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Abstract

Current parallel or distributed systems employs a large volumn of complete nodes

to meet the timing requirement in solving applications of large scale. In general, the

nodes are interconnected by a network of various topologies. Examples are clusters of

workstations/PC 's and the computional grids. In such a platform, an appropriate strategy

is needed to squeeze the computing power from the systems.

In general, high performance computing can be achieved by e�ective resource utiliza-

tion. In this paper, a novel programming paradigm is proposed for achieving e�ective

resource utilization in network computing platform. We use two parameters to model the

platform. Based on the model, a function is proposed to capture the programming feature

on the platform. The function is used to group data items into messages and to schedule

the messages to their destination site. By choosing a grouping function appropriately, we

can maximize the utilization of the computational resources in the system. Finally, matrix

multiplication and LU decomposition are used as examples to illustrate the usefulness of

our programming paradigm. In this paper, we has shown that computational resources

can be e�ectively utilized by employing our programming paradigm.



1 Introduction

Since computers were developed,they have been employed to assist human being in handling

daily events. Many of the applications concerning the issues of human welfare and the science

leading to a better living environment need a large volume of computations. For example, the

goal of improving atmospheric modeling resolved to a 5-km scale and providing timing result

is believed to require 20 TFLOPS of performance [10]. We know that most powerful sequential

computers of today can not meet the computational requirement needed to implement the

approach. Thus, it is obvious that a serious attack on the application requires high performance

computing platform.

The advance in the microprocessor and memory technologies impacts the speed of a com-

puter. The performance of a microprocessor is advancing at a rate of 50 to 100% per year

[8]. Today, the state of the art microprocessors can have computation speed up to hundreds of

MFLOPS [4]. In addition to that, memory capacity is increasing at a rate comparable to the

increase in capacity of DRAM chips: quadrupling in size every three years [7]. Current personal

computers or workstations use hundreds of Mbytes. It seems that substantial progress has been

achieved in sequential computer technology. However, the performance of the computer still can

not suit the applications of increasing complexity. Thus, scalable architectures which employ

parallel or distributed processing technology have been proposed to meet the computational

requirements.

Scalable architectures have the opportunity to challenge the applications of large scale. One

of the architectural solutions for achieving scalability is a network computing system operating

in MIMD or SPMD modes. Examples are clusters of workstations/PC's or computational grid

[5]. They are formed by combining essentially complete processing nodes (processors, memory

modules and I/O capability provided by such a network computing platform potentially provides

the basic requirement of the large-scaled applications. However, the limition on the nework

capacity usually degenerate the performance of the systems. Thus, it is important to give a

novel approach to solve this problem.

In this paper, a novel programming paradigm is proposed for performing high performance

computation in network computing environment. Our paradigm achieves the goal by maximiz-

ing the utilization of the computational resources. In Section 2, we give the background of the

potential problems which can incur in network computing environment. A model and nota-

tions used in this paper will be de�ned in Section 3. In Section 4, our programming paradigm

for acceleratimg the execution of a task is proposed. In Section 5, matrix multiplication and
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LU-decomposition are used as examples to illustrate the usefulness of the approach. Finally,

conclusion is made in Section 6.

2 Background

In a network computing system, a network is necessary for a node to receive data from another

node. To accelerate the execution of a task, an adequate strategy is needed for partitioning a

task to several subtasks. Those subtasks are assigned and executed curently on the nodes of the

system. In the system, the operation mode of the nodes can be classi�ed into two categories:

a system of uni�ed nodes and a system of diverse nodes. In a system of uni�ed nodes, all the

nodes play the same role to �nish a task. It is usually referred to as a parallel computer system.

In a system of diverse nodes, each of the nodes emphasizes on various functions of a task. For

example, some nodes are responsible for database management or act as data providers, and

others perform application-oriented computations. It is usually referred as a distributed system.

