On-line Scheduling with Partial Job Values

Francis Y. L. Chin * Stanley P. Y. Fung |

International Computer Symposium 2002

Workshop on Algorithms and Computational Molecular Biology

Abstract

We consider a new form of on-line preemptive scheduling problem in which jobs are not
required to be completed to get the value; instead they get partial value proportional to the
amount processed. This problem first arises as a quality-of-service problem in transferring
multimedia content over a narrowband network. Previous heuristics for this problem are
2-competitive. In this paper we propose a new heuristic that achieves an improved com-
petitive ratio when the importance ratio is bounded. Specifically, for job weights within
the range [1..B], our heuristic is (2[lg B] + 3)/([lg B] + 2)-competitive, and the bound is
tight.

Keywords: Online algorithms, scheduling, competitive analysis, partial job values.

*Department of Computer Science and Information Systems, The University of Hong Kong, Hong Kong.
E-mail: chin@csis.hku.hk. Tel: (852) 2859-2178. This work is supported in parts by an Earmarked Research

Grant (RGC).
"Department of Computer Science and Information Systems, The University of Hong Kong, Hong Kong.

E-mail: pyfung@csis.hku.hk. Tel: (852) 2857-8262. Contact author.

1 Introduction

In the traditional online scheduling model, it is required to schedule tasks so as to maximize
the total value received for completing the jobs [1, 6]. Partially-completed jobs (i.e., those that
cannot be completed before the deadline) get no value. In this paper we consider a variation
in which partially-completed jobs get a value proportional to the amount processed. This
problem first arises in multimedia content transmission over a network with low bandwidth
[3], but it also has other natural applications.

A request (or job) is specified by a 4-tuple (s,t,p,w) where s is the release time, t is
the deadline, p is the processing time (also called length), and w is the weight, i.e., the value
obtained per unit time spent on processing the job. For a job ¢, these parameters are sometimes
denoted by s(q), t(q), p(¢) and w(q). The span of a job, denoted by span(q), is the time interval
[s(g),t(g)]- Scheduling is done in a uniprocessor setting, i.e., at most one job can be processed
at any time moment, with preemption allowed at no penalty (a job can be resumed at the
point where it was last preempted). A residue job is a job that is partially and not totally
completed. A job is pending if it is not completed and its deadline has not been reached. A
job g processed for a total time I(g) gets a value I(q) X w(q).

The scheduler needs to schedule the jobs online, i.e., the jobs are only known when they
arrive and the scheduler cannot make changes to the schedule in the past. When a job arrives,
all its details, including the processing time, are known. Online algorithms are commonly
analyzed in terms of their competitive ratios, introduced in [8]. An online algorithm is c-
competitive if for any instance of jobs, the value produced by the online algorithm is at least
1/c that of the optimal offline algorithm. Competitive analysis and various forms of online
scheduling are discussed in detail in [2, 7].

In [3], two heuristics for this problem are described:

FIRSTFIT (FF): always serves the heaviest residue job.
ENDFIT (EF): starting from the heaviest residue job, allocate each residue job to the latest
possible timeslot(s) within its span.

For example, given ¢; (0, 6,2, 1),42(0, 3, 2,2),43(0, 5, 2,3), FF would schedule (g3, g3, g2, q1, q1]

in the unit timeslots in this order, which is not optimal. EF would produce an optimal schedule

[qla 92,492,943, 93, 91]

Both heuristics are shown to be 2-competitive and their bounds are tight. FF performs
poorly when a job gpq; with much later deadline is served, but only slightly heavier than the
other job ¢; whose deadline is much earlier, and consequently ¢; is not served. On the other
hand, EF performs poorly when a very light job ¢gr is served immediately instead of another
much heavier job g; because of g;’s later deadline. But again ¢; may not be served because
of the arrival of some heavier job later. In fact, these two schedulers are complementary to
each other, in the sense that ENDFIT will usually perform well on those instances which
FIRSTFIT performs poorly and vice versa. This suggests that the combination of those two
heuristics might be a promising approach for a new scheduler with better performance. FIT
is a new scheduler which specifies a condition for choosing ¢,4; or ggr. Unfortunately, FIT
is also 2-competitive, but performs better when the importance ratio B is bounded, where the
importance ratio is defined as the maximum ratio of job weights.

