An Integer Linear Programming Algorithm for
Crosstalk-Constrained River Routing

Abstract

As the advances in technology bring about smaller interconnection wire spacing and higher
circuit operating frequency, the effect of crosstalks on performance and even on yield in integrated
circuit design and manufacturing thus increases rapidly. Consequently, reduction of crosstalks
between interconnection wires becomes important in VLS| design. In this paper, we present an
approach to the gridded river routing problem with the objective of minimizing crosstalks. Given an
initial routing solution generated by a conventional river routing algorithm, the reduction of
crosstalks is carried out by an iterative reassignment of the horizontal and vertical wire segments. To
effectively and optimally perform the reassignment process, an integer linear programming (ILP)
formulation is proposed in company with procedures for reducing the number of ILP variables and

constraints. The experimental results show that this approach of ILP is very encouraging.



An Integer Linear Programming Algorithm for
Crosstalk-Constrained River Routing

| I ntroduction

Crosstalks being a result of mutual capacitance and inductance occurred between neighboring
wires [1], cause increased delays and/or inadvertent logic transitions in VLS| circuits. As the
interconnection wire spacing is getting smaller and circuit operating frequency running higher, the
increasing effect of crosstalks will greatly reduce the performance and yield in integrated circuit
design and manufacturing. Consequently, the reduction of crosstalks between interconnection wires
becomes an important consideration in VLS| design.

In the detailed routing phase of VLSI physical design, many researches have been focused on
the crosstalk reduction problem [2]-[6] [9]-[11]. In fact, solving routing problems with crosstalk
reduction consideration is more difficult in comparison with the conventional routing problems
because the crosstalks between interconnection wires are determined not only by how each
individual wire is routed, but also by the relative positions of neighboring wires. Usually, a gridless
routing model is used to solve this problem such that the spacings between interconnection wires can
be modified to reduce crosstalks. Dai et al. [3] proposed a gridless rubber-band area routing
algorithm which can create an adjustable planar sketch to enlarge the spacings for those wires having
potential crosstalk problems. Onozawa et al. [9] proposed a one-dimensional spacing algorithm to
adjust the spacings between interconnection wires in order to optimize the circuit delay and to reduce
crosstalks. Their spacing algorithm utilizes the repulsive constraints to expand the distances between
interconnection wires such that crosstalks can be minimized.

On the other hand, there exist also researches concentrated on the gridded routing problems
with the objective of minimizing crosstalks [4]-[6] [10] [11]. Unlike the gridiess routing model,
interconnection wires in the gridded routing model are to be placed on grid lines, thus the spacings
between grid lines cannot be adjusted to reduce crosstalks. Some of previous works using the
gridded routing model adopt a two-phase method to reduce crosstalks [4]-[6] [10]. In the first phase,
conventional routing algorithms without considering crosstalks are used to obtain an initia routing

solution with some objectives such as minimizing the channel width. In the second phase,



postprocessing algorithms are designed to modify the initial routing solution for reducing crosstalks.
For example, Gao and Liu proposed a track permutation technique [4] and a wire segment
reassignment technique [5] to modify a given channel and a given switchbox routing solutions,
respectively, to obtain new crosstalk-reduced routing solutions. The above two postprocessing
techniques are formulated as two mixed integer linear programming (ILP) problems to effectively
solve the crosstalk problem. In addition to the mixed ILP technique, Jhang et al. [6] presented an
efficient approach for reassigning the wire segments of a given channel routing solution. In [10], an
optimal postprocessing algorithm was proposed for minimizing the crosstalks between vertical wire
segmentsin athree-layer VHV channel by finding an optimal vertical layer assignment for them.

Recently, a crosstalk minimization technique for the gridded river routing has been proposed
by Zhou and Wong [11]. They considered the crosstalks between interconnection wires in a global
way during the routing process and developed an optimal river routing algorithm. In their approach,
the crosstalk minimization river routing problem is reduced to a global space allocation problem.
Corresponding to the latter problem, a flow network is constructed and the flows on the network are
computed to route the nets with minimum crosstalks. Since their agorithm first tries to route as
much as possible parts of wires to stairs (in [11], a stair is a wire which is composed of aternating
unit horizontal and vertical wire segments) and then uses space allocation to solve the placement of
the straight segments, there will be many jogs (horizontal wire segments) in the routing solution.
Although a postprocessing process is used to reduce the number of jogs, there could still remain a
large number of jogsin some wires.

