
Note: This paper is submitted for the ICS 2002 at Hualien, Taiwan Dec. 11-14,2002. It
contains so many tables and figures for reviewers’ reference. We will condense the paper to
meet program committee’s requirement once the paper is accepted for publication. Thanks for
your time and effort for processing our manuscript.

1) Name of the workshop: Workshop on Databases and Software Engineering
2) Title of the paper: Control Patterns Analysis on Java Program Corpora
3) Authors:

Chung-Chien Hwang, and Deng-Jyi Chen

Computer Science and Information Engineering Department,
National Chiao Tung University, Hsin-Chu, Taiwan

 cchwang@csie.nctu.edu.tw, djchen@csie.nctu.edu.tw

Shih-Kun Huang

Institute of Information Science, Academia Sinica,
128 Academic Road, Section 2, Nankang 115, Taipei, Taiwan

skhuang@iis.sinica.edu.tw

David T. K. Chen

Computer and Information Science Department,
Fordham University, Bronx, N.Y. U.S.A.

dachen@fordham.edu
4) Contact person:

Professor Deng-Jyi Chen

Computer Science and Information Engineering Department,
National Chiao Tung University, Hsin-Chu, Taiwan

5) Keywords: OOP, Control Patterns, Data Mining, Java VM, Code Patterns,
Benchmark Design, Program Optimization, Static and Dynamic Analysis.

6) Abstract:

Java programming, based on Object-Oriented (OO) paradigm, has played a major role in
program design and implementation due to the fact that it is more extensible, maintainable,
and reusable in the software system construction. Experiences of using Java programming
have indicated that there exist disadvantages with respect to its execution inefficiency and
complicated runtime behaviors. Program analysis is essential for performance measurement
and improvement. Current static and dynamic analysis using OO programming cannot
characterize runtime behavior well and are also hard to quantify the measured results. In this

 1

mailto:cchwang@csie.nctu.edu.tw
mailto:djchen@csie.nctu.edu.tw
mailto:skhuang@iis.sinica.edu.tw
mailto:dachen@fordham.edu

paper, research work was performed to analyze several Java program metrics and method
invocation sequence. The results not only provide us a better understanding of the runtime
behavior but also present more information for different application domains.

Code-patterns are statically recurring structure specifically related to a programming
language. It can be used in parallel to help designing software systems for solving particular
problems. In opposition to code-patterns’ role in assisting compilation, control-patterns are
dynamically recurring structures invoked during program execution time. It can be used to
understand the run-time behaviors of OO-programs for the underlying architecture such as
Java-VM. Control pattern describes the model of control transfer among objects in OO
program execution. In this research, several control patterns are proposed and discussed.
Particularly, we have analyzed and collected several control patterns over several Java
program corpora. The experimental results show that control pattern does exist and provide
quantitative analysis. Simple pattern, compound pattern and complex pattern have different
ratio respectively, according to a variety of different source programs. Control patterns
collected can be used to provide guidelines for Java programmers to write more effective Java
program.

1. Introduction

Over the years, issues relating to performance improvement in the run-time environment

of OO systems have been studied and researched in literatures [1,2,6,9,12]. Since the run time

behaviors with respect to various application domains and code patterns are different

substantially, the optimization should be domain or pattern specific [1]. Programs designed

and written by object-oriented approach are more extensible, maintainable and reusable than

those produced by traditional procedural-oriented approach [3,4,14,15]. But, a significant

increment of complex runtime behaviors has become the disadvantage associated with

object-oriented design. The traditional concept of program analysis is not broad enough to

represent the real runtime behavior of the OO program. For traditional procedural-oriented

languages, the control flows can be divided into three types: sequential execution, conditional

branch, and unconditional branch. In pure object-oriented languages, such as Java, there are

only two types of control flows: sequential execution and message sending. Sequential

execution is not so different from procedure-oriented program. The instructions are executed

 2

one by one without jumping to other places. Message sending means that the execution is

switched to other groups of instructions. During the object-oriented program execution, the

action of invoking a method to execute is known as a control transfer. A method invocation

sequence records all of the control transfer, which is taking place during the execution of

program. There might exhibit some recurrence patterns in this method invocation sequence,

and these recurrence patterns of control transfer are called control patterns. These patterns

typically represent the run-time behavior of object-oriented programming. In other words, the

more precisely the patterns are found, the more we can explore the runtime real world. With

this in mind, the goal is to get the runtime method invocation sequence of object-oriented

program execution first and build tools to analyze the invocation sequence to better

understand the property of the runtime behavior. Then, the control pattern will be found based

on the analyzed patterns. Thus, the performance measurement and performance improvement

based on the control patterns can be measured hereafter.

In this research, Java is chosen as our experimental language due to its popularity in the

OO community and its flexibility in different platforms. Java is an object-oriented

programming language developed by Sun Microsystems. It is designed to execute on a virtual

machine, called Java Virtual Machine (JVM) Java programs are first compiled into byte codes,

which are then executed by the JVM [5]. If run-time information of Java program were

required, only JVM should be modified. And there is no need to recompile the programs. The

objective of this research is to acquire the run-time method invocation sequence of

object-oriented program execution and build a tool to analyze the invocation sequence. A

runtime model based on behaviors among objects will be proposed. It helps us to understand

the critical nature in runtime program. A control pattern-mining tool was designed to explore

runtime behavior and to quantify the measured result. Specifically, we have analyzed and

collected several control patterns over several Java program corpora. The experimental results

show that control pattern does exist and provide quantitative analysis. Simple pattern,

 3

compound pattern and complex pattern have different ratio respectively, according to a variety

of different source programs. Control patterns collected can be used to provide guidelines for

Java programmers to write more effective Java program.