No matter what categories it belongs to, eÆcient data exchange among nodes is fundamental

for a system to achieve high performance computing.

In general, some communication patterns may have serious impact on the performance

of a network computing system. It is due to the limited capacity of the network inherited

from its hardware and software. A communication pattern can be the results caused by, for

example, insuÆcient bu�er size, contention at network links, or contention at network adaptor.

Several researches [1, 2, 9, 11] have been conducted to solve the problem. Many of those try

to reorganize a communication pattern to suit the nature of an existing network in order to

deliver messages eÆciently. The approach is suitable for a dedicated systems, in which all the

nodes are execution the same task and stall to reorganize the communication pattern together.

However, to reorganize a communication pattern may involve the nodes which do not intend

to send any message. Thus, this approach may lead to a system-wide overhead. The overhead

further enhances the degree of degeneration. Especially, this adverse e�ect should be avoided

for a sharable system running several applications concurrently. In this paper, an programming

paradidm is proposed to maximize the utilization of the computing nodes without incurring

system-wide overhead. That is, any message will be sent directly to its destination node without

employing any intermediate nodes.
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3 Model and Notations

In a network computing system, a node may either serves as a data provider or a computing

engine. The computing engine cooperates with the data provider to provide services for users.

Any user can access services through public channels and share the computational resources

with other users. In the following sections, we refers a group of data providers as a data site and

a group of computing engines as a computing site. In this section, an abstract model for the

network computing system is proposed. In the model, two parameters are used to capture the

computational characteristics in the environment. Based on the model, a novel programming

paradigm for developing high performance computing is given. By employing the paradigm,

an e�ective algorithm can be designed for network computing platform. Before we proceed

to propose the model, several general notations will be de�ned in this section. Nevertheless,

other notations related to speci�ed applications will be given wherever it is appropriate in the

following sections.

The following notations are used to denote simple mathematical operations. The purpose

of the notations is to simplify mathematical expression in the following sections for clarity.

De�nition 1 q
i
n is de�ned to be equal to bi=nc and r

i
n is de�ned to be equal to (i mod n).

The second notation is a grouping function denoted as � . By choosing an appropriate grouping

function, we can associate each of the data items to a set. Thus, it also implies that the data

items are partitioned into several groups according to the relation speci�ed by the function.

De�nition 2 Let E=fe0; e1; : : : ; ei; : : : ; ejEj�1g is an set of data items and M = fm0; m1;

m2; : : : ; mj; : : : ; mjMj�1g is an ordered set of groups. Grouping function � is a binary relation

from E to M such that E �M is f(ei; m�(i))jwhere i is an integer and 0 � i < jEjg.

In Section 5, the grouping function is used to specify the sequence of data items sent by a data

site. That is, the data site sends data items e0; e1; e2; : : : ; ejEj�1 using messagesm0; m1; : : : ; mjMj�1

in order. We also assume the computing site receives the messages in the same order.

In a network computing environment, when a service request is called from a remote user,

a task is created to handle the corresponding request. In general, most of the resources in a

network computing environment are sharable. Examples are CPU cycles, memory space, I/O

channels, interconnection networks, and service access channels. Those resources should be

managed fairly in order to meet the quality of speci�ed services. The resource manager of
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a computing system can be parts of the operating system kernel or the middleware built on

the top of the kernel such as DQS[6]. Many factors or events can change the current state of

resource allocation to a task. For examples, the current load of the system, the importance of the

recently entering task, and the po;icy of employing network bandwidth are crucial to resource

allocation strategy. Those factors or events are complexity. However, from the view point of

algorithm designers, it is impractical to use too many parameters to capture the characteristics

of a system. In this paper, we abstract the phenomenon concerned by algorithm designers into

two parameters.