In this paper, we deal with the gridded river routing problem with the objective of
minimizing crosstalks. The two-phase method is applied to solve the problem. Firstly, the
conventional river routing algorithm used to generate an initial routing solution must have restriction
on the number of jogs in each wire (or route defined in Section I1). There are practical reasons for
this. High electrical resistance and high possibility of manufacturing faults occur at the endpoints of
jogs where the wires change direction. After an initial routing solution is obtained, the wire segment
reassignment technique is applied to the initial routing solution to derive a new solution satisfying
the problem objective, i.e., crosstalk reduction. To reassign wire segments effectively and optimally,
the ILP technique is used.



The rest of the paper is organized as follows. Section |1 gives the problem formulation. In
Section |11, we present an ILP formulation of the wire segment reassignment problem and techniques
for reducing the number of variables and constraints in the ILP formulation. Experimental results are

presented in Section V. Section V gives aconclusion.

[ Problem Formulation

A channel in the river routing model is a single-layer rectangular routing area with pins
placed at the top and bottom boundaries. We assume that there are grid lines imposed on the channel.
Horizontal and vertical grid lines represent the rows (tracks) and columns, respectively. Let the pins
on the top boundary be denoted by t,, t,,..., t,, and the pins on the bottom boundary denoted by b,,
b,,..., b, where n is the number of nets. A route W of net N,, fori =1, 2, ..., n, is a path connecting
t. and b in a monotonic fashion on the grid lines, that is, W can aways be designed to
monotonically go only down-and-left or down-and-right from t; to b,. A route is called left route if it
is routed in a down-and-left fashion, and called right route if routed in a down-and-right fashion.
Therefore, a route is composed of alternating vertical and horizontal wire segments. Here, vertical
and horizontal wire segments mean vertical and horizontal straight line segments, respectively, and
each wire segment has two endpoints. An endpoint is called a fixed endpoint if it is connected to the
top or bottom boundary, and called a free endpoint if it is connected to another wire segment. The
conventional gridded river routing problem is to connect pins for each net in the channel such that no
two routes cross each other.

For a given river routing solution, there is a vertical constraint from horizontal wire segment

h to horizontal wire segment h;, denoted by VC(h;, h;), if h must be placed above h; in any valid

routing solution obtained by reassigning the horizontal wire segments of a given initial routing
solution. Unlike the vertical constraints in [13] which are defined between nets and are independent
of any routing solution, the vertical constraints here are defined between horizontal wire segmentsin
a given river routing solution. By scanning the channel of a given routing solution column by
column, a set of vertical constraints can be found and they can be represented by a vertical constraint
graph (VCG). A VCG is a directed graph where each vertex represents a horizontal wire segment

and adirected edge from h, to h; means a vertical constraint from h; to h;. It should be clear that the

VCGisacyclic for avalid routing solution.



If aroute is traced from its pin on the top boundary to its pin on the bottom boundary, an

ordered set of horizontal wire segments belonging to the route can be found. For each pair of h, and

h; in the ordered set, if no other elements (horizontal wire segments) exist between them and placing
h below h; results in the violation of the monotonic property, there is a monotonic constraint from
h to h; denoted by MC(h;, h;). Moreover, we trace other routes one by one in the same way, then a

set of monotonic constraints can be found.