2. Control Patterns

The progress of object-oriented program is regarded as the lifetime of objects in program

execution. During the execution of object-oriented program, the action of invoking a method

to execute is known as a control transfer. A method invocation sequence keeps track of all the

control transfers occurred during program execution. Although the real action of method

invocation is the control transfer among objects, in terms of the behavior of program

execution, we can transform the control transfer into different kind of transfer between

receiver classes. A program of call graph represents the possible callees at each call site in

each procedure. Interprocedural analyses typically produce summary results of the effect of

callers at each call site as well as summaries of the effect of callers at each procedure entry.

Unfortunately, in the presence of dynamically dispatched messages or invocation of computed

functions, the set of possible callees at each call site is difficult to predict precisely. The

reason is that different input data will result in different execution paths. The calling

relationship among objects analyzed from the method invocation sequence is more concrete

than call graph.

Control pattern includes a directed graph that is a small subgraph of call graph plus two

functions: constraint output function and constraint Boolean function. It can explain which

subgraph is really executed in call graph as well as the quantitative results of this subgraph.

Moreover, constraint output function and constraint Boolean function describe the real

execution path in subgraph. Besides, class hierarchy analysis [7-9] exploits information about

the structure of the class inheritance graph. Execution log pattern identifies the movement of

control in class inheritance graph. It is possible that the frequency of dynamically message

binding is reduced by split and combination of class. A method invocation sequence records

 4

all the control transfers occurred during program execution. It is the same meaning that a

program segment is run with specific input data. A control pattern is a repeating pattern

extracted from method invocation sequence.

2.1 Semantic meanings of control patterns

We have evaluated several kinds of simple control pattern (consecutive patterns, loop-N

patterns [12], sequence pattern, dispatch pattern and join pattern [13]) according to language

feature. A formal definition of the control patterns has been discussed in [2,13]. In general,

control patterns are divided into three groups: simple control patterns, compound control

patterns, and complex control patterns. Control patterns created by language features are

classified as simple control pattern. Compound control pattern is a combination of simple

control pattern. Control patterns of other specific appearances are defined as complex control

pattern. Like a sequential statement will be executed sequentially, there are some program

segment in OO program may be executed in the same manner. We call them sequence pattern.

The semantic meanings of these three groups of control pattern are introduced in the

following.

2.1.1 The semantic meanings of simple control pattern

Take the segment of program in Figure 2-1 as an example. It traverses a tree and gives

each node a number to represent its traversal order. In spite of how many classes and methods

are shown in the whole programs, during the execution of this program segment, only 2

classes and 7 methods are involved. They are stack and ce classes, and stack.empty(),

stack.push(), stack.pop(), ce.setOK(), ce.setValue(), ce.hasoreChildren() and ce.nextChild()

methods.

A method invocation is consisted of three parts: receiver class, method class, and

method. Figure 2-2 shows the method invocation sequence produced by running the program

segment of Figure 2-1. Consider the method invocation sequence in Figure 2-2. The 1st and

the 2nd method invocation are instances of consecutive pattern because they are consecutive

 5

and their receiver classes are the same (stack). “CP” is the abbreviation of “Consecutive

Pattern”. Consider the method invocation from the 6th to the 14th, the same method invocation

is repeated for every three-method invocations. As a result, they are treated as an instance of

Loop-3 pattern, abbreviated as “LP3.” Directed graphs show the concept of LP3 in Figure4-3.

Figure2-1 Segment of a Tree Traversal Program

while(!stack.empty()) {
 ce = stack.pop();
 if(ce.traverse()) {
 ce.setOK();
 }
 else {
 ce.setValue(value++);
 stack.push(ce);
 while(ce.hasMoreChildren())
 stack.push(ce.nextChild());
 }
}

Figure 2-2 Method Invo

Let’s look at another exam

definition of classes, whereas

part is the corresponding metho

invocations, they produce two

instance of dispatch pattern (DP

(BD, CD) form an instance of j

1 (stack)stack.empty()
2 (stack)stack.pop()
3 (ce)ce.traverse()
4 (ce)ce.setValue()
5 (stack)stack.push()
6 (ce)ce.hasMoreChildren()
7 (ce)ce.nextChild()
8 (stack)stack.push()
9 (ce)ce.hasMoreChildren()
10 (ce)ce.nextChild()
11 (stack)stack.push()
12 (ce)ce.hasMoreChildren()
13 (ce)ce.nextChild()
14 (stack)stack.push()
15 (stack)stack.empty()
16 (stack)stack.pop()
17 (ce)ce.traverse()
18 (ce)ce.setValue() …
 method invocation sequence
consecutive
Loop-N
cation Sequence of the Program Segment in Figure 2-1

ple shown in Figure2-4. On the left part of this figure is the

in the middle part it is a program segment. Also, on the right

d invocation sequence. Considering the first to the 4th method

 execution log patterns (AB, AC). As a result, they form an

) as shown in Figure 2-5. The 5th to the 8th method invocations

oin pattern (JP) as shown in Figure 2-6.

6

A

A B C

Figure 2-3 Consecutive Pattern and Loop-3 Pattern

main() {
 CPass B v;
 CPass B x = new B();
 CPass C y = new C();
 CPass A u = new A();
 CPass D z = new D();

for(i=0;i<2;i++) {
 u.p();
 if(i%2 == 0)
 v = x;
 else
 v = y;
 v.m1(); }
 for(i=0;i<2;i++) {
 if(i%2 == 0)
 v = x;
 else
 v = y;
 v.m1();
 z.q1; }
}

CPass A {
 p1() {
 }
}

CPass B {
 m1() {
 }
}

CPass C extends B {
 m1() {
 }
}

CPass D {

(A)A.p1
(B)B.m1
(A)A.p1
(C)C.m1

(B)B.m1
(D)D.q1
(C)C.m1
(D)D.q1

Figure 2-4 Dynamic Message Sending Examples

B

A

C

 7

Figure 2-5 Dispatch Control Pattern

A

D

C

B

D

Figure 2-6 Join Control Pattern

2.1.2 Compound control pattern

CP

…
…

.