In Section 2, we describe our new scheduler FIT, that is a combination of FF and EF, and
show that it is 2-competitive. This bound is tight and cannot be improved by choosing other
parameters for the condition. In Section 3, we show that FIT is (2[lg B] + 3)/([lg B] + 2)-

1. This competitiveness bound is tight and can be much less than 2, e.g., FIT

competitive
is 1.75-competitive when B = 4. Section 4 concludes the paper. Due to space limitations, we

only give sketches in some of the proofs.

2 The Scheduler FIT

Intuitively, gmaz Or ¢rr is scheduled based on their weights. g4, is scheduled when w(gmaz)
is much larger than w(qgr), i-e., W(gmaez) > rw(ger) for r > 1, otherwise qgF is scheduled.

Formally, for a fixed r > 1, our scheduler FIT-r behaves as follows:

Let gynqz be the heaviest job, and ggr be the first job to be scheduled (possibly
partially) for a time of [gr in an EF schedule (called EFplan). If w(qpr) <

W(@maz) /Ty Gmaz 18 scheduled for a time of min(lgp, p(¢maz)). Otherwise grp is

!Throughout this paper Ig denotes log to base 2.

scheduled for a time of [gr. The scheduler is invoked again after the scheduled job

has completed its scheduled time or if new jobs arrive 2.

2.1 Preliminaries

Without loss of generality, we restrict the analysis to a discrete version in which all job times
are integers. We also assume all jobs are of unit length, i.e., p = 1. Any integer-length job
(s,t,p, w) can be dissected into a set of p unit-length jobs (s,t,1,w) without affecting the
schedules. These together mean that the FIT scheduler is being invoked at every integer time.
We also assume the optimal scheduler can only change its job at these integer times. It could
be shown that the general case has the same competitive ratio.

Time is divided into timeslots (or simply slots) of equally long time intervals. For any two
slots s and s', s < s’ denotes s is earlier than s’. We can also use s to denote an instance of
time: we say ‘time s’ to refer to the moment at the immediate beginning of slot s.

Let OPT and FIT denote the optimal offline schedule and the schedule produced by the
FIT-r scheduler, respectively. H(s) denotes the job in slot s in schedule H; in this paper
H = OPT or FIT. An FF-slot is a slot in F'IT where ¢qy,,, is picked, and similarly an EF-slot
is a slot in FIT where qgF is picked.

It would be convenient to our analysis to sometimes think of the FIT scheduler as a 2-stage
process. Everytime the scheduler is invoked, it first goes into the EF-stage to compute F Fplan
for all residue jobs (including the jobs just released), finds ¢rr, and then determines whether
Gmaz 18 heavy enough to be chosen instead (the FF stage). We use EFplan(t,s) with s >t to
denote the job in slot s in this plan generated at time ¢. A pending job in EFplan is said to
be planned.

The main idea of the competitiveness proof is to ‘charge’ the jobs in OPT to jobs in FIT.
One straightforward charging scheme is to charge OPT(s) to FIT(s) if the OPT(s) is not
too much heavier than FIT(s), otherwise charge OPT'(s) to itself in the FIT schedule. In
the following we shall show that when this happens, OPT'(s) must be an FF-job in the FIT

schedule.

®For jobs with the same weight, we assume that ties are broken in a consistent manner. See [3].

First of all, it is easy to see that if a slot s; is an EF-slot, FIT(s1) = g, then all slots within
span(q) are planned with jobs not lighter than ¢ at time s;. In the following we sketch the
proof that this will remain true for all later times, even after the arrival of new jobs and/or

some FF-slots in span(q).

e The arrival of a new job causes FFplan to be changed, but only to ‘squeeze’ the new
job into the plan, and ‘pushes’ other jobs lighter than itself to earlier times, or even
discards them if there is no available timeslots left. This will make the planned jobs

within span(g) no lighter.

e If some slots are FF-slots in span(g), these FF jobs must be ‘new’, i.e., not released
yet at time si, otherwise they would be ‘heavy enough’ to make s; become an FF-slot.
Therefore the ‘old’ jobs in EFplan (i.e., those in EFplan at time s1) are still pending,

and the job weights therefore would not decrease.