To obtain a high performance routing solution, it is important to take the crosstalk noise into
consideration. The crosstalk between two routes is proportional to the coupling capacitance between
them, which in turn is determined by the routing of the routes, i.e., by the relative positions between
them. Generally speaking, the crosstalk between two parallel wire segments is proportional to their
coupling length and is inversely proportional to their separating distance. Since the coupling
capacitance between two parallel wire segments decreases rapidly as the distance between them
increases, it is reasonable to assume that crosstalks only exist between wire segments in adjacent
rows or columns. Since the distance between two adjacent rows or columns is fixed in a gridded
routing area, without loss of generality, we shall regard the coupling length between two wire
segments in adjacent rows or columns as the crosstalk, which is also the model used in [4], [5], [6],
and [11]. The actual crosstalk R, in aroute W is defined as the sum of the crosstalks in all the wire
segments of W. For example, in the routing of Fig. 1, considering route W, composed of v, h,, v,,
h,, and v,, its crosstalk will be1 + 0+ 2 + 1 + 2 = 6. In practice, each route W can be specified by
the designer a critical value called the maximum tolerable crosstalk C, according to the electrical
property of the circuit. The difference between C and R is called the crosstalk slack of W. The
minimum value of the crosstalk slacks among all the routes is called the minimum slack, denoted by
minslack. The sum of the crosstalk slacks in all the routes is denoted by totalslack. If the maximum
tolerable crosstalk in each route is not exceeded by its actual crosstalk, i.e., minslack > 0, we say that
the routing solution satisfies the crosstalk constraints on all the routes, that is, the routing solution is
within the safety margin. Obviously, a larger value of minslack means a better routing solution, and
so for totalslack. Therefore, a good routing algorithm should generate routing solutions with both

minslack and totalslack as large as possible.
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Figure 1: A river routing example.

The problem addressed in this paper is the gridded river routing problem with the objective of
maximizing minslack and totalslack. Instead of directly devising agorithms for the solution of the
problem, we propose here a new transformational approach which modifies a given routing solution
to obtain a new one that will satisfy the problem objective. In our approach, a conventional gridded
river routing algorithm having the objective of minimizing the channel separation with bounded
number of jogs in each route is first used to generate an initial routing solution, then the wire
segments of routes in the initial solution are reassigned to maximize minslack and totalslack. Here,
the reassignment of a horizontal (or vertical) wire segment is to move it to another row (or column)
while maintaining the validity of the routing solution. That is, the reassignment of the horizontal wire
segments must satisfy the vertical constraints and the monotonic constraints. Our approach for the
reassignment problem is to reassign the horizontal and vertical wire segments to rows and columns,
respectively, in an iterative fashion. In other words, in order to maximize minslack and totalslack, the
reassignment process is carried out iteratively between the horizontal and vertical wire segments
until no improvement can be made on the crosstalk reduction.

Since there exist many good conventional gridded river routing agorithms generating
solutions with a small number of jogs, like those presented in [8] and [12], we shall pay our attention
on the reassignment problem for a given initial routing solution. To reassign the horizontal and
vertical wire segments effectively and optimally, the ILP technique is used. But since the ILP
formulation for the reassignment of vertical wire segments is similar to that of horizontal wire

segments, we will only present the ILP formulation in terms of horizontal wire segments in the next



section. Note that after the reassignment process, channel separation does not change and the number

of jogs in each route should be no greater than the previous one.

Il Reassignment Approach for Crosstalk Reduction in a River Channel

In this section, we propose a new approach using ILP technique which guarantees an optimal
solution for the reassignment of horizontal wire segments. Without confusion, the reassignment
process for horizontal wire segments is called the reassignment process for short in this section. We
present an ILP formulation for the reassignment process in detail in Subsection A and effective
techniques for reducing the number of variables and constraints in the ILP formulation in Subsection

B.

A An Integer Linear Programming For mulation

To maximize minslack and totalslack at the same time, the objective of the reassignment
problem can be formulated as:

maximize w,,, * minslack + w, * totalslack (1)

where w,, and w, are the weighting factors. With the above objective, the ILP formulation for the
reassignment process has two kinds of ILP constraints. The first kind of ILP constraints should
include the vertical constraints and the monotonic constraints as defined in Section 11 to maintain the
validity of the resultant final routing solution. In order to compute the crosstalks between adjacent
wire segments in the final solution, another kind of constraints are needed to be formulated in such a
way that adjacency information between wire segments is available. We will express these
constraints in terms of variables and linear constraints in the following.