JP

DP

A

Figure 2-7 Example of Compound Control Pattern

A compound control pattern with G (E,V) is an isomorphs of simple control pattern with

G’(E’,V’). For each vertex of V’, there can be either a compound control pattern or simple

control pattern. Compound control pattern has architecture similar to a simple control pattern.

The vertex of simple control patterns can be either a simple control pattern or compound

control pattern. Figure 2-7 explains that the main skeleton of control pattern belongs to

sequence pattern with 2 elements, and the second element can be either dispatch pattern,

consecutive pattern, join pattern, and/or other compound control pattern.

 8

2.1.3 Complex control pattern

In general, the directed graph is constructed for a set of execution log pattern. Every log

pattern exists in the graph. Nevertheless, the directed graph doesn’t belong to either a simple

control pattern or a compound control pattern. A set of execution log pattern {ACDE, ABE,

ACE} in Figure 2-8 can be used as an example.

A

B

C

E

D

Figure 2-8 Example of Complex Control Pattern

In fact, a control pattern with G(E,V) is constructed based on a set S of execution log pattern.

It is possible that a path from source to sink is in G but not in S. Considering a set of

execution log pattern {AB1CD1E, AB2CD2E} in Figure 2-9, the path AB1CD2E is in the

directed graph, and this is not the same execution log pattern as the one constructed in the set.

Therefore, we design a constraint output function corresponding to each vertex and a

constraint Boolean function corresponding to every edge. In the following section, there is a

detailed definition of control pattern.

A

B1

B2

C

D2

D1

E

Figure 3-9 Example of Complex Control Pattern

2.2 Control patterns mining

When Java programs are executed on a modified JVM, a large database of events is given,

where each event consists of receiver class, method class, method, event order, and the items

bought into the event. All the events can together be viewed as a sequence, where each event

 9

corresponds to a set of items. And the list of event, labeled with increasing event order,

corresponds to a sequence. In this section, an algorithm is described to solve the problem of

mining sequential patterns over such database. Data mining is an application-dependent issue.

Different applications may require different mining techniques. Method invocation results can

be viewed as a sequence, where each method invocation or event can correspond to a set of

items, receiver class, method class, method, and event order. Each event order is a unique one.

Mining patterns of execution log is the problem of finding a sequence of patterns concerned

with an ordered list of method invocation. Mining sequence patterns can have many

algorithms of implementation, but the results are the same since the association rule, data

classification, and data clustering was given to produce these control patterns. To be specific,

we shall demonstrate some recurrence patterns in the method invocation sequence, and these

recurrence patterns of control transfer are named as the execution log patterns.

Clustering analysis [10, 11] helps construct meaningful partitioning of a large set of

objects based on the methodology, “divide and conquer”, which decomposes a large scale

system into smaller components to simplify design and implementation. It should possess

small distances between elements of the same cluster and large distances between elements of

different clusters. A data mining algorithm to construct the control pattern corresponding to a

set of execution log patterns has been presented in[xx] and is recalled here. One can divide

the problem of control pattern mining into two parts. The first one is the graph construction

and the second one is the constraint condition mining.

Part 1: graph construction

For a given set of m execution log patterns of the same control pattern, we will construct

a directed graph.

Initially, we set up the activity control pattern table.

Algorithm setup-activity-control-pattern-table:

∀ a, b∈V, f(a, b)= f(b, a)=true

 10

e.g.
Let V={a, b, c}

a a true
a b true
a c true
b a true
b b true
b c true
c a true
c b true
c c true

Algorithm 1: /* Suppose that we have m execution log patterns and ti is the length of the ith
execution log pattern

1. For i=1 to m
2. For j=2 to ti
3. Set-activity-control pattern-table and let E=ø.
4. do /* Assume that the ith execution log pattern is u1,u2,…,uti

 if (f(uj-1, uj)) then E=E∪(uj-1, uj);
f(uj-1, uj)=false;

The time complexity of the algorithm 1 is O(Σ ti), where i=1 to m. Let t be the average

length of {t1,…,tm}, then the complexity is O(tm).

Part 2: constraint condition mining

Given a set of m execution log patterns of the same control pattern and its corresponding

directed graph G=(V, E), find the constraint output function o(v), v∈ V , and the constraint

Boolean function ƒ(u, v) (u, v) ∈ E .

Algorithm breadth-search (G)[15]:

Let id(v) and od(v) be the incoming degree of v and the outgoing degree of v, respectively.

Algorithm 2:

1. ∀ v∈V, o(v)={λ}
2. While (v=breadth-search (G))≠ λ do
3. {

4. O={λ}
5. if id(v)>1 then O={t| t|v|α is an execution log pattern}
6. if od(v)>1 then o(v)=O
7. if o(v)= {λ} then ƒ(v,v-next)= {1} and ƒ(v,other vertices)= {0}

 11

else ƒ(v,v-next)(o(v))={1} and ƒ(v,other vertices)= {0}

8. }

2.3 Mining execution log patterns

In this section, we describe how execution log patterns are looked up in a method

invocation sequence. In fact, the concept of this problem is the same as mining sequence

pattern. CP and LP appear frequently, so we split the problem of mining sequence pattern into

two phases as described in the following.

1. CP Phase: Find the simple execution log patterns (Consecutive Patterns and Loop-N

Pattern) and replace them with control patterns identifier.