The above discussion shows that: ‘if ¢ is a job, s1 is an EF-slot, and FIT'(s1) = ¢, then for
all slots within span(q), EFplan contains jobs no lighter than ¢ at all later times.’
The following lemma is the contrapositive version of the above statement (for a particular

slot s). Since it will be used frequently later, we state it explicitly.

Lemma 1 Suppose s1 and sy, are slots (s > s1), FIT(s1) = OPT(si) = q, and ¢' = FIT(sy,).
If s is an EF-slot and w(q) > w(q'), or sy is an FF-slot and w(q) > w(q')/r, then s1 must be
an FF-slot.

Lemma 1 shows that when OPT(s) is not too light compared to FIT(s), and OPT(s)
exists in FIT earlier, then it must be in an FF-slot. But it does not guarantee the existence of
the slot in the first place. The next lemma establishes the existence of a FIT slot for charging

jobs in OPT when, at certain slot s, OPT(s) is much heavier than FIT(s).

Lemma 2 For a slot s, if w(OPT(s))/w(FIT(s)) > r, then there exists an FF-slot s' < s
such that FIT(s') = OPT(s).

Proof. (Sketch) If OPT(s) is not in FIT before s, then it will be pending in FIT at time s,

thus it (or some heavier job) would be scheduled as an FF-job in s rather than the current

FIT(s). Therefore OPT(s) must be in a slot s’ in FIT before s. That it is an FF-slot follows
from Lemma 1, since we have w(FIT(s")) = w(OPT(s)) > rw(FIT(s)). 0

2.2 Charging Groups

We want to ‘charge’ the jobs in OPT to jobs in FIT. To achieve a good competitive ratio we
need to guarantee the jobs in OPT are not too much heavier than that in FIT. Naturally, we
can charge the OPT job to the FIT job in the same slot. If the OPT job is much heavier,
Lemma 2 tells us that this heavy job appeared in FIT in an earlier FF-slot, and we may charge

to there instead. This leads us to define the following charging rule:

Charging Rule.
For every slot s, if OPT(s) appears in an FF-slot s’ in FIT, charge OPT(s) to

FIT(s") (note that s’ may be earlier than, same as or later than s), otherwise

charge OPT(s) to FIT(s).

Fig. 1 shows some possible scenarios. It is easy to see that all jobs in OPT are charged.
Each EF-slot in FIT is charged at most once, each FF-slot charged at most twice, and charging
to a different slot is possible only if the slot being charged is an FF-slot.

A charging group of s consists of the job at slot s in FIT and the jobs in OPT that charge
to it. An FF charging group of s (or FF-group for short) consists of a job y in an FF-slot s,
the same job y in OPT in (possibly) another slot s’, and may also include a job z in OPT(s)
charging to y in FIT. We denote this by (z,y;y). An EF charging group of s (or EF-group)
consists of a job y in an EF-slot s and the job x in OPT(s) charging to y. We denote this by
(z;y). When no confusion arises, the z and y inside the symbols (z,y;y) and (z;y) may also
denote the weight of a job instead of the job itself. Fig. 1 shows some charging groups. Define
the charging ratio of a charging group to be the sum of job weights in OPT to the job weight

in FIT of that charging group, i.e., (x +y)/y for an FF-group and z/y for an EF-group.
Lemma 3 The charging ratio of any charging group is at most max(2,r).

Proof. Consider any slot s in FIT and its associated charging group, and let x = OPT(s),y =

— 10

40

— 20— 1 1
15 15 o 21
21 s ——19
19 18 1 12
151119 | 40, 115:118 1 21 b1 9/ 3 1211140 19112
Om‘lll/,' ‘l[wl// i: lil
AT o 2 1 i L W ‘ \ !
10} 140 ;71" 21118 9.4 3, 1111215401112
EF (15;10) FF (15,21;21) FF (1,9,9) EE gg%;zlll))
FF (19,40;40) EF (18,18) FF (03:3) FF (19,40:40)
EF (0;1) EF (12:12)
(€) (b) © (d)

Figure 1: Charging groups. Numbers represent job weights and we assume r = 2.