Given an initia routing solution with n nets, r rows (r > 1), p horizontal wire segments, and

q vertical wire segments, we denote the horizontal wire segments by h;, h,,..., h, and the vertical
wire segments by v, v,,..., v,. We assume that rows and columns are labeled in increasing order

with the top-most row being row 1 and the left-most column being column 1 (the top boundary is
labeled as row 0 and the bottom boundary is labeled as row r + 1). For each horizontal wire segment

h., there is an integer variable H, and the value of H; is the row in which h, is placed in the final

solution. Obviously, there are p H-variables in the ILP formulation.



For a given routing solution, the upper (or lower) boundary of a horizontal wire segment h, is
the feasible top-most (or bottom-most) row in which h, can be placed in avalid routing solution. It is
easy to see that the row in which h, is placed in the final solution must fall between its upper and
lower boundaries. To express the feasible row ranges of horizontal wire segments, the following
constraints are introduced:

upper; < H, < lower, fori=1,2..,p 2
where the values of upper; and lower; represent the row numbers of the upper and lower boundaries
of h, respectively. Note that for a given initial solution, we can identify the upper and lower
boundaries for each horizontal wire segment by traversing the VCG before the reassignment process.

Since the final solution obtained after the reassignment process must still be a valid routing
solution, vertical constraints and monotonic constraints must be satisfied during the reassignment

process. To express the vertica constraint VC(h;, h;) between any two horizontal wire segments h,
and h;, the following constraint is introduced:
H, <H, 3)
To express the monotonic constraint MC(h;, h;) (both horizontal wire segments h, and h; belong to
the same route), the following constraint is introduced:
H, <H, )
To compute the crosstalks between horizontal wire segments, adjacency information between

horizontal wire segments must be well included in the ILP formulation. For each pair of horizontal

wire segments h and h,, if their coupling length is nonzero and they could be adjacent in the final
solution, one 0-1 integer variable T; is introduced. T, = 1 if and only if h and h; are reassigned to
become adjacent in the final solution; otherwise T; = 0. Assume that h; is placed above h; in the
initial solution, the adjacency information between h and h; is expressed in the following

constraints:

1-T. <H -H -1 )

H -H -1<(1-T)(r-1) (6)



Note that h, should still be placed above h; after the reassignment process. If h is adjacent to h; in
the fina solution, then H; - H; = 1; hence, Congtraint (6) is redundant and T; is forced to be 1 by
Constraint (5). If h; isnot adjacent to h;, then H, - H; > 1; hence, Constraint (5) is redundant and T;
is forced to be 0 by Constraint (6) because H, - H, - 1 <r - 1. By Constraints (5) and (6), T; = 1 iff
h isadjacent to h; in the final solution.

With the T-variables, crosstalks in horizontal wire segment h, can be computed as >~ Q; T;
for al h, with T; defined where Q, is the coupling length between h and h;. Note that Q, is a
constant and it can be determined before the reassignment process.

Vertical wire segments can be classified into three types as follows. A vertical wire segment
v, is considered type-O wire segment (feedthrough) if both endpoints of v, are fixed endpoints. A
segment v, is considered type-1 wire segment if one endpoint of v, is a fixed endpoint and another
endpoint is a free endpoint. If both endpoints of a segment v, are free endpoints, v, is considered
type-2 wire segment (dogleg). For each vertical wire segment v., two integer variables L, and U, are
defined where the value of L, is the row number of the top endpoint of v, and the value of U, is the

row number of the bottom endpoint of v,. For these two variables, the following constraints are

introduced:
L= { 0 if the top endpoint of v, is connected to the top boundary .
'~ | H, if thetop endpoint of v, is connected to a horizontal wire segment h, 0
U = {r +1 if the bottom endpoint of v, is connected to the bottom boundary g
'~ | H, if the bottom endpoint of v, is connected to a horizontal wire segment h, ®

From Constraints (7) and (8), it is clear to see that if the horizontal wire segments connected to the

two endpoints of v, are reassgined to other rows during the reassignment process, the row numbers

of the two endpoints of v, are also forced to change. However, there is no change for the type of v..
To compute the crosstalk between vertical wire segments v; and v; in adjacent columns, we

need to know the actual relative positions of the endpoints of v, and v; in the final solution.

However, since the actual relative positions in the final solution are unknown before completing the

reassignment process, al possible relative positions of the endpoints of v, and v; will be explored.