ACDCCCCCCCCEFHIACABCABCABCABCABCKJEFDK

⇒ ACDCPEFHIALP3KJEFDK

The modified method invocation sequence is the input of sequence phase. Different

simple control patterns are found separately. Only one control pattern is calculated for each

pass of the method invocation sequence. Figure 3-10 [6] illustrates the method that our

analyzer used to look up control patterns in a method invocation sequence. The method

invocation sequence is fed into the predictor. The predictor keeps several internal states to

predict the next method invocation. The output of the predictor is compared with the next

method invocation input from the method invocation sequence. If the output of the predictor

is the same as the input method invocation, then the input method invocation together with the

method invocations in the predictor is an instance of the evaluated control pattern. The input

method invocation is then fed into the predictor to update the internal states of predictor.

method invocation sequence

output

compare

input Predictor
(internal states)

hit or miss ?

Figure 3-10 Predictor for Evaluating Control Patterns

 12

The predictor is configurable. Setting up the predictor with different internal state

configuration corresponds to different control pattern evaluation. Setting up the predictor with

one internal state to record the previous method invocation is to evaluate the consecutive

pattern. The internal state is used as an output to compare with next input method invocation.

Setting up the predictor with three internal states to record the previous three method

invocations is to evaluate the loop-3 pattern. The third internal state is used as an output to

compare with the next input method invocation. By using these techniques, the consecutive

pattern and loop-N pattern in a method invocation sequence can be easily found.

2. Sequence Phase: There are multiple passes over the modified method invocation

sequence. In each pass, we start with a seed set of large sequences and call a sequence

satisfying a minimal support constraint a large sequence. In the first pass, the seed set contains

all 1-sequences with minimum support. The detail of the algorithms is described as follows.

1. L1={large 1-itemsets}

2. For (k=2; Lk-1≠∅; k++)
3. Ok-1= Lk-1
4. Ck = cc-gen(Lk-1) //New candidates

5. forall candidate c∈ Ck do begin
6. forall (∀p⊂L, p=ck-1 and the next token of p =c.itemk)do
7. c.count++;
8. end

9. Lk = {c ∈Ck| c.count ≥ minsup}
10. Ok-1=Ok-1-{p, q|c=join(p, q)}
11. end
12. Answer1= UkOk

Algorithm cc-gen(Lk-1)
Two executions:
Lk-1 p: p.item1, p.item2,…,p.itemk-1

Lk-1 q: q.item1, q.item2,…,q.itemk-1

Join Lk-1 p with Lk-1 q to build Lk P: p • q.itemk-1

Insert into Ck

 13

Select p.item1, p.item2 ,…., p.itemk-1, q.item1, q.item2, …., q.itemk-1
From Lk-1 p, Lk-1 q
Where p.item2= q.item1,….p.itemk-1= q.itemk-2

3. Benchmark Programs and Assessment

In order to see if there exist any particular behaviors in typical Java programs, we

collected a suite of Java programs to analyze. These programs are first executed on the

modified JVM to get the run-time method invocation sequence, and then analyzed by the

analyzer to obtain various statistics. In this section, the benchmark programs are described

and the results are discussed.

3.1 Benchmark Programs

We have collected 18 Java programs for our analyzer to analyze. Most of these programs

are from two sources. One is the sample programs included in the JDK, the other is the

winner programs of JavaCup program contest, which was held by Sun Microsystem in 1996.

Javac program is included in the JDK API. LinpackJava is downloaded from [16]. It is hoped

that these programs can represent the application domains of java programs and exhibit the

typical java program behaviors.

Below are the overview and descriptions of our benchmark programs. In the # of Classes

field, the number in the parentheses is the number of classes exist in the program, while the

number outside the parentheses is the number of classes that are actually used in the run-time

of the program execution. Most of these programs are user-intervention programs. In other

words, it needs users to terminate the execution of these programs. We always terminate their

execution after the execution behaviors have reached a steady state, or after proceeding a

meaningful work. For example, in the Animation program, we kept the program running for

the animation repeating two or three times before terminating it. In the WebDraw program,

we drew a Mickey Mouse face and saved it before exiting the program.

Table 3-1 An Overview of the Benchmark Programs used in this study

 14

Name # of Lines # of Classes # of Events

Javac 2,570 156(8) 272,193

Animation 361 139(1) 70,942

MoleculeViewer 705 132(4) 558,202

ScrollText 307 121(1) 32,907

Blink 94 111(1) 59,977

Fractal 385 115(4) 134,158

DitherTest 332 141(3) 303,727

TicTacToe 306 146(1) 40,391

Tubes 617 149(8) 585,210

Background

Thread

367 135(5) 159,120

ThreadX 278 118(3) 74,449

CardTest 113 118(2) 31,547

MapInfo 4,277 192(26) 306,904

TrafficSim 669 125(6) 563,661

TuringMachine 991 167(1) 156,045

WebDraw 5,170 156(23) 248,353

DigSim 10,293 225(64) 993,350

LinpackJava 629 39(1) 11,180

These benchmark programs can be classified into the following eight categories:

1. Text Processing: Javac
2. Image Processing: Animation,, MoleculeViewer, ScrollText, Blink, Fractal , DitherTest
3. Game: TicTacTo, Tubes.
4. Multi-Thread Program: BackgroundThread, ThreadX.
5. Interactive Program:, CardTes, MapInfo
6. Simulation: TrafficSim ,TuringMachine
7. System: WebDraw, DigSim
8. CPU Intensive program: LinpackJava

3.2 Runtime statistics

Statistics obtained from several benchmark programs show that control patterns do exist.

The following sections will describe several particular situations.

3.2.1 Statistics - Control pattern (Animation)

Table 3-2 is a report of Animation benchmark. It shows that control pattern does exist.

Simple pattern, Compound pattern and Complex pattern show different ratios. In this table

 15

percentages of CP and LP2[CP,S1] are relatively higher.