FIT(s).
i. If s is an EF-slot and
a. w(z)/w(y) < r (e.g., Fig. 1(a) first group), the charging group is (z;y) and the
claim holds.

b. w(z)/w(y) > r (e.g., Fig. 1(a) third group), then z must exist in an FF-slot s’ < s
in FIT (Lemma 2). z is therefore charged to FIT(s') and not y. Thus the charging

group is (0;y), with charging ratio = 0.
ii. if s is an FF-slot and

a. w(z)/w(y) <1 (e.g., Fig. 1(a) second group), the charging group is (z,y;y) with
charging ratio = (w(z) + w(y))/w(y) < 2.

b. w(z)/w(y) > 1 (e.g., Fig. 1(c) second group), then z must exist in a slot s’ < s
in FIT (otherwise y is not the heaviest pending job at time s), and s’ must be an
FF-slot (Lemma 1). Therefore = is charged to FIT(s') and not to y. Thus the

charging group is (0,y;y), giving a charging ratio of 1.

Theorem 1 FIT-2 is 2-competitive and the bound is tight. In fact FIT-r is no better than

2-competitive for any value of r.

Proof. By setting r = 2, all charging groups have their charging ratios bounded by 2 (Lemma 3).
Thus FIT-2 is 2-competitive.
Suppose r > 2. We consider the following instance for large k:
2% copies of (0,2¥%1,1,1);
fori=k,k—1, ..., 0, 2! copies of (2k+1 — 2¢+1 2k+1 1 phk+i—i).
1 copy of (2k+1 —1,2k+1 1 pk+1),
Fig. 2 shows the instance and the schedules for £ = 2. FIT chooses ggr in all slots. The

competitive ratio is

2kpr 4 4 Akl o ork ekt g ekt N rEtl p okt (14 2/r+.) TF r(1 12/,«)

2k 4+ Ark=2 4 2pk=T ppk L ekt D T ekt LR (1 4 2/r +.) 4 (L

Suppose r < 2. Consider the following instance: (Fig. 3)
fori=k,k—1, ..., 0, 2" copies of (2k+1 — 2¢+1 ok+1 1 pk—i).
1 copy of (2F+1 — 1,2k+1 1 rk);
for 0 < <261 — 1, (4,4 + 2641 + 1,1, 77® + €) where f(i) = k + 1 — [Ig(2¥*+! —4)].

FIT chooses gmqq in all slots. The competitive ratio is (neglecting the small €)

2k 4 2rk 7 arh 2 4 4 2F) prk kL 222)R — 1 —2/r 47
(rk + 2rk=1 4 4pk=2 4 4 2k) 4 ph+l 1—(2/r)ktl 47 —2

when k is large and r < 2, (2/7)* dominates, giving a ratio of 2.

When r = 2, both schedules gives a competitive ratio 2 when k is large enough. O
f { w=1 4 copies all job unit length

w=r 4 copies
w=r?2 2 copies

L _3

A

r r r r I'2 TZ I'3 f3
OPT

Figure 2: The instance for Theorem 1 (r > 2) and the schedules.

w=1 4copies all;job unit length

W=t 2icopies
w=r2
L W=
w=1l+eg
WE 1+
w= 1+
w= 1+
W=r+ e
WET +g
war? e
w=r3+¢
[R T RO S O O T I N O A O O O R O
OPT
FIT
1:1 1 1:r r 2i 3

Figure 3: The instance for Theorem 1 (r < 2) and the schedules.

3 Competitiveness of FIT with bounded B

Let B denote the maximum ratio of job weights, i.e., all job weights w satisfy 1 < w < B. This
is called importance ratio. The constructions in Theorem 1 produce instances with unbounded
importance ratio. In real applications, the importance ratio tends to be a small constant or
may be known in advance; hence B can be considered as part of the input and bounded.
The next subsections show that charging groups can be ‘linked’ together, and prove that such

linkages can be used to lower the competitive ratio in the analysis.