With these possible relative positions information, some constraints which will enable us to compute



the crosstalk between v, and v; in the final solution are introduced. According to the types of v; and
v; in the initial solution, the possible relative positions and constraints can be classified into six

categories as discussed in the following cases (Case 1 to Case 6). Note that for those constraints in

Cases 1 to 6, R} denotes the crosstalk between v, and v; in the fina solution where o indicates the
types of v, and v;. Obviously, Rf > 0 for each adjacent pair of v; and v,. We also assume that v, is
to theleft of v, for all possible relative positions between them.

Case 1, both vertical wire segments are type-0 wire segments. Obviously, no constraint is
needed in this case because the crosstalk between these two vertical wire segmentsis always equal to

aconstantr + 1.
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Figure 2: Relative positions of V; and V; in Case 2.

Case 2, one vertical wire segment is a type-0 wire segment and another is a type-1 wire

segment. The possible relative positions of the endpoints of both wire segments v; and v, in this case

are shown in Fig. 2. Note that the direction of arrow in the figure indicates that the corresponding
route is a left route or a right route. Having this relative position information, the following

constraint isintroduced in order to compute the crosstalk R;" between v, and v, :

01
ij
01
ij

From Constraint (9), the crosstalk between these two wire segments completely depends on the type-

U, - L for the case of Fig. 2(a) or Fig. 2(b)

J
U, -L for the case of Fig. 2(c) or Fig. 2(d) ©)

vV v

1 wire segment. Since our objective is to maximize (w,, * minslack + w, * totalslack), the



optimization process will force the value of R to be the smallest possible value which is the exact
crosstalk between v; and v, in thefinal solution.

Case 3, one vertical wire segment is a type-0 wire segment and another is a type-2 wire
segment. Since these two wire segments are always non-adjacent and we assume that crosstalks only
exist between wire segments in adjacent rows or columns, there is no crosstalk between these two
wire segments.

Case 4, both vertical wire segments are type-1 wire segments. To simplify the constraints
used to compute the crosstalk in this case, the relative positions of these two vertical wire segments

v, and v; in the fina solution can be classified into two subcases according to whether or not the

fixed endpoints of v; and v, are connected to the same boundary (top boundary or bottom boundary).
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Figure 3: Relative positions of V; and V; in the first subcase of Case 4.

In the first subcase as shown in Fig. 3, the fixed endpoints of v, and v; are connected to the
same boundary. To compute the crosstalk R;"* between v; and v, in this subcase, one extra 0-1
integer variable S; and the following constraints are introduced:

AU - L - (10)

10



U oL -re(1-S)) (11)
The values of (U; - L) and (U, - L;) represent the lengths of v, and v; in the final solution,
respectively. From Fig. 3, if the length of v; is less than the length of v, in the fina solution, the
optimization process will force S; to be 0 and R;* to be the value of (U, - L;). Similarly, S; will be
forced to be 1 and R].ll will be forced to be the value of (U, - L,) if the length of v, is less than the

length of v, in the final solution.
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Figure 4: Relative positions of V; and V; in the second subcase of Case 4.

In the second subcase of Case 4 as shown in Fig. 4, the fixed endpoints of v; and v, are
connected to the opposite boundaries. To compute the crosstalk between v; and v, in this subcase,
one extra 0-1 integer variable O; and the following constraints are introduced:

> U - L - (r+1) % O (12)

>U - L -(r+1)*(1-0,) (13)

11



If the relative positions of the endpoints of v; and v, in the final solution are as shown in Fig. 4(a),
the optimization process will force O, to be 0 and Rj“ to be the value of (U, - L) by Constraint
(12). Similarly, in the case of Fig. 4(d), O, = 1 gives the value (U, - L;) for R;* by Constraint (13).
If the relative positions of the endpoints of v; and v; in the final solution are as shown in Fig. 4(b) or
4(c), the value of (U, - L,) is negative and the value of (U, - L;) isequal tor + 1, therefore, O, =0
gives the smallest possible value 0 for Riﬂ by Constraint (13). Similarly, O; = 1 gives the smallest

possible value 0 for R* by Constraint (12) for the casesin Fig. 4(e) or 4(f).
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Figure 5: Relative positions of V; and V; in Case 5.