The �rst parameter of our model is used to capture the quantity of computational power

allocable for a task at a computing site. Note that a computing site may consists of one or

several computing engines which cooperate to solve an application problem. The parameter is

de�ned as follows:

� g: computational gain (measured in number of CPU cycles). It is de�ned as the quantity of

CPU cycles allocable to a task for perform operations at a computing site. It is measured

at the interval between two consecutive messages arriving at the computing site. In

general, the computational gain can be varied between two messages. Let the messages

be m0; m1; : : : ; mjMj�1. Thus, g(i) denotes the computational gain at the interval between

message i and message i+1, where 0 � i < jMj� 1. If i = jMj� 1 , then g(i) is de�ned

to be the the total CPU cycles needed to complete the remaining computations.

Although the parameter g(i) is measured in number of cycles, it intends to capture the e�ects

of interaction among the available resources. Those resources include CPU cucles, memeory

space, I/O utility, etc. Note that g(i) is the upper bound on the CPU cycles at a computing

site for a task to employ. A task may employ no more than g(i) CPU cycles for performing

computations at the interval between message mi and message mi+1. The computation gain

g(i) intends to normalize the available computational power at a computing site using the

interval of two messages. That is, the quantity of g(i) depends not only on the usable local

resouces but also on the communication channels. For examples, the communication software

overhead, network latency, and network bandwidth can also a�ect the quantity of g(i). Thus,

it is easy to see that two tasks acquiring the same amount of CPU cycles at a �xed time period

may not have the same quantity of g(i). Based on the parameter g(i), we de�ne accumulative

computational gain as follows:

De�nition 3 Let G(i) is accumulative computation gain. Then, G(i) is de�ned to be equal toPi

k=0 g(k).
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The notation G(i) is the amount of total computational gain allocable to a task at a computing

site before the i+1 th message arrives. Note that A task may employ no more than G(i) CPU

cycles to complete a task.

In a network computing environment, the data items sent by a message are ready for per-

forming computations only after the message is completely received by the computing site.

Ready for performing computations implies that additional operations can be performed at

the computing site. We denote those computations as triggered computations. In the case of

sending a long message, the data provider will the computational activity at the computing

site for long time. It may lead to that a task underutilizes the computational gain allocated

to it. To maximize the utilization of the computational resources at a computing site, overlap-

ping communication with computation is a possible strategy. The strategy can be achieved by

partitioning data items into several groups. Then, each of the groups is sent by a sequence of

messages. As soon as the computing site receives a message, computations may be triggered.

Although the amount of total computations is �xed for a task, however, the newly triggered

computations may not be the same for each of incoming messages. The reason is that data de-

pendency in computations may be within a message or across messages. It will be explained in

details in Section 4. Thus, shipping data items to a computing site need to be considered care-

fully. To capture the phenomenon described above, the second parameter will be proposed to

express the amount of additional computations triggered at a computing site for each incoming

message.

� f : computational �llet (measured in number of CPU cycles). It is de�ned as the amount

of additional computations triggered at a computing site when a message is received by

the site. In general, the computation �llets may be varied for a sequence of messages.

Thus,f(i), the i th �llet, denotes the additional computations triggered at a computing

site after message mi has received at the site.

Since the amount of computations triggered for an incoming message depends on the sequence

of the messages, thus, two messages of the same size may not have the same value of f . In

addition, the amount of computations triggered by an incoming message should be no less than

zero, thus, we have, f(i) � 0; for i � 0. Based on the parameter computation gain, we de�ne

accumulative computation �llet (ACF) as follows:

De�nition 4 Let F (i) is accumulative computation �llet. Then, F (i) is de�ned to be equal toPi

k=0 f(k)

The notation F (i) is the amount of total computational �llets of a task accumulated at a com-
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puting site before message mi+1 arrives. Note that a task may not have enough computational

resources to complete F (i) computations at a computing site even though the computing site

has received the message mi+1.

