of the nuclear fission chain reaction method and an extra data 

structure. Our algorithm was developed from an idea that stemmed from the process 

involving neutrons hitting neighboring atoms (neighboring cells) with each 

neighboring atom releasing new neutrons. This chain reaction spreads into the entire 

space until every cell has been split exactly one time. This process is terminated 

when all of the atoms have released their neutrons. 

The earliest work involving this problem was the displacement of an 

autonomous vehicle on Mars produced by Kirk and Lim [5]. In their attempts to 

solve this problem, Larson and Sadiq [6] considered the case of regions forbidden 

only to travel in the case of Manhattan distance. Viegas and Hansen [7] studied the 

problem of determining the shortest path between a given set of origin (or source) 

and destination points with polygonal barriers and concluded that the obstacles 

could be open polygonal line segments and /or not necessarily convex polygons in 

the two-dimensional plane. Chen and Ramanan [8] improved the Euclidean shortest 

path in the presence of obstacles. Recently, Fagerholt et al [9] presented a vector 

model for solving a shortest path with obstacles based on Dijkstra’s algorithm [10]. 

Their worst-case time complexity was O(N2). However, all of the vector-based 

algorithms are still poor in solving cases involving complicated concave obstacles.  

The Lee’s algorithm is considered as a wave propagation problem. It has been 

widely adopted for obstacle avoidance of robot path planning on grid spaces, but it 

is confined to a rectilinear movement. Several approaches have been proposed to 

solve robot path planning problems [11-14]. Amount them, Diaz et al [14] have 

recently proposed a method using both the fast distance transformation (FDT) and 

some topological methods to obtain free space skeleton. The improved Lee’s 
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algorithm presented in this paper can be however applied to the diagonal movement 

to obtain the shortest path of two planar cells with the time complexity of O(N). 

This method is capable of finding the shortest path from any source cell to any 

destination cell with all sorts of complicated obstacles or even in maze. 

2. RASTER DATA STRUCTURES 

An electronic chart data structure can be divided into two classes: vector 

structure and raster structure or cellular organization structure. The raster technique 

is more attractive for two reasons. First, complete areas can be filled in easily with a 

raster technique by finding and turning “on” the pixels that are inside the boundary 

of an area. In vector graphics, a “crosshatch pen” must be used to produce shading. 

Second, the full spectrum of color is easily obtained, while a vector display is 

limited to the number of pens available for a pen plotter [15]. 

Compared with vector graphics, raster graphics has a simpler data structure 

that requires less computation [16][17]. We therefore propose a new algorithm for 

the shortest path problem on raster electronic charts.  

Although the raster structure is particularly suitable for earth surface 

applications, it has some limitations. The cells adjacent to any cell may not be 

evenly spaced, depending on their relative positions to the center cell. For example, 

the cells above, below and on the left/right of the center cell are 1 unit of distance 

from the center cell. The distance of the cells on the diagonal are 2  units from 

the center, as shown in Figure 1. Figure 2 depicts two cell connection styles. The 

number of decimal digits in the irrational number, 2 , is determined by the total 

number of raster cells. For a 4 cell-connected neighborhood, depicted in Figure 2(a), 

we are interested in the cells above, below, and on the left/right of a cell only when 
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all of the cells are equidistant from the center cell. The neighboring cells thus share 

an edge. If the four cells on the diagonal are included, we are working in an 8 

cell-connected neighborhood, as depicted in Figure 2(b). The cells in this 

arrangement are not evenly spaced such that the diagonal cells in the neighborhood 

share only a vertex, while the others share an edge. Because all of the cells in these 

two connection styles have neighbors of the same size and shape, we say that they 

have spatial neighborhood similarity [18]. 

 

2 2  1+ 2 2 1+ 2 2 2

1+ 2  2  1 2  1+ 2
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Figure 1. Illustration of the distances from the center cell to neighboring 

cells on a raster electronic chart. 

Neighbor

NeighborNeighbor

Neighbor

Center

Cell

Neighbor

NeighborNeighbor

Neighbor

Center

Cell

Diagonal

Neighbor

Diagonal

Neighbor

Diagonal

Neighbor

Diagonal

Neighbor

          

     (a) A 4 cell-connected neighborhood.       (b) An 8 cell-connected neighborhood.  