Table 3-2 Statistics of Animation

Animation

Types The number of event Percentage

Simple pattern 29547 42%

Sequence(S) 6613 9%

CP 17574 25%

LP2 5360 8%

Compound pattern 34750 49%

S[S1,LP2] 989 1%

S[CP,LP2] 2867 4%

S[CP,CP,S1] 607 1%

S[CP,LP2,CP] 2685 4%

S[S2,CP,S1] 566 1%

S[S1,CP,S2] 490 1%

S[CP,CP,S2] 698 1%

LP3[CP,S3,CP] 2185 3%

LP2[CP,CP] 5036 7%

LP2[CP,S1] 13240 19%

LP2[S1,CP] 453 1%

LP3[CP,CP,LP2] 4934 7%

Complex pattern 6645 9%

Total number of event 70942 100%

3.2.2 Statistics - Control pattern(LinpackJava)

Table 3-3 describes the statistic of LinpackJava. It has a small number of control

patterns. It is interesting that CP pattern occupies 96 percent. LinpackJava is also greater than

90%. LinpackJava is a kind of kernel benchmark. It contains a big LOOP to run a specific

pattern repeatedly. The percentage of CP pattern is thus very high.

Table 3-3 Statistics of LinapckJava

LinpackJava

Types The number of event Percentage

Simple pattern 11098 99%

Sequence(S) 101 1%

 16

CP 10787 96%

LP2 0 0%

LP3 210 2%

Compound pattern 82 1%

LP2[CP,CP] 72 1%

LP2[S1,CP] 10 0%

Complex pattern 0 0%

Total number of event 11180 100%

3.2.3 Statistics - Control pattern (BackgroundThread & DitherTest)

The progress of object-oriented program is proceeded with object invocations one at a

time. The object invocation sequence can be thought of as a large sequence pattern, which is

also regarded as a trivial pattern. The percentages of BackgroundThread and DitherTest are

near 0%. It means that most of their control patterns are nontrivial patterns. Moreover, In

Table 3-4, BackgroundTread has a particular pattern of LP3 which is 60 percent. The S(CP,CP)

of DitherTest is 76 percent in Table 3-5.

.Table 3-4 Statistics of BackgroundThread

BackgroundThread

Types The number of event percentage

Simple pattern 106663 67%

Sequence(S) 554 0%

CP 2861 2%

LP2 408 0%

LP3 102840 65%

Compound pattern 52457 33%

S[S1,LP2] 3512 2%

S[LP2,LP2] 5528 3%

S[CP,CP,CP] 1632 1%

S[CP,S2,CP] 1176 1%

S[S2,CP,S2] 1332 1%

S[S2,LP2,CP] 21539 14%

LP2[CP,CP] 6283 4%

LP2[CP,S1] 4335 3%

LP3[CP,CP,LP2] 4874 3%

 17

LP3[CP,CP,S1] 20 0%

LP3[CP,LP2,S1] 2226 1%

Complex pattern 0 0%

Total number of event 159120 100%

Table 3-5 Statistics of DitherTest

DitherTest

Types The number of event percentage

Simple pattern 55059 18%

Sequence(S) 0 0%

CP 54710 18%

LP2 235 0%

LP3 114 0%

Compound pattern 248668 82%

S[CP,CP] 231600 76%

LP2[CP,CP] 1510 0%

LP2[CP,S1] 10590 3%

LP2[S1,CP] 94 0%

LP3[CP,CP,LP2] 4874 2%

Complex pattern 0 0%

Total number of event 303727 100%

3.2.4 Statistics - Control pattern (TuringMachine)

Table 3-6 shows the statistics of TuringMachine. TuringMachine has 32 kinds of control

patterns and it is the one with the highest number in our benchmark programs. It indicates not

only more kinds of control pattern but also more complex behaviors. Different programs have

various combination of behavior. It is impossible to show all of them in statistics. But they

express their own behaviors. Tables A-J, in the appendix A, provide the detailed information

regarding the percentage of different pattern for the rest of benchmark programs.

Table 3-6 Statistics of TuringMachine

TuringMachine

Types The number of event Percentage

Simple pattern 49652 32%

 18

Sequence(S) 6643 4%

CP 23756 15%

LP2 19217 12%

LP3 36 0%

Compound pattern 106393 68%

S[S1,CP] 1132 1%

S[S1,CP,CP] 1050 1%

S[CP,S1,CP] 1379 1%

S[CP,S2] 568 0%

S[LP2,CP,S1] 3031 2%

S[LP2,LP2,CP] 5434 3%

S[S1,CP,LP2,CP] 4655 3%

S[S1,LP2,CP,CP] 3479 2%

S[LP2,CP,CP,S1] 3822 2%

S[S1,CP,S3] 2744 2%

S[CP,LP2,CP,CP,CP] 4425 3%

S[CP,S3,LP2] 4347 3%

S[CP,S3.CP] 1404 1%

S[CP,S5] 1192 1%

S[CP,CP,S4] 1640 1%

S[CP,CP,CP,S1,LP2,CP] 4605 3%

S[LP2,CP,S4] 3699 2%

S[LP2,CP,S3,CP] 4107 3%

S[S3,CP,S3,LP2] 3975 3%

S[CP,S3,CP,S4,CP] 4016 3%

S[S1,CP,CP,S1,CP,CP,CP,S1] 5076 3%

S[CP,CP,S1,CP,CP,CP,S2,LP2] 5005 3%

LP3[S2,LP2] 1496 1%

LP2[CP,CP] 7407 5%

LP2[CP,S1] 14933 10%

LP2[S1,CP] 620 0%

LP3[CP,CP,LP2] 4894 3%

LP3[CP,LP2,S1] 6258 4%

Complex pattern 0 0%

Total number of event 156045 100%

3.2.5 Other Statistics

 Appendix shows the statistics of other benchmark programs corpora.