3.1 Links

When we consider each individual charging group, the 2-competitive ratio is tight only in case
i.a. and ii.a. of Lemma 3. In those cases where the OPT job charged to the FIT job in the
same slot is sufficiently large, the OPT job is actually planned in a later slot in EFplan at
that time. For example, in Fig. 1(a),(b), the job with weight 15 is originally planned in the
second slot, only to be discarded later due to arrival of a heavier job. This heavier job belongs
to another charging group. In the following, we show that when a charging group has charging
ratio larger than a certain value, a ‘link’ can be generated to connect it to another charging

group (later we will see that these values are 1 for EF-group and 1 + 1/r for FF-group). We

shall make sure that the charging group being connected to is ‘heavier’ than the previous group.
The links may continue (i.e., this group may link to yet another group), but this linking cannot
be continued indefinitely because there is a bound on B. It will terminate when it reaches a
group that has a small charging ratio. We show that, when we consider all the charging groups
linked in this way together (rather than each one separately), the charging ratio is smaller.
Formally, a link points from the OPT job of a charging group (the ‘z’ job in a FF-group
(z,y;y) or EF-group (z;y)) to the FIT job of another later charging group. Initially, it
represents the situation that the OPT job is planned in a later slot in F'I'T while OPT schedules
it in the current slot. These planned jobs, however, may later be dropped out of the schedule
because of the arrival of heavier jobs. To model this, we require all links to satisfy the following

two link constraints:

o (weight constraint) For any link x; — y;, if y; is in an EF-slot, then w(y;) > w(z;); if

yj is in an FF-slot, then w(y;) > rw(z;).

o (span constraint) For all links x; — y;, y; must be in a slot within span(z;).

We construct the links incrementally while sweeping the schedules from beginning to end.
Note that, during this process, links point to future slots in FFplan, and therefore they have
to satisfy the weight constraints for EF-slots while sweeping.

When a slot s is first swept, the following linking rules are used to determine when links
are generated and where they initially point to. (The location may need to be changed subse-

quently when we further sweep the schedules, see Lemma 5.)

Linking Rules. For each FIT slot s, a link is generated if and only if:

i. sis an EF-slot in a charging group (z;y), 1 < w(z)/w(y) <.

ii. sis an FF-slot in a charging group (z,y;v), 1/r < w(z)/w(y) < 1.

In both cases, link z to FIT(s"), where s” is a FIT slot such that EFplan(s, s") = x.

The following lemma shows that charging groups that have a charging ratio ‘too large’

must be able to generate a link according to the above rules.

10

Lemma 4 For any EF-group with charging ratio > 1, or any FF-group with charging ratio
> 1+1/r, a link can always be generated according to the above rules, while satisfying the link

constraints.

Proof. It is clear that any charging group with ratio larger than the specified limits must
belong to either one of the cases in the linking rules, and that the link generated will satisfy

the link constraints. What remains to prove is that x is in EFplan.

i. sis an EF-slot in a charging group (z;y), 1 < w(z)/w(y) < r. If z is not pending at time
8, l.e., it exists in FIT in a slot s’ < s, then s’ must be an FF-slot (Lemma 1). Hence
z is charged to FIT(s') instead, contradicting (z;y) being a charging group. Thus z is
still pending, and must be planned in a slot s” > s (otherwise y will not be scheduled
there since w(z) > w(y)). Thus there must be such a slot s” to be linked. (e.g., Fig. 1(a)

first group.)

ii. s is an FF-slot in a charging group (z,y;y), 1/r < w(z)/w(y) < 1. The proof is
similar to i., and z must be planned in a slot s” > s, since w(z) > w(y)/r > (r -

w(EFplan(s, s)))/r = w(EFplan(s, s)). (e.g., Fig. 1(b) first group.)
a
A linking slot is a slot s such that OPT(s) has a link pointing out. Other slots are called
non-linking slots. When a new slot is swept, EFplan may be changed and previous links may
need to be rearranged to satisfy the weight constraints. In the following, we show that the

links can be rearranged when sweeping the schedules to maintain the following invariants:

e Only the current slot is pointed to by at most two links; all other future slots are pointed

to by at most one link.

e All links satisfy the link constraints.