Figure 2. Cells connection styles. 
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A given black-and-white geometric map, where the black and white areas 

represent the land and the sea, respectively, can be converted into a rasterized 

graphic by a scanning process. The final data is then stored in a computer. There 

should not be any significant distortion between the original geometric map and the 

final computerized raster because the size and shape of the cells are exactly the 

same as the pixels. 

3. THE SHORTEST PATH ALGORITHMS 

A navigational track is affected by many natural factors, such as current, wind, 

weather, water density, etc. This study developed an algorithm for the simplest case, 

that is, to determine the shortest route between any two points (assumed to be ports) 

without any natural factor influences. Natural factor influences will be considered in 

our future studies.  

3.1 THE DATA STRUCTURE OF MAP 

In formatting of the cell structure of an electronic chart, the number of data fields is 

flexible for meeting the requirements of the electronic map. There are three 

parameters for cell storage, that is, S/L, AT and Vis. The S/L (Sea or Land) parameter 

distinguishes whether a cell is a landmass (the value is infinity) or navigable area 

(the value is one). The AT (time of arrival) parameter stores the time needed to 

travel from the source cell to the current cell and its initial value is infinity. The 

third parameter Vis (Visited) distinguishes whether the cell has been visited or not 

and its initial Boolean value is false. The initial cell conditions are illustrated in 

Figure 3, where the black cells represent landmasses and the white cells represent 

navigable areas. 
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S/L: ∞

AT: ∞

Vis: false

S/L: 1

AT: ∞

Vis: false

 

Figure 3. Cells data structure. 

In an m × n raster map, any cell Ci,j has three parameters S/Li,j , ATi,j and Visi,j, 

where 1≤ i ≤m, 1≤ j ≤n. 

3.2 THE STRUCTURE OF A PARTICULAR VOYAGE 

The data structure of a particular voyage for this algorithm, as shown in Figure 4, 

includes the particular voyage (or vessel path), the source cell, the destination cell, 

the speed, etc. The speed field stores the vessel speed, which is the number of cells 

traveled by the vessel per unit time. The vessel path is stored in a linked list in 

which each node represents a cell in the path. Each node of the linked list for the 

path contains four fields, Row, Col, AT and Next. The Row and Col field store each 

cell’s coordinates, i and j, respectively. The AT field stores the ATi,j value of the cell 

Ci,j . The Next field is a link that points to the next node. By modifying the value of 

the AT field in the linked list of the path, we can adjust the vessel speed .To illustrate 

multiple vessels with different speeds on one chart, the AT field values should be 

modified. The AT field detail for the plural pairs shortest path-searching algorithm 

will be discussed in Section 3.5. For a vessel in a one pair shortest path, variations 

in speed are ignored to simplify the case. 
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Figure 4.  The data structure of a particular voyage. 

If a vessel travels from the source cell, located at (2, 2), to the destination cell 

(4, 3) through the cell (3, 2), the data fields (Row, Col, AT) in the first node of its 

linked list can be represented as (3, 2, 1), as shown in Figure 5. 
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Figure 5.  An illustration of the data structure of a particular voyage. 

3.3 THE DATA STRUCTURE OF ALGORITHM 

The data structure of this algorithm is the buckets ß that consists of a sequence 

of initially empty queues with continuous integers in the range 0 to ATmax, where 

ATmax is the maximum AT and obviously less than N. Each queue is called a bucket 

LLl that stores a series of cell indices, where l is both the index and the header value 

of bucket LLl  and  l ≤ ATi,j < l +1 for the ATi,j, values of the cells in the bucket LLl. 

Path 

Source 
Cell 

Destination 
Cell 

Speed 

Row1 Col1 AT1  

    

Row2 Col2 AT2  
The shortest path 

presented by a linked 

list 
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The actual AT values for cells in the map data structure (considered as a matrix) can 

be easily accessed using a sequential allocation equation. For an m × n raster chart, 

the first step in the algorithm is to identify a source cell (expressed by S) and a 

destination cell (expressed by D). According to the algorithm, the AT value of the 

source cell is 0 and the location of the source cell S will be moved into the first 

bucket, LL0. The remaining cells that spread from S will be moved into their 

corresponding buckets according to their AT values. The AT value of any cell would 

be increased at most by 2  from its neighboring cell. Therefore, the number of 

buckets can be reduced to 3 (LL0, LL1, LL2) for the purpose of recycling since the 

updated cells would be moved into one of the next two buckets. A temporary bucket 