Case 5, one vertical wire segment is a type-1 wire segment and another is a type-2 wire
segment. To minimize the number of subfigures used to show all the possible relative positions of v,

and v; in this case, we illustrate two possible relative positions in each subfigure as shown in Figs.

5(a) to 5(f). In these subfigures, the relative positions of each pair of adjacent vertical wire segments

represent one possible relative positions of v, and v; (as mentioned previously, v, is aways to the

left of v; for al possible relative positions between them). With this relative position information,

12



we can compute the crosstalk lez between v; and v; by using one extra 0-1 integer variable F; and

the constraints below:
22U - L -rxF (14)
Z2U - L-rx(1-F) (15)
220 (16)

Using the above three constraints, the optimization process will force lez to be the exact crosstalk
between v, and v, in the fina solution.

Case 6, both vertical wire segments are type-2 wire segments. The possible relative positions
of these two vertical wire segments in this case are the same as those shown in Fig. 5 except that
both wire segments are type-2 wire segments. Therefore, the constraints used to compute the

crosstalk sz are similar to the constraints used in Case 5 and these constraints can be shown below:

Z>U -L -(r-1)=*E, (17)
Z>U - L -(r-1)*(1-E) (18)
>0 (19)

where E; isan extra0-1 integer variable.

After the crosstalks in al wire segments in the final solution are computed, the actual
crosstalk R inaroute W, fori =1, 2, ..., n, can be derived. Since the value of (C, - R) represents
the crosstalk slack of W and minslack is the smallest crosstalk slack among all the routes, the
following constraints are introduced:

mindack < C - R, for every route W (20)
Since our objective is to maximize (w,, * mindack + w, * totalslack), the value of minslack will be
forced by the optimization process to be the exact smallest crosstalk slack among all the routes.

So far, the ILP formulation for the reassignment of the horizontal wire segments has been
presented. After the reassignment process, a valid routing solution with better solution quality can be
obtained. Next, the reassignment of the vertical wire segments will be performed to futher maximize
minslack and totalslack. The reassignment process will be carried out iteratively between the

horizontal and vertical wire segments until no improvement can be made on the crosstalk reduction.

13



In practice, the iterative reassignment process converges in few iterations, no more than three

iterations, for each example in our experiments presented in Section V.

B Techniquesfor Reducing the Number of Variables and Constraints

Generaly speaking, as the problem size increases, the size of the ILP formulation will
proportionally become larger. In order to solve the ILP problems efficiently, it is necessary to reduce
the number of variables and constraints in the ILP formulation. In this subsection, some effective
techniques are proposed to minimize the number of variables and constraints.

If there exist three vertical constraints VC(h,, h;), VC(h;, h,), and VC(h;, h,) in a VCG,
VC(h, h,) is called redundant vertical constraint and can be deleted from the VCG because vertical
constraints are transitive in the sense that VC(h,, h;) and VC(h,, h,) imply VC(h, h,), i.e., if VC(h,,
h;) and VC(h,, h,) are satisfied, the redundant vertical constraint VC(h;, h,) is aso satisfied.
Therefore, we can find all redundant vertical constraints in a VCG and remove the corresponding
constraints in the ILP formulation to reduce the number of constraints.

Consider Constraints (5) and (6) which are used to express adjacency information between
horizontal wire segments h, and h;. If the row number of the upper boundary of h; minus the row
number of the lower boundary of h, is greater than 1 (assuming h, is placed above h; in the initial
solution), h, and h; cannot become adjacent in any valid routing solution. Therefore, T, and the
corresponding constraints can be removed from the ILP formulation.