For each slot s being swept, the link-rearranging algorithm is as follows:
Case 1. If s is an EF-slot and generates a new link x — y;, and if there is an existing link
Z1 — yj, then relink z; to EFplan(s,z1), or to s if z; is not pending at time s. Repeat this

relink process if there are other links pointing to EFplan(s,z1), unless it is relinked to slot s.

11

- w=1 2copies al job unit length

Figure 4: Arranging links: (a) after two slots are swept; (b) after three slots are swept.

Case 2. If s is an FF-slot, perform the same operation as if s is an EF-slot, and recompute
E Fplan after the heaviest job is moved to slot s. Since some light jobs may have moved to fill
in the empty slot left by the heaviest job, it is possible that some links now violate the weight
constraints. For every such link z — g, it can be shown that z must be planned in a slot
after yx. If no link points to this slot, move the link to point to this slot (i.e., z — yx becomes
z — z). Otherwise we have a link 2’ — 2. Swap the links to get 2 — z and 2z’ — y,. Repeat
the process if this new link violates the weight constraint.

Fig. 4 shows an example of arranging links.

Lemma 5 By the above algorithm, the links are arranged so that after the whole schedule is
swept, each linking slot is pointed to by at most two links, and each non-linking slot is pointed

to by at most one link. All link constraints are satisfied.

Proof. (Sketch) It is easy to see that the first invariant is maintained by the algorithm. It can
also be seen from the algorithm that a non-linking slot will not be pointed to by more than
one link. These imply the first part of the lemma.

The second part of the lemma, is true if we can maintain the second invariant. Suppose the
invariant holds before slot s. Now we come to slot s. Let z = OPT(s).

Case 1: s is an EF-slot. It is easy to see that the link constraints are satisfied if z does not
generate new links, or x generates a link to a slot without other links. The invariant is also

maintained when links are redirected to other slots as long as the job is in EFplan. However

12

if the redirection finishes at slot s because a link z — y; cannot be redirected, i.e., z does not
exist in EF'plan, then either z is already scheduled in FIT before s, or z is ‘squeezed out’
from EFplan. In both cases it can also be shown that w(FIT(s)) > w(z), thus satisfying the
weight constraints.

Case 2: s is an FF-slot. The proof is similar to that of Case 1, except that the weight
of the job in s is at least r times heavier and the link(s) to s should also satisfy the weight
constraint. It can be shown that the redirection (swapping) of links as described at the end of

the algorithm ensures that the link constraints are satisfied and that it must terminate. O

3.2 Charging Trees

A charging tree is defined as a binary tree, whose nodes are either EF-groups (called EF-nodes)
or FF-groups (called FF-nodes). Nodes in a tree are connected by links, that connect charging
groups as described in the previous subsection. That is, each non-root EF-node is represented
by (z;;v;) with y; < z; < ry; and non-root FF-node by (z;,vy;;v;) with y;/r < xz; < y;. The
links have to satisfy the weight constraints: a link from node ¢ to node j (with z; and y; in
node i and j respectively) will ensure that z; < y; if j is an EF-node, and rz; < y; if j is an
FF-node. The charging ratio of a charging tree is defined as

Y FFnode(Ti + i) + LEFnode (i)
Y FrFnode(¥i) + LEFnode(Yi)

summing over all nodes in the tree.

Given a pair of OPT and FIT schedules, the charging groups are linked together to form
a forest of charging trees, as described in the previous subsection. Each such charging tree is a
binary tree since each charging group can be pointed by at most two links (Lemma 5). However
the root cannot have two children because, by Lemma 5, it would then generate another link
itself and thus not a root. If we can bound the charging ratio of each charging tree, then the
competitive ratio of the scheduler is also bounded by the same ratio.

From now on we set r = 2, and for simplicity assume B = 2" for some positive integer n.