4 Programming paradigm

In a computing system, a task is created to process the request from users. For a network

computing system to execute a task, a computing site may need to access data items across

a network. In general, the data items are sent by a sequence of messages in order to overlap

communucation with computation. The tasks use the computational gain allocated by the

computing site to perform operations assigned by the computational �llets. The quantity of a

computational �llet assigned by a message depends on twhich of he data items encapsulated in

the message and the order of the message in the sending sequence. We will illustrate this using

a simple example. Let E = fe0; e1; e2; e3; e4; e5g. The data items speci�ed by E is stored at a

data site p0. The data items are sent by messages m0 and m1 for performing computations at

a computing site p1. The computations performed at p1 are e0 + e1, e0 + e2, e3 + e4, e3 + e5,

e4 + e5. Considering that the grouping fuctions �0 and �1, each of which partitions data items

into two sets. The �rst grouping function �0 partitions the data items into s00 = fe1; e2; e3g

and s01 = fe0; e4; e5g. The second grouping function �1 partitions the data items into s10 =

fe0; e1; e2g and s11 = fe3; e4; e5g. Two scenarios can happen as follows. The �rst scenario is

that the data site sends messages m0 and m1 using s00 and s01 respectively to p1, and site p1

receives the messages in order. By simple analysis, we have f(0) = 0 and f(1) = 5. The second

scenario is that the data site sends messages m0 and m2 using s10 and s11 respectively to p1

and site p1 receives the messages in order. By simple analysis, we have f(0) = 2 and f(1) = 3.

Then, it is easy to verify that if the g(0) = 3, then g(1) = 5 for �rst scenario. However, for

the same vakue of g(0), we have g(1) = 3 for the second scenario. It imples that the task can

�nishes earlier if the second strategy is employed. However, it is not the optimal strategy. We

can have better solution if the data site sends messages m0 and m1 using s11 and s10 . In this

case, if we have the same value of g(0), then g(1) = 2. It implies that the task can �nishes even

earlier than the previous two strategies do.

In the network computing environment, a data site sends a sequence of messages to a

computing site. The computing site provides computational gain to perform the triggered

computations. From the above example, we know that If we carefully schedule data items to

the computing site, then computations can be triggered earlier. Otherwise, a large volumn of

computations will be accumulated to the end of communication. Thus, the execution time of a
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task will be prolonged. In our programming paradigm, data items are partitioned into several

sets by choosing an appropriate grouping function �. The grouping function is chosen based on

two strategies:

� Group the data items into messages of size n such that there is no or little data dependency

among messages.

� Maximize the utilization of the computional gains by sending the messages according to

the volumn of computational �llets. That is, the message with larger computational �llet

volumn is sent earlier than those with smaller one.

The �rst strategy is to capture the data access locality for performing a speci�ed computation

step. The second strategy makes e�ective utilization of computation resources for the task

performed at the computing site. Our goal is to minimize the g(jMj� 1). Based on the above

statement, we know that function � not only partitions data items but also assigns the delivery

order for each of the sending messages.

5 Applications

Matrix multiplication (MM) and LU decomposition (LUD) are basic but important in scienti�c

computations. In this section, MM and LUD are used as examples to illustrate the usefulness

of our paradigm. For each of the computations, algorithms are proposed to generate various

patterns of computational �llets. The various patterns lead to di�erent utilization rates of the

ACG's.

5.1 Matrix multiplication

In this section, matrix multiplication is used to illustrate our paradigm for developing algorithm

in a network computing environment. The scenario of the computation is described as follows. A

network computing system consists of a data site p0 and a computing site p1. Initially, matrices

A and B of size n � n are stored at data site p0. After the system has receiveed a request of

matrix multiplication A � B from a remote user, the computing site p1 starts to receive data

items from p0 and performs matrix multiplication. The multiplications are performed at site

p1 as soon as the computations are triggered at the site. The site p1 uses matrix C for storing

temporary and �nial result.
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begin

for 0 � i < n

sends A(i; �) to p1 using the i th message;

for 0 � j < n

sends B(�; j) to p1 using the (n+ j) th message;

end;