 19

3.4 Comparison

From the experimental results of benchmark programs, we found that not all programs have

all three kinds of patterns. In Figure 3-1, three values are drawn for each program.

0 0.2 0.4 0.6 0.8 1

Animation
Background
Cardtest
DigSim

DitherTest
Fractal
Javac

LinpackJava
Mapinfo

MoeculeViewe
ThreadX

Tic Tac Toe
TrafficSim
Tubes

TuringMachine
WebDraw

Complex pattern

Compound pattern

Simple pattern

Figure 3-1 Percentages of Complex Pattern, Compound Pattern and Simple Pattern

The first is the percentage of complex pattern which is listed here for comparison with the

other two values. The second is the percentage of compound pattern, and the third is the

Simple pattern.

Figure 3-2 shows the number of different types of patterns, including simple, compound

and complex patterns. The greater the number, the more complex the behavior will be

expressed. For example, LinpackJava and DitherTest are simpler. TuringManchine and Javac

are more complex.

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28

A
n
i
m
a
t
i
o
n

B
a
c
k
g
r
o
u
n
d

C
a
r
d
t
e
s
t

D
i
g
S
i
m

D
i
t
h
e
r
T
e
s
t

F
ra
c
t
a
l

J
a
v
a
c

L
i
n
p
a
c
k
J
a
v
a

M
ap
i
n
f
o

M
o
e
c
u
l
e
V
i
e
w
e
r

T
h
r
e
a
d
X

T
i
c

T
a
c

T
o
e

T
r
a
f
f
i
c
S
i
m

T
u
b
e
s

T
u
r
i
n
g
M

a
c
h
i
n
e

W
e
b
D
r
a
w

Simple pattern

Compound pattern

Complex pattern

Figure 3-2 Numbers of Complex Pattern, Compound Pattern and Simple Pattern

 20

Most programs have nontrivial behavior. In figure 3-3 only TuringMachine’s

percentage is larger than thirty percent. The percentages of Mapinfo and WebDraw are larger

than ten percent. The rest of the programs are below ten percent.

Sequence pattern

0%

10%

20%

30%

40%

A
n
i
m
a
t
i
o
n

B
a
c
k
g
r
o
u
n
d

T
h
r
e
a
d

C
a
r
d
t
e
s
t

D
i
g
S
i
m

D
i
t
h
e
r
T
e
s
t

F
r
a
c
t
a
l

J
a
v
a
c

L
i
n
p
a
c
k
J
a
v
a

M
a
p
i
n
f
o

M
o
e
c
u
l
e
V
i
e
w
e
r

T
h
r
e
a
d
X

T
i
c

T
a
c

T
o
e

T
r
a
f
f
i
c
S
i
m

T
u
b
e
s

T
u
r
i
n
g
M
a
c
h
i
n
e

W
e
b
D
r
a
w

Sequence pattern

Figure 3-3 Percentages of Sequence Pattern

Figure 3-4 shows that there are more programs with respect to particular behaviors. The

ratio is about 30 %. It can be seen that the percentage of BackgroundThread(LP3) is greater

than 60%. DiterTest(S[CP.CP]) is near 80%. And the percentage of the remaining behaviors is

also greater than 30 percent. These particular behaviors represent that the corresponding

subgraphs appear more frequently on their call graph. At the same time, it also explains which

control jump occurs more frequently on static class hierarch. Call graph and static class

hierarch explain the relationships of class designed in the program. One is a calling

relationship, and the other is an inherent relationship. They can’t provide the information as

to which part is the bottleneck. The bottleneck of runtime behavior must be referred back to

control pattern. Moreover, it plays an important role for programmers to redesign their

program.

 21

Special pattern

0%10%20%30%40%50%60%70%80%90%100

%

Background Thread(RL3)

DiterTest(S[CL,CL])

Fractal(S[RL2,S1,CL,S1CL,S2])

LinpackJava(CL)

MoeculeViewer(S[RL2,RL2,CL,RL2])

MoeculeViewer(S[CL,RL2,CL,CL,RL3])

Tic Tac Toe(RL2[CL,S1])

Special pattern

Figure 3-4 Percentages of Specific Behavior

4. Conclusion

We have collected 18 Java programs and used as our benchmark programs for control

patterns study. These 18 Java programs can be grouped eight different application categories.

After obtaining the run-time information of these benchmark programs, we use our analyzer

to analyze the method size, native method percentages, method invocation localities, and

control patterns in these program corpora.

We modified the JVM implemented by Sun Microsystems to collect method invocation

sequence and the run time logfile information for control pattern analysis. In this research,

several control patterns are proposed and discussed. Particularly, we have analyzed and

collected several control patterns over several Java program corpora. The experimental results

show that control pattern does exist and provide quantitative analysis. Simple pattern,

compound pattern and complex pattern have different ratio respectively, according to a variety

of different source programs. Not all benchmark programs contain all three kinds of patterns.

There are high percentages of programs with nontrivial behaviors. The results not only

provide us a better understanding of the runtime behavior but also present more information

for different application domains.

5. References
[1] Shih-Kun Huang, Optimizing Run-Time Behaviors in Object-Oriented Programming

 22

Systems, Ph.D. Dissertation of Institute of Computer Science and Information
Engineering, National Chiao-Tung University, HsinChu, Taiwan, 1996.

[2] Chung-Chien Hwang, Object-oriented Program Behavior Analysis Based on Control
Patterns, Ph.D. Dissertation of Institute of Computer Science and Information
Engineering, National Chiao-Tung University, HsinChu, Taiwan, 2002.