Counsider the charging tree T;, for B = 2" in Fig. 5. T, is a full binary tree (except at the

root). All nodes in the same level are identical. All its nodes are FF-nodes, ‘doubling’ at all

13

oo -

O—0O O—=0O

@ G 8>©/
REORE (3484) (@2B2) (528)

@ (b)

Figure 5: The ‘worst’ charging tree. (a) T1; (b) Tp.

levels (except the topmost), and has n + 1 levels of nodes. We will see later that T is indeed
realizable, i.e., there exists an instance of jobs such that the OPT and FIT schedules produce
charging groups and links corresponding to this tree. We are going to show that any charging
tree with importance ratio bounded by B will not have a charging ratio larger than that of 7T,,,
thus providing an upper bound of the competitive ratio.

The following lemma shows that the charging ratio of any charging tree is no more than

the charging ratio of a full binary tree (except at the root) of FF-nodes.

Lemma 6 Given any charging tree T with importance ratio B, there always exists a full binary
charging tree (except at the root) of FF-nodes, with the same nodes at each level, such that its

importance ratio is B and charging ratio no less than that of T'’s.

Proof. We first show that any charging tree can be transformed to a full binary tree with the
same nodes at each level. For any subtree rooted at an internal node v, consider the left and
right subtrees (including empty subtrees). If the two subtrees are not identical, replace the left
subtree with an identical copy of the right subtree, or vice versa; it is easy to show that one of
these operations will increase the charging ratio. Apply this process to all nodes level-by-level,
starting from the leaves, gives a full binary tree (except at the root) with same nodes in the
same level.

Our next step is to show that all nodes are FF-nodes. We can assume that the root is
an FF-node. (If the root is an EF-node (z;y), the worst case is when z = y since no link

is generated from the root. It can be shown that replacing it with an FF-node (z/2,z;z)

14

and changing other parts of the tree appropriately can maintain all constraints and will not
decrease the charging ratio.) Because of weight constraints, all EF-nodes (z;;y;) in the tree
has y; < B/2. Thus they can be replaced by FF-nodes (z;,2y;;2y;) without affecting the
importance ratio. It is easy to see that this operation will not violate the weight constraints

of the links in the tree, and will not decrease the charging ratio of the original tree.]

Lemma 7 The charging tree T,, has the mazrimum possible charging ratio among all charging

trees with importance ratio B = 2™,

Proof. We only need to consider those charging trees stated in Lemma 6. Without loss of
generality, assume the tree has at least two levels of nodes: if it is a single node, the maximum
charging ratio is attained by the node (1,2;2), and thus we can add a leaf (1,1;1) to this node.
We first prove that any charging tree can be transformed to have leaves (1,1;1) and parents-
of-leaf being (z,2;2), without decreasing the charging ratio. (Here and following z denotes an
arbitrary number.) Once this is proved we can restrict our attention to those trees.

Suppose the leaves are (z1,y1;y1).- By changing them to (z1,z1;z1), the charging ratio is
increased. Next consider the parent-of-leaf, (z2,y2;y2) where yo > 2z1 because of the weight
constraint. If yo > 2x1, we can, without decreasing the charging ratio, scale up the leaves from
(z1,z1;21) to (y2/2,y2/2;y2/2), and then scale down the whole tree so that the lowest two
levels are (1,1;1), (z,2;2).

Now we prove by induction on n that I}, is the worst charging tree among those with
leaves (z,1;1) and job weights < B’.

For the base case n =1, i.e. B =2, it can be verified that T} is a worst tree (Fig. 5(a)).

Suppose T}, is the tree having the maximum charging ratio for B = 2P. Consider a charging
tree with importance ratio 2B = 2P*!. Consider the subtree T" of this tree by ignoring the
leaves. For the whole tree to be a worst tree, T" itself has to be worst. By induction hypothesis,
a tree with leaves (z,1;1) and job weights < B is worst when it is T),. Therefore, the worst tree
with leaves (z,2;2) and job weights < 2B must be a scaled-up version of this, i.e. the nodes
are (2,2;2), ..., (B,B;B),(B,2B;2B). Combining with the leaves, the worst tree with leaves
(z,1;1) and job weights < 2B is the one with nodes (1,1;1), (2,2;2), ... (B, B;B),(B,2B;2B),

15

which is T}, 11. Thus the claim is true. O

Lemma 8 T, has a charging ratio of (21g B + 3)/(lg B + 2) when B = 2".