(a)

begin

for 0 � i < n

receives A(i; �) from p0 in the i th message;

for 0 � j < n

receives B(�; j) from p0 in the (n+ j) th message;

//which triggers the computations for deriving C(�; j)

end; (b)

Figure 1: (a) Algorithm MM� for p0; (b) Algorithm MM� for p1

In this section, three strategies MM�, MM� , and MM for designing MM algorithm are

proposed and analyzed to illustrate our programming paradigm. Let E = feig contains the data

items of matrices A = [aij] and B = [bij], where ein+j is aij and en2+in+j is bij for 0 � i; j < n
2.

Each of the algorithms employs di�erent grouping functions for partitioning data items into

di�erent sets. The goruping functions group the data to 2n sets m0; m1; : : : ; m2n�1. Each of

the sets is of size n. The site p0 sends set mi using the i th message, for 0 � i � 2n� 1. In the

followings, several notations used in matrix multiplication will be de�ned �rst.

De�nition 5 A(i; �) denotes all the elements in the i th row of matrix A and A(�; j) denotes all

the elements in the j th column of matrix A. Ck(i; j) denotes the value of
Pk

l=0C(i; l)�C(l; j).

In algorithm MM�, site p0 sends the elements of matrix A row by row, then sends the

elements of matrix B column by column. Thus, the grouping function for MM� is as follows:

�(i) =

(
q
i
n if 0 � i < n

2

n + r
i
n if n2 � i < 2n2

The operations performed in p0 and p1 are shown in Figure 1 In algorithm MM�, p1 is able

to perform matrix multiplication only after p0 begins to send the elements of matrix B. Based

on the algorithm, we can calculate the computational �llet f(i) amount at the computing site

p1 as soon as the i th message received by the site p1. Note that we count the operation of one

addition plus one multiplication as one computation step which consumes one CPU cycle. The

function f(i) is shown as follow:

f(i) =

(
0; for 0 � i < n

n
2
; for n � i < 2n
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f(i) 

0  1  2 ............................. n-1  n  n+1 ......................2n-1 

n2 

i 

Figure 2: additional operations triggered at p1 as the i th message arrives for MM�

Figure 2 also illustrates the function f(i). From the �gure, we observe that no computation

can start for the �rst n messages arrive at site p1. However, n
2 computations can be performed

when each of the following n message arrives at the site p1.

In algorithm MM�, p0 sends the elements of matrix A row by row alternating with the

elements of matrix B column by column to computing site p1. Thus, the grouping function for

MM� is as follows:

�(i) =

(
2qin if 0 � i < n

2

2rin + 1 if n2 � i < 2n2

The operations performed in p0 and p1 are shown in Figure 3. In algorithmMM� , p1 can perform

matrix multiplications . p0 starts to send the elements of matrix B. Thus, by employingMM�,

the computations can be triggered earlier if compared with algorithm MM�. Based on the

grouping function for algorithmMM� , we can calculate the computational �llet f(i) at site p1

as soon as the i th message received by the site p1. The function f(i) is shown as follow:

f(i) = b(i+ 1)=2c � n for 0 � i < 2n

Figure 4 also illustrates the function f(i). From the �gure, we can see that operations to be

triggered is an increasing function of i. Assume g(i) is an decreasing function of i. Then, we

can derive that the value of G((jMj� 1) for algorithmMM� is no less than that for algorithm

MM� even though they have the same value of F (jMj� 1). Compared with MM�, it does not

delay the operations for the triggered computations to the end of the communication.