[3] Ivan Jacobson, Object-oriented Software Engineering, Addison-Wesley, 1992..
[4] James Rumbaugh, Micheal Blaha, William Premerlani, Frederick Eddy, and William

Lorensen, Object-Oriented Modeling and Design, Prentice-Hall Inc., 1991.
[5] Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification,

Addison-Wesley Pub. Co., 1997.
[6] C.C. Hwang, S.K. Huang, D.J. Chen, and M.S. Lin, “Dynamic Java Program Corpus

Analysis Part1: The Analyzer”, Journal of Object-Oriented Programming, MAY 2001,
pp. 26-29.

[7] Jan Vitek, R. Nigel Horspool and Andreas Krall, “Efficient Type Inclusion Tests”,
OOPSLA’97, Atlantas, GA, USA, October 1997, pp. 142-157.

[8] Andreas Krall, Jan Vitek and Nigel Horspool, “Near Optimal Hierarchical Encoding of
Types”, ECOOP’97, Jyvaskyla, Finland, June 1997, pp. 128-145.

[9] Jeffrey Dean, David Grove, and Craig Cambers, “Optimization of Object-Oriented
Programs using Static Class Hierarchy Analysis”, ECOOP’95, Aarhus, Denmark,
August 1995, pp. 77-101.

[10] P. Michaud, “Clustering techniques”, Future Generation Computer Systems, 1997,
pp.135-147.

[11] M. R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, 1973.
[12] C.C. Hwang, S.K. Huang, M.S. Lin, and D.J. Chen, “Dynamic Java Programming

Corpus Analysis Part2: The Control Pattern Analysis”, Journal of Object-Oriented
Programming, June/July 2001, pp. 17-23.

[13] C.C. Hwang, S.K. Huang, D.J. Chen, and David T.K. Chen,” Object-Oriented Program
Behavior Analysis Based on Control Patterns”, APAQS 2001, Proceedings of the
Second Asia-Pacific Conference on Quality Software, Hong Kong, December 2001, pp.
81-87.

[14] G. Booch, Object-oriented Analysis and Design with Applications, Benjamin Cummings,
1994..

[15] G. Booch, J. Rumbaugh, et. Al., The Unified Modeling Language User Guide,
Addison-Wesley Longman, 1999..

[16] Rakesh Agrawal and Ramakrishnan Srikant, “Mining Sequential Patterns”, Research
Report RJ 9910, IBM Almaden Research Center, San Jose, California, October, 1994.

Appendix A

Table A Control pattern distribution in % (DigSim)

 23

DigSim

Types The number of event Percentage

Simple pattern 70129 45%

Sequence(S) 7826 5%

CL 34250 22%

RL2 28017 18%

RL3 36 0%

Compound pattern 72468 46%

JP[(A,B),CL] 1201 1%

S[RL2,RL2] 4935 3%

S[S1,CL,CL] 1080 1%

S[CL,S1,CL] 1418 1%

S[CL,S2] 724 0%

S[RL2,CL,S1] 3045 2%

S[CL,S3,CL,S1] 1591 1%

S[CL,CL,S1,CL,S2] 1980 1%

S[CL,CL,CL,S1.RL2.CL] 4666 3%

S[S1,CL,RL2,CL] 4693 3%

S[CL,S3] 1047 1%

RL2[S2,RL2] 1496 1%

RL2[CL,CL] 10788 7%

RL2[CL,S1] 21749 14%

RL2[S1,CL] 903 1%

RL3[CL,CL,RL2] 4894 3%

RL3[CL,RL2,S1] 6258 4%

Complex pattern 13448 9%

Total number of event 156045 100%

Table B Control pattern distribution in % (Fractal)

Fractal

Types The number of event Percentage

Simple pattern 19618 15%

Sequence(S) 4700 4%

CL 14839 11%

RL2 61 0%

RL3 18 0%

Compound pattern 114540 85%

S[RL2,CL,S3,CL,S1,CL,S3] 30240 23%

S[RL2,S1,CL,S1,CL,S2] 65208 49%

 24

RL3[CL,S3,CL] 2185 2%

RL2[CL,S2] 48 0%

RL2[CL,CL] 304 0%

RL2[CL,S1] 8428 6%

RL2[S1,CL] 2805 2%

RL3[CL,CL,RL2] 4874 4%

RL3[CL,RL2,S1] 448 0%

Complex pattern 0 0%

Total number of event 134158 100%

Table C Control pattern distribution in % (Javac)

Javac

Types The number of event Percentage

Simple pattern 101698 37%

Sequence(S) 24181 9%

CL 44331 16%

RL2 20331 7%

RL3 12855 5%

Compound pattern 151433 56%

JP[(A,B,C,D,E),CL] 4617 2%

DP[CL,(A,B,C)] 2586 1%

S[S1,CL,CL] 1452 1%

S[CL,S2] 1283 0%

S[CL,S1,CL] 1696 1%

S[CL,S2] 1226 0%

S[CL,CL,S1] 1561 1%

S[CL,CL,RL2] 7464 3%

S[CL,RL2,S1] 7300 3%

S[RL2,RL2,S1] 6425 2%

S[S1,CL,CL,S1] 1790 1%

S[S1,CL,S2] 3260 1%

S[S2,CL,S1] 1550 1%

S[S2,CL,CL] 2279 1%

S[CL,S2,CL] 1716 1%

S[RL2,CL,S2] 36372 13%

S[RL2,CL,S5,CL] 29926 11%

RL2[CL,S2] 8160 3%

RL2[S2,CL] 6264 2%

RL2[S2,RL2] 1709 1%

 25

RL2[CL,CL] 991 0%

RL2[S1,CL] 10182 4%

RL2[CL,S1] 11624 4%

Complex pattern 19062 7%

Total number of event 272193 100%

Table D Control pattern distribution in % (Mapinfo)