TL is applied to the algorithm to store the indices (i, j) of visited cells until its final 

value is obtained once all of the cells in the current bucket have been processed. An 

example of the buckets for the original and reduced data structure is depicted in 

Figure 6(a) and 6(b), respectively. 
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Figure 6. The data structures of algorithm. 
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3.3 THE SHORTEST PATH ALGORITHM FOR A SINGLE PAIR 

In order to reduce the memory space, the ß buckets are replaced with three 

circular buckets. The three buckets marked as LLindex, where the index is an integer 

variable and 0 ≤ index ≤ 2. 

We also defined a function named Update_AT&Vis to support the structured 

program. The purpose of the function Update_AT&Vis is to update the ATi,j and Visi,j 

values of Ci,j. There are two input parameters in this function named (i, j) and new_ 

ATi,j, the updated ATi,j. 

Function Update_AT&Vis ((i, j), new_ ATi,j) 

Step 1: Decide if the indices of Ci,j (also called (i, j)) should be moved into a 

temporary bucket TL . 

If Visi,j is false, then the Boolean value is updated to true and the Ci,j 

indices are moved into the temporary bucket TL.  

Step 2: Access to Ci,j in the memory is obtained using a sequential allocation 

equation Loc(i, j) = Loc(0, 0) +n*i + j, to update its ATi,j value for a  

m × n raster map, where Loc(i, j) is the memory location of Ci,j in a 2D 

array. 

      If new_ ATi, j is less than ATi, j, then ATi, j = new_ ATi, j. 

END {Function of Update_AT&Vis } 

Algorithm 1: The shortest path 

Initialization:  

For each cell, Ci,j (S/Li,j , ATi,j, Visi,j) in an m × n raster chart, the initial  

S/Li,j value is one if cell Ci,j is in the sea area or infinity if it is in the 

landmass. ATi,j = ∞ and Visi,j = false for all cells, where 1≤ i ≤m, 1≤ j ≤n. 
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The initial value of the index is 0. 

Step 1:  

Step1.1:   Identify a source cell S. If the source cell S/Li,j = 1 then 

update ATi,j = 0 otherwise return the error message “The 

source that you spotted is in the landmass”. 

Step 1.2:  Identify a destination cell D. If the destination cell’s S/Li,j = ∞ 

then return the error message “The destination that you 

spotted is in the landmass”. 

Step 1.3:  Set the speed unit of the vessel to the cell/unit time. 

Step 2:  Compute the time of arrival between the source cell and the 

remaining cells. 

Step 2.1:  Move the source cell S into the temporary bucket TL and 

update the source cell’s Visi,j to true. 

Step 2.2:  Move the source cell S into the bucket LL0. 

Step 2.3:  For each cell in the LLindex, update the AT i,j of its neighboring 

cells.  

Step 2.3.1: Remove the indices of the first cell Ci,j from the front end of 

the LLindex. 

Step 2.3.2: Update the time of arrival of the 8 cell-connected neighbors of 

cell Ci,j. 

For each Ci,j’s neighbor Ci’,j’, if the cell’s S/L=1 then call 

Update_AT&Vis ((i’, j’), ATi,j+1) for the 4 cell-connected 

neighbors; otherwise call Update_AT&Vis ((i’, j’), 
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ATi,j+ 2 ) for the four diagonal neighbors. 

Step 2.3.3: Iterations 

If LLindex is not empty, then repeat steps 2.3. 

Step 2.4:  Move the cells’ indices in the TL into their corresponding 

buckets. 

Step 2.4.1:  For all the indices in the TL, move (i, j) from TL        

into   3mod, jiATLL   

Step 2.4.2:  If the TL is empty, then update the index value 

index = (index+1) mod 3. 

Step 2.5:  Iterations 

If two consecutive buckets are not empty, then repeat step 2.3. 

Step 3: Backtracking 

If the ATi,j value of the destination cell is infinity, return the error 

message “There is no path between the source cell and the destination 

cell”; otherwise backtrack the shortest path from the destination cell by 

selecting one of the 8 cell-connected neighboring cells with the 

smallest time of arrival value and repeating the selection step by step 

until the source cell is reached. 