In algorithm MM , p0 sends the elements of matrix A column by column alternating with

the elements of matrix B row by row . Thus, the grouping function for MM is as follows:

�(i) =

(
2rin if 0 � i < n

2

2qin + 1 if n2 � i < 2n2
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begin

for 0 � i < n

f sends A(i; �) to p1 using the i th message;

sends B(�; i) to p1 using the (2i+ 1) th message;g

end;

(a)

begin

receives A(0; �) from p0 in the 0 th message;

for 1 � i < n

f receives B(�; i� 1) from p0 in the (2i� 1) th message;

//which triggers the computations for deriving C(j; i� 1) for 0 � j < i;

receives A(i; �) from p0 in the 2i th message;

//which triggers the computations for deriving C(i; j) for 0 � j < i; g

receives B(�; n� 1) from p0 in the (2n� 1) th message;

//which triggers the computation C(�; n� 1);

end;

(b)

Figure 3: (a) Algorithm MM� for p0; (b) Algorithm MM� for p1

 

f(i) 

0  1  2  3  4  ................................... 2n-3  2n-2  2n-1 

n2 

i 

n(n-1) 

2n 
n 

Figure 4: additional operations triggered at p1 as the i th message arrives for MM�
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begin

for 0 � i < n

f sends A(�; i) to p1 using the 2i th message;

sends B(i; �) to p1 using the (2i+ 1) th message;g

end;

(a)

begin

for 0 � i < n

f receives A(�; i) from p0 in the 2i th message;

receives B(i; �) from p0 in the (2i+ 1) th message;

//which triggers the computations for deriving Ci(�; �);g

end;

(b)

Figure 5: (a) Algorithm MM for p0; (b) Algorithm MM for p1

It is shown in Figure 5. In algorithm MM , p1 can perform matrix multiplications as soon as

p0 begins to send the elements of matrix B. Since the i th row of matrix B is sent followed by

i th column of matrix A, the additional computations can be triggered by messages with odd

index i. Based on the algorithm, we can calculate the quantities of computational �llets. The

function f(i) is shown as follow:

f(i) =

(
0; if i is even and 0 � i < 2n

n
2
; if i is odd and 0 � i < 2n

Figure 6 also illustrates the function f(i) . From the �gure, we can see that amount of compu-

tations to be triggered is alternating with 0 and n
2. Assume g(i) is an decreasing function of i.

Then, we can derive that the value of G((jMj � 1) for algorithm MM is no less than that of

algorithmsMM� and MM� , even though they have the same value of F (jMj� 1). Compared

with MM� and MM�, it does not delay the operations for the triggered computations to the

end of the communication.

The comparison among MM�, MM� and MM for matrices of size 3 � 3 is shown in

Figure 7. In the �gure, we can observe that if we set g(i) = 4:5 for 0 � i < 5 then g(5)s are

equal to 18, 12, and 9 forMM�,MM� andMM , respectively. Thus, if the system provides 4.5

CPU cycles/second for execution the task, then MM�, MM� and MM can �nish at 9, 7.66,

and 7 seconds, respectively. Let the ACFs for MM�, MM� and MM be denoted as F�(i),

F�(i) and F(i) respectively and the ACGs for MM�, MM� and MM be denoted as G�(i),

G�(i) and G(i) respectively. Then, we also have,

F�(i) � F�(i) � F(i) for 0 � i < jMj and G�(jMj � 1) � G�(jMj � 1) � G(jMj � 1)
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Figure 6: additional operations triggered at p1 as the i th message arrives for MM
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  i_th messag  

number of additional computations f(i) 
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MMγ 
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number of additional computations f(i) 

MMα 9 

6 

3 

(a) 

Figure 7: Comparison among MM�, MM� and MM

12



begin

for i = 1 to n

fuii = aii;

for j = i+ 1 to n

flji = aji=uii;

uij = aji;

for j = i+ 1 to n

ffor k = i+ 1 to n

ajk = ajk � ljiuik;ggg

return L and U

end;

Figure 8: Algorithm for LU Decomposition

5.2 LU-decomposition

The second example we will study is LU decomposition (LUD) which is used in solving systems

of linear equations. First, we show the sequential algorithm which decomposes matrix A into

upper triangular matrix U and lower triangular matrix L. The elements of A, L, U in row i and

column j are denoted as aij, lij ,uij respectively. For the purpose of clarity, a sequential LU-

decomposition algorithm for a system of single node is shown in Figure 8. Interested readers

should refer to [3] for more details on the topic of solving systems of linear equations. Let

E = feig contains the data items of matrices A = [aij], where ein+j is aij for 0 � i; j < n
2.