In Section 111.A, Cases 4, 5, and 6 may be further classified into more detailed subcases in
order to minimize the number of variables and constraints. For example, in the first subcase of Case
4, if the length of a vertical wire segment is constrained to be shorter than the length of another
vertical wire segment, no extra 0-1 integer variable and only one constraint are needed to compute

the value of R* (assuming v, is the shorter one):
UL (21)
On the other hand, in the second subcase of Case 4, if we find that the fixed endpoints of v,
and v, are connected to the top (or bottom) and bottom (or top) boundaries, respectively, and there

exists a vertical constraint VC(h,, h;) (or VC(h;, h)) where h and h; are the horizontal wire

14



segments connected to the free endpoints of v; and v;, respectively, then h, must be constrained to
be placed above (or below) h;, i.e, there is no coupling length between v; and v, in the fina
solution. Therefore, variables R].“ and O; and the corresponding constraints can be completely
removed from the ILP formulation. Similarly, if the two vertical wire segmentsin Case 5 (or Case 6)
have been constrained to have no coupling length between them in the final solution, the
corresponding variables and constraints can be removed from the ILP formulation.

Asto the L- and U-variables, to reduce the number of these variables and the corresponding
constraints (Constraint (7) for the L-variable and Constraint(8) for the U-variable), we can check if
the top (or bottom) endpoint of a vertical wire segment v, for which L, and U, are defined is
connected to the top (or bottom) boundary. If so, L, (or U;) can be replaced by O (or r + 1) in each
constraint having L, (or U,) init and the corresponding Constraint (7) (or Constraint (8)) can aso be
removed from the ILP formulation.

Considering a horizontal wire segment h in a given routing solution, if the upper boundary
of h is the same as the lower boundary of h, h is unmovable, i.e., it cannot be moved during the
reassignment process. Therefore, H, can be replaced by a value in each constraint having H. in it
where the value is the row in which h, is placed in the initial solution. Meanwhile, the corresponding
constraint used to express the feasible row ranges of h can be deleted from the ILP formulation.

Furthermore, for a pair of unmovable horizontal wire segments h, and h;, if there exists VC(h,, h),
VC(h;, h), MC(h;, h;), or MC(h;, h)), the corresponding constraint can also be removed from the
ILP formulation. On the other hand, if h and h; with T, defined are unmovable, it is not necessary to

use Constraints (5) and (6) to express adjacency information between them and the crosstalk between

h and h; can be computed before the reassignment process if h and h; are adjacent in the initial

solution. Similarly, the number of variables and constraints used to compute the crosstalks between
adjacent vertical wire segments can be greatly reduced if the ednpoints of some vertical wire
segments are connected to the unmovable horizontal wire segments. For example, no variables and

constraints are needed to compute the crosstalk between adjacent vertical wire segment v; and v, in
Case 6 if al endpoints of v, and v; are connected to the unmovable horizontal wire segments. Of

course, the crosstalk between v; and v, can be computed before the reassignment process if it exists.
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In practice, there may have many unmovable horizontal wire segments in a given routing solution.
For instance, for the examples Ex3 and Ex4 listed in Table 1, there are up to 18 and 26 unmovable
horizontal wire segments, respectively (26 and 37 horizontal wire segments in totality, respectively).
With this relatively large amount of unmovable horizontal wire segments, we shall have more
chances to reduce the number of variables and constraints as many as possible.

Obvioudly, different problem instance will result in defferent reduction in the number of
variables and constraints. In our experiments as shown in the next section, large reductions were

obtained by using the effective techniques presented in this subsection.

IV Experimental Results

Our algorithm was coded in C language and implemented on a SUN SPARC 10 workstation.
We applied the algorithm to five river routing examples. The initia routing results for these five
examples are summarized in Table 1. The example Ex5 is from the Fig. 1 published in [7] with little
modification. The modification is that the bottom pins in Fig. 1 of [7] are shifted downward to the

immediate next track to fit our routing model.

Table 1: Characteristics of test examples.

Ex. # of # of # of # of # of References
tracks | columns nets hw.s(jogs) | v.w.s.

Ex1 4 13 7 9 16 Fig. 1 in this paper

Ex2 5 25 9 17 26 Fig. 1in[8]

Ex3 9 33 15 26 41 Fig. 2.8(c) in[12]

Ex4 13 38 19 37 56 Fig. 5(ii) in[8]

Ex5 6 35 17 40 57 Fig. 1in[7]

Note that h.w.s and v.w.s represent horizontal and vertical wire segments, respectively.