Step 4: Reversing the path 

  Reverse the path derived from step 3 to obtain the desired shortest 

path. 

END {Algorithm of the shortest path} 
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To explain the detailed computation of the shortest path algorithm for a single 

pair, an example is illustrated in figure 7. 
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(b) Execution result of step 1 and step 2. 
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(c) Backtrack the shortest path from destination to source, then reverse the 

path derived from the backtrack step to obtain the desired shortest path. 

Figure 7. Illustration of the shortest path algorithm on an 8 × 8 raster. 
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If the improved Lee’s path routing is limited to only four rectilinear directions, 

the routing problem is therefore characterized as a Lee’s path algorithm. Compare 

the case of the Lee’s algorithm shown in Figure 8 with the improved Lee’s 

algorithm shown in Figure 7(c), the latter algorithm obviously shortens the distance 

of the connection from source to destination.  
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Figure 8. Illustration of the Lee’s algorithm on an 8 × 8 raster.  

3.4 PERFORMANCE ANALYSIS 

 The following lemma is applied to prove the correctness of this algorithm, that 

is, the path obtained from this algorithm is indeed the shortest. 

Observation 1: Once all cells of the LLindex have updated the AT i,j of its 

neighboring cells and the LLindex is empty, all cells in the TL should 

be moved into either LL(index+1) mod 3  or LL(index+2) mod 3 according to 

their ATi,j values. 

According to steps 2.3.2 and 2.3.3, the minimum ATi,j value of cells in 

the TL would be no less than (the minimum ATi,j value in the   

LLindex )+1 and the maximum ATi,j value of cells in the TL would be no 

greater than (the maximum ATi,j value in the LLindex )+ 2 . The LLindex 

is empty when step 2.3 is completed. After the computation of steps 
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2.4.1, all of the cells in the temporary bucket TL should be moved into 

either LL(index+1) mod 3 or LL(index+2) mod 3 according to their ATi,j values.  

Observation 2: All of the previous buckets should be empty in step 2.3. 

Lemma 1: The ATj values of cells in the LLindex will be minimized in step 2.3. 

Proof: This lemma is proven by its contradiction. For the ATi,j value of any cell 

Ci,j in the current bucket LLc, where 0 ≤ c ≤ ATmax, we assume that 

there exists a smaller ATi,j
’ value updated by another cell Ci’,j’ that has 

ATi’,j’ value. According to step 2.3.2, the minimum value of cell Ci,j, 

ATi,j, should be replaced by ATi,j
’if the cell Ci’,j’ is in one of the previous 

buckets LLl where 0 ≤ l ≤ c-1. If the cell Ci’,j’ is in the current or one of 

the higher buckets LLl, where c ≤ l ≤ ATmax, we know that           

c ≤ ATi,j < c +1, c ≤ ATi’,j’ . ATi,j
’=  ATi’,j’ + d, where the distance 

between two neighboring cells, d, is either 1 or 2 , from the 

definition of the ATi,j value of a cell Ci,j in bucket LLl. Thus, it can be 

concluded that ATi,j < c +1 ≤ ATi,j
’ which is in contradiction to the 

assumption. 

  We then conclude that the ATi,j values of cells in the LLindex in step 

2.3 will not be decreased and they are minimum values. 

Theorem 1: The shortest path between any two different cells on a raster chart 

can be obtained from the algorithm if it exists.  

Proof: If we determine a source cell, all of the cells surrounding the source cell, 

except the landmass, will be inserted into and, later, removed from the 

corresponding bucket exactly once during the computation. According 

to lemma 1, all of the ATi,j values of these cells will be minimized after 
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the computation. Thus, we can obtain the shortest path from the 

algorithm. 

In the following, we prove the time complexity of this algorithm. 

Lemma 2: Each cell in the electronic raster chart, except the land cell, will not 

be moved back to the bucket once it is removed. 

Proof: In this searching algorithm, the if and only if condition for the indices 

of cell Ci,j to be moved into the bucket again is that the ATi,j value of 

the cell must be updated to a smaller value. According to lemma 1, 

each cell removed from the bucket has the minimum value. Therefore, 

the ATi,j value of the cell cannot be updated to a smaller value once the 

indices of cell Ci,j are removed from the bucket. They will not be 

moved back into the bucket again. 