The scenario of the LUD of our algorithms is as follows: the elements of matrix A of size n� n

stored at p0 are sent to p1 for calculating the matrices L and U .

The �rst algorithm we propose is Algorithm LU�. It operates as follows: a data site p0

sends n messages of size n to a computing site p1 by row major. Thus, the grouping function

for � is as follows.

�(i) = q
i
n

When the computing site p1 receives the messages, computations are triggered at site p1. The

elements of L and U are stored atD when the computations proceeds. The operations performed

at p0 and p1 are shown in Figure 9. In algorithm LU�, site p1 starts to perform computations

on a row after p1 has received the second row. The function of computational �llet is as follow:

f(i) = (2n� i + 1)i=2

In the function, we count multiplication or division operations as one computation step. Fig-

ure 10 also illustrates the function f(i). From above equation, we can see that the amount of

computations to be triggered increases as the value of i increases.

The second algorithm we propose is Algorithm LU�. It operates as follows: source site
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begin

for 0 � i < n

sends A(i; �) to p1 using the i th message;

(a)

begin

for 0 � i < n

receives A(i; �) from p0 in the i th message;

//which triggers the computations for deriving D(i; �),

end;

(b)

Figure 9: (a) Algorithm LU� for p0; (b) Algorithm LU� for p1

 

f(i) 

0  1  2 ............................ i-1  i  i+1 ......................n-1 

(n+2)(n-1)/2 

i 

(2n-i+1) i/2 

2n-1 

n 

(2n-i+2) (i-1)/2 

(2n-i)( i+1)/2 

Figure 10: additional operations triggered at p1 as the i th message arrives forLU�

14



begin

for 0 � j < n

sends A(�; j) to p1 using the j th message;

(a)

begin

for 0 � j < n

receives A(�; j) from p0 in the i th message;

//which triggers the computations for deriving D(�; j),

end;

(b)

Figure 11: (a) Algorithm LU� for p0; (b) Algorithm LU� for p1

p0 sends n messages of size n to computing site p1 by column major. When site p1 receives

the messages, computations are triggered in site p1. Thus, the grouping function for LU is as

follows.

�(i) = r
i
n

The elements of L and U are stored at D after the computations proceeds. The operations

performed in sites p0 and p1 are shown in Figure 11. In algorithm LU�, site p1 can start

to perform computations on a column after p1 receives the �rst column. The function of

computation density is as follow:

f(i) = (2n� i� 2)(i+ 1)=2

Figure 12 illustrates the function f(i). From above equation, we can see that the amount of

computations to be triggered increases as the value of i increases.

The third algorithm is LU . In algorithm LU , data site p0 sends the elements of matrix A

to computing site p1, by alternating rows with columns. The �rst message sends the column of

A Thus, the grouping function for LU is given as as follows.

�(i) =

8>>>>>>>>><
>>>>>>>>>:

r
(
Pr

i
n

k=1
(1+2(n�k)))+1

n if qin = r
i
n

r
(
Pr

i
n

k=1
(1+2(n�k)))+qi

n
�ri

n
+1

n if qin > r
i
n

r
(
Pq

i
n

k=1
(1+2(n�k)))+n�2qin+rin

n if qin < r
i
n

The operations performed in sites p0 and p1 are shown in Figure 13. In the �gure, mi is de�ned
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f(i) 