Proof. T, counsists of one root node (B/2, B; B), one node (B/2, B/2; B/2), two nodes (B/4, B/4; B/4),

o, 2671 nodes (B/2F, B/2¥, B/2%), ..., and 2"~! nodes (1,1;1). Thus the charging ratio of T' is

Sho12Y(B/2¥ + B/2¥) + (B/2+B) nB+3B/2 2n+3 2lgB+3
Sr_,2k=1(B/2k) + B ~ nB/2+B n+2 lgB+2

a
Theorem 2 FIT-2 gives a competitive ratio of (2[1g B] + 3)/([lg B] + 2), and the bound is

tight.

Proof. The competitive ratio of the scheduler is bounded by the charging ratio of 7,,. When
B is not an exact power of 2, we can replace B by the smallest power of 2 that is larger than
B. Thus the result follows from Lemma, 8. The bound is tight, as the worst-case charging tree

T, corresponds to the instance in Fig. 3 by putting r = 2. |

3.3 Comparisons

Note that FF remains 2-competitive even when B is very small, but EF might perform better

when the job weights are bounded by the importance ratio. However we still have:

t 2B

Lemma 9 EF has a competitive ratio at least 575

Proof. Consider three jobs ¢; = (0,1,1,1),¢90 = (0,2,1, B) and g3 = (1,2,1, B). OPT schedules

g2 and g3 giving value 2B while EF schedules ¢; and ¢3 giving value 1 + B. O

Fig. 6 and the next theorem show a comparison between EF and FIT-2 for bounded B.

Theorem 3 FIT-2 outperforms EF in the competitive ratio when B > 11.

16

1 /WW
.

1.8 /’/
1 . 7 / —— Lower bound

of EndFit

—=— Upper bound
of FIT(2)

1.6

1.5

1.4

\\\

1.3 LIS N O O B A
2 7 12 17 22 27 32 37 B

Figure 6: Comparing the competitive ratios of EF and FIT-2.

4 Concluding Remarks

In this paper we give a new online scheduling algorithm for the case where jobs can get partial
value proportional to the amount processed, even if they are not completed. We combined
previous 2-competitive heuristics to give a new 2-competitive algorithm, and showed that
the new algorithm gives improved competitive ratio when the importance ratio of the jobs is
bounded.

Note that a 1.8-competitive algorithm for this problem is given in [5]. However their model
is different in that they use a generalized schedule, i.e. timesharing of tasks is allowed, so that
several tasks can be processed concurrently at reduced speeds. This raises the problem of how
much does timesharing helps in this scheduling problem. In fact this question is raised in [3].
Currently no non-timesharing algorithms are known to have competitive ratio 2 — ¢ for some
constant § > 0. In another paper [4] we showed that non-timesharing algorithms cannot have
competitive ratio better than 1.618, and give a 1.58-competitive timesharing algorithm; thus

timesharing and non-timesharing are different models with different competitive ratios.

17

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha and F.
Wang, On the Competitiveness of On-line Real-time Task Scheduling, Real-Time Systems
4, 125-144, 1992.

A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge

University Press, 1998.

E. Chang and C. Yap, Competitive Online Scheduling with Level of Service, Proceedings

of Tth Annual International Computing and Combinatorics Conference, 453-462, 2001.

F. Y. L. Chin and S. P. Y. Fung, Online Scheduling with Partial Job Values: Does Time-

sharing or Randomization Help?, manuscript, 2002.

M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichy and N. Vakhania, Pre-
emptive Scheduling in Overloaded Systems, to appear in 29th International Collogium on

Automata, Languages, and Programming, 2002.

G. Koren and D. Shasha, D°?¢": An Optimal On-line Scheduling Algorithm for Overloaded

Uniprocessor Real-time Systems, STAM Journal on Computing 24, 318-339, 1995.

J. Sgall, Online Scheduling, in Online Algorithms: the State of the Art (Fiat and Woeginger
eds.), Springer-Verlag, 196-227, 1998.

D. Sleator and R. Tarjan, Amortized Efficiency of List Update and Paging Rules, Commu-
nications of the ACM 28(2), 202-208, 1985.

18