It should be noted that in the initial routing solution of each example, there is a small number
of jogs (horizontal wire segments) in each route. Let J denote the global upper bound on the number
of jogs per route. For Ex1, Ex2, Ex3, and Ex4, J = 2. For Ex5, J = 4. Since restricting the number of
jogs per route is one way to reduce the manufacturing faults, we choose these routing solutions with

small J as the initial routing solutions. Of course, any routing solution with large J or no restriction
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on the number of jogs per route can also be the initial routing solution. Note that the number of jogs
per route in any initial routing solution should not increase after the reassignment process.

The number of variables and constraints in the ILP formulation for the first iteration of the
reassignment process (i.e., the reassignment of horizontal wire segments) before and after the
reduction process are summarized in Table 2. From the table, significant reduction in the number of
variables and constraints is obtained for each example. Especially, for Ex4, the number of variables
drops from 286 in the initial formulation to 67 in the final formulation and the number of constraints
drops from 505 in the initial formulation to 118 in the final formulation. The main reason for the
relatively large reduction in the number of variables and constraints for Ex4 is due to the fact that
there is alarge number of redundant vertical constraints and unmovable horizontal wire segments in

theinitial solution.

Table 2: The number of variables and constraints before and after the reduction process.

Before reduction After reduction
Ex. # of # of # of # of
variables | constraints | variables | constraints
Ex1 72 95 38 59
Ex2 125 194 35 62
Ex3 220 350 49 20
Ex4 286 505 67 118
Ex5 333 517 179 283

The experimental results obtained by applying the reassignment process iteratively between
the horizontal and vertical wire segments are summarized in Table 3. Since no maximum tolerable
crosstalks in the routes were specified for any test example, they are assigned randomly. Meanwhile,
in order to emphasize mindack in the objective of the reassignment problem, w,, and w, were set to
10 and 1, respectively. Table 3 lists the values of minslack and totalslack of the initial solution and
the final solution, respectively. As shown in the table, minslack for each example is negative in the
initial solution, in other words, there exist some routes in the initial solution which do not satisfy the
corresponding crosstalk constraints. After applying the reassignment technique, all the crosstalk
constraints are satisfied with some margins. Moreover, the totalslack among all the routes is

increased for each example. That is, the total decrement in the crosstalks in all routes is greater than
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the total increment in the crosstalks in all routes. Larger totalslack means a more reliable routing

solution.
Table 3: Routing results after the iterative reassignment process.
Ex. Initial solution Final solution I mprovement
mindack | totalslack | minslack | totalslack | iterations | time(sec) || minslack | totaldack
Ex1 -2 13 1 17 2 3.7 3 4
Ex2 4 42 2 58 2 6.5 6 16
Ex3 -5 145 2 170 3 184 7 25
Ex4 3 133 3 153 3 15.7 6 20
Ex5 2 144 3 174 3 49.8 5 30

To gain a better understanding on how the crosstalks in the routes change as the wire
segments are reassigned, Fig. 6 plots the value of actual crosstalk in each route before and after the
reassignment technique for example Ex3. As shown in the figure, to increase the values of minslack
and totalslack, the optimization process reassigns the wire segments so that the crosstalks in most
routes decrease. However, since the routing area is limited, the decrease in the crosstalks in some
routes may result in the increase in the crosstalks in some other routes like W, and W, in Fig. 6.
Comparing the two crosstalk curves between W, and W, and between W, and W,;, we observe that
relatively smaller improvements on the crosstalks are achieved between W, and W,. The reason for
this is that the initial routing between W, and W, is more tightly packed than that of other routing

area, and therefore, there is less freedom to reassign the wire segments.
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Figure 6: The actual crosstalk in each route before and after the reassignment
process for example Ex3.

V Conclusion

We have just proposed a new approach for the gridded river routing problem considering
crosstalk constraints. Our approach is based on applying the wire segment reassignment technique to
the initial routing solution generated by an existing conventional river routing algorithm. The
reassignment of the wire segments is done by reassigning the horizontal and vertical wire segments
iteratively. An ILP formulation and some effective techniques for reducing the ILP size have been
presented to achieve the goa of reassigning horizontal and vertical wire segments efficiently and

optimally. The obtained experimental results are very promising.
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