0  1  2 ............................ i-1  i  i+1 ......................n-1 

(n-1)n/2 

i 

(2n-i-2)( i+1)/2 

2n-3 

n-1 

(2n-i-1) i/2 

(2n-i-3)( i+2)/2 

3n-6 

Figure 12: additional operations triggered at p1 as the i th message arrives for LU�

begin

for 0 � i < n

sends A to p1 using the i th message mi;

end;

(a)

begin

for 0 � i < n

freceives the i th message mi from p0g

//which triggers the computations for deriving A(i; k),

//where j � k < n for 0 � j < i

end;

(b)

Figure 13: (a) Algorithm LU for p0; (b) Algorithm LU for p1

by the grouping function. In algorithm LU , site p1 can start to perform computations after

site p1 has received rows or columns.

For analysis purpose, we repartition the data items into (3n� 2) sets of various sizes. The

sets are S0; Sl; S2; : : : ; S3n�3, where S3i = faiig, S3i+1 = fai+1;i; ai+2;i; ai+3;i; : : : ; an�1;ig and

S3i+2 = fai;i+1; ai;i+2; ai;i+3; : : : ; ai;n�1g. Partitioning the elements of the matrix A = [aij] of

size 9 � 9 is shown in Figure 14. The number in each of the entries is the index of a set to

which the element aij . For example, a2;1 belongs to set S4.
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Figure 14: repartition the data items of matrix A into 25 sets of various sizes

 

f(i) 

0  1  2  3  4  5 ...................... 3(n-1)+2  3( n-1)+1  3( n-1) 
i 

n-1 

1 

(n-1)2 

(n-2)2 

n-2 

Figure 15: additional operations triggered at p1 as the i th message arrives for LU

The function of computational �llets based on the new sets S0; Sl; S2; : : : ; S3n�3 is de�ned

as follows:

f(i) =

8>><
>>:

0 if ri3 = 0

(n� q
i
3 � 1) if ri3 = 1

(n� q
i
3 � 1)2 if ri3 = 2

Figure 15 also illustrates the function f(i).

we can see that the amount of computations triggered tends to decreases as the value of i

increases. Assume g(i) is an decreasing function of i. Then, we can derive that the value of

G((jMj � 1) for algorithm LU is no less than that of algorithms LU� and LU� , even though
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                              (c) 

i_th message 0 1 2 3 4 5 6 7 8 

# of additional computations 0 9 17 24 30 35 39 42 44 

# of accumulated computations 0 9 26 50 80 115 154 196 240 

i_th message 0 1 2 3 4 5 6 7 8 

# of additional computati ns 8 15 21 26 30 33 35 36 36 

# of accumulated computations 8 23 44 70 100 133 168 204 240 

i_th message 0 1 2 3 4 5 6 7 8 

# of additional computations 8 64 21 38 39 20 22 20 8 

# of accumulated computations 8 72 93 131 170 190 212 232 240 

Figure 16: comparision among LU�, LU� and LU for matrix of size 9� 9

they have the same value of F (jMj�1). Compared withMM� andMM�, it does not delay the

operations for the triggered computations to the end of the communication. The comparison

among LU�, LU� and LU for matrices of size 9� 9 is shown in Figure 16 and Figure 17 . In

the �gure, we can observe that if we set g(i) = 30 for 0 � i < 8 then g(8)s are equal to 70, 50,

and 22 for LU�, LU� and LU , respectively. Thus, if the system provides 30 CPU cycles/second

for execution the task, then LU�, LU� and LU can �nish at 10.33, 9.67, and 8.73 seconds,

respectively. .

6 Conclusion

In this paper; an programming paradigm is proposed to maximize the utilization of the com-

puting nodes. The approach employs a grouping function on the data locally at the data site

before the data items is sent to the computing site. In a mobile computing environment, the

network connection may be disconnected for a while. Our result can also be applied to keep

the computing device busy for performing useful computations.
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(b) 
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Figure 17: comparision among LU�, LU� and LU for matrix of size 9� 9
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