Theorem 2: The shortest path algorithm has a time complexity of O(N). 

Proof: The steps 1, 3 and 4 of this searching algorithm have a time complexity of 

O(N). According to lemma 2, once the indices of cell Ci,j are removed from 

the bucket, it will not be moved into the bucket again. This means that the 

number of cells removed from the bucket are no greater than N during the 

process. Each cell has the time complexity of O(1) to update its AT values 

for the 8 neighboring cells. We therefore know that the time complexity 

for step 2 is O(N). It is concluded that the shortest path has the time 

complexity of O(N) from steps 1 to 4. 

 A test program for one pair is illustrated in Figure 3.5. The Figure 9(a) 

identifies the source cell (expressed by S) and the destination cell (expressed by D). 

Figure 9(b) indicates the shortest path presented by a curve. Two more complicated 
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examples are depicted in Figure 9(c) and (d) as well. 

  

(a) Determine the source cell and the destination cell.  (b) Result from algorithm 1. 

  

(c) Crescents pattern.             (d) Maze pattern  

Figure 9. Illustration of a test program for one pair. 

3.5 THE SHORTEST PATH ALGORITHM FOR PLURAL PAIRS 

The simplest method to solve the shortest path problem for plural pairs is to 

apply the algorithm introduced in section 3.4 to the individual vessel repeatedly. 

The difference between the shortest path algorithms for plural and single pairs is 

that the shortest paths for plural pairs must be obtained and displayed at the same 

time. Many vessels may have different speeds, thus an adjustment is made for the 

various speeds in the algorithm. 
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The AT values for the vessel shortest path are stored in the linked list as shown 

in Figure 4. We can modify the ATi,j value of the corresponding Ci,j for the 

speed-varying system. The method for updating the ATi,j value for each node in the 

vessel shortest path is to divide the value of the AT field by the value of the speed 

field. Once the ATi,j value has been updated, the ATi,j value of each node in the 

vessel shortest path will be smaller if the vessel speed is larger than 1 cell/unit time. 

Otherwise, the ATi,j value will become larger if the vessel speed is less than 1 

cell/unit time.     

Algorithm 2: The shortest paths for plural pairs 

Step 1: Obtain the shortest path for each vessel.  

For each vessel Vesselk, the source cell Sk and destination cell Dk to the 

shortest path algorithm are indicated. The corresponding shortest path is 

obtained, where 1 ≤ k ≤ q, respectively. 

Step 2: Update the AT values of the cells in the shortest path for each vessel. 

The original AT values divided by the speed are used to update the new 

AT values for the cells in the shortest path for each vessel.  

Step 3: The collision detection. 

If a potential collision is indicated, return an error message otherwise 

return “The shortest paths are obtained”. 

END {Algorithm for the shortest paths of plural pairs} 

An example of the shortest path algorithm for plural pairs is illustrated in 

Figure 10. The shortest path algorithm should be called q times for q vessels in 

executing of the shortest path algorithm for plural pairs, its time complexity thus is 

O(qN). 
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(a) Identify the source and destination cells.  (b) Result of algorithm 2. 

Figure 10. Illustration of a test program for plural pairs. 

4. CONCLUSION 

This paper presented a planar shortest path algorithm on electronic maps based on 

the nuclear fission chain reaction scheme. In this study, we improved Lee’s algorithm 

from a 4 cell-connected neighborhood to an 8 cell-connected neighborhood. The 

shortest path search, without crossing any barriers, was carried out along both oblique 

and rectilinear lines instead of rectilinear lines alone. Our new algorithm has O(N) 

time and space complexities for a single pair shortest path search. When q vessels 

navigate in the same sea area, the algorithm has a time complexity of O(qN). This 

idea can also be applied to marine search and rescue or sea interception systems 

performed on raster electronic charts. Especially for a camera-based monitoring 

system [19], the shortest path planning for robot motion on an image plane can be 

easily obtained by the proposed method. 

In our future research, this method will be extended from a two-dimensional 

raster plane into a three-dimensional voxel space and from a static system into a 

dynamic (time varying) system by adding spatial and time parameters to the cell, 

respectively. 
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