Mapinfo

Types The number of event Percentage

Simple pattern 163696 53%

Sequence(S) 36027 12%

CL 78906 26%

RL2 2736 1%

RL3 45027 15%

JP 1000 0%

Compound pattern 137468 45%

S[RL2,RL2,S2,CL] 5208 2%

RL3[S2,RL2] 9900 3%

RL2[S2,CL] 2152 1%

RL2[CL,CL] 18114 6%

RL2[CL,S1] 92754 30%

RL2[S1,CL] 4286 1%

RL3[CL,CL,RL2] 5054 2%

Complex pattern 5740 2%

Total number of event 306904 100%

Table E Control pattern distribution in % (MoleculeViewer)

MoleculeViewer

Types The number of event Percentage

Simple pattern 159126 29%

Sequence(S) 23704 4%

CL 135104 24%

RL2 300 0%

RL3 18 0%

Compound pattern 399076 71%

S[CL,RL2,CL,CL,RL2] 175516 31%

S[RL2,RL2,CL,RL2] 184852 33%

RL3[S2,RL2] 9900 2%

 26

RL2[S2,CL] 2152 0%

RL2[CL,CL] 3900 1%

RL2[CL,S1] 11635 2%

RL2[S1,CL] 4993 1%

RL3[CL,CL,RL2] 4874 1%

RL3[S2,RL2] 1254 0%

Complex pattern 0 0%

Total number of event 558202 100%

Table F Control pattern distribution in % (ThreadX)

ThreadX

Types The number of event Percentage

Simple pattern 36962 50%

Sequence(S) 27621 37%

CL 9013 12%

RL2 220 0%

RL3 108 0%

Compound pattern 37487 50%

S[RL2,RL2] 3414 5%

S[CL,RL2,CL,S1] 4592 6%

S[S3,CL,CL] 1444 2%

S[CL,CL,CL] 3329 4%

S[RL2,CL] 8066 11%

RL2[CL,CL] 2999 4%

RL2[CL,S1] 8720 12%

RL2[S1,CL] 51 0%

RL3[CL,CL,RL2] 4872 7%

Complex pattern 0 0%

Total number of event 74449 100%

Table G Control pattern distribution in % (Tic Tac Toe)

TicTacToe

Types The number of event Percentage

Simple pattern 8200 20%

Sequence(S) 2540 6%

CL 5263 13%

RL2 346 1%

RL3 51 0%

 27

Compound pattern 32191 80%

S[S1,RL2] 1225 3%

S[CL,S1] 184 0%

S[S1,CL,CL] 385 1%

S[S1,RL2,S1] 1054 3%

S[CL,S2] 255 1%

S[CL,CL,S1] 343 1%

S[CL,CL,CL] 1305 3%

S[CL,CL,RL2] 1102 3%

S[RL2,CL,CL] 1642 4%

S[CL,S2,CL] 408 1%

S[S2,CL,S2] 329 1%

S[S3,CL,S1] 1029 3%

S[S1,CL,CL,S2] 4212 10%

RL3[S2,RL2] 1650 4%

RL2[CL,CL] 2305 6%

RL2[CL,S1] 14258 35%

RL2[S1,CL] 373 1%

RL3[RL2,CL,S1] 132 0%

Complex pattern 0 0%

Total number of event 40391 100%

Table H Control pattern distribution in % (TrafficSim)

TrafficSim

Types The number of event Percentage

Simple pattern 125295 22%

Sequence(S) 46100 8%

CL 78953 14%

RL2 188 0%

RL3 54 0%

Compound pattern 438366 78%

S[S1,RL2] 26858 5%

S[RL2,S1] 26728 5%

S[CL,CL,CL] 9180 2%

S[CL,CL,RL2,CL,CL] 33300 6%

S[CL,CL,S1,CL,CL] 13403 2%

S[RL2,S1,RL2] 52581 9%

S[CL,CL,S2,RL2] 33957 6%

S[CL,CL,S1,RL2] 32928 6%

 28

RL2[CL,CL] 53121 9%

RL2[CL,S1] 83023 15%

RL2[S1,CL] 68413 12%

RL3[CL,CL,RL2] 4874 1%

Complex pattern 0 0%

Total number of event 563661 100%

Table I Control pattern distribution in % (Tubes)

Tubes

Types The number of event Percentage

Simple pattern 76530 13%

Sequence(S) 8343 1%

CL 65350 11%

RL2 2741 0%

RL3 96 0%

Compound pattern 508680 87%

S[CL,RL2] 86496 15%

S[RL2,CL] 79866 14%

S[CL,S1,CL] 24948 4%

S[CL,CL,S1,CL,S1] 43008 7%

S[RL2,RL2,S1,CL,S1,CL,S1,CL] 139378 24%

S[CL,CL,S1,S1,CL,S1] 97240 17%

RL2[S2,CL] 2152 0%

RL2[CL,CL] 1278 0%

RL2[CL,S1] 8033 1%

RL2[S1,CL] 19656 3%

RL3[CL,CL,RL2] 5104 1%

RL3[RL2,RL2,S1] 999 0%

RL3[RL2,RL2,RL2] 522 0%

Complex pattern 0 0%

Total number of event 585210 100%

Table J Control pattern distribution in % (WebDraw)

WebDraw

Types The number of event Percentage

Simple pattern 79925 32%

Sequence(S) 31321 13%

CL 43329 17%

 29

RL2 850 0%

RL3 4425 2%

Compound pattern 168428 68%

S[S1,RL2] 3288 1%

S[S1,CL] 716 0%

S[S1,RL2,S1] 3836 2%

S[CL,S1,CL] 1743 1%

S[CL,CL,S2] 1552 1%

S[CL,S4] 1554 1%

S[S3,CL,S1,CL,CL,CL] 3136 1%

S[S2,CL,S1,CL,S2,CL] 2744 1%

S[S4,CL,S2,CL,CL,CL] 6372 3%

S[CL,RL2,CL,CL,RL2] 31320 13%

S[CL,CL,S1,CL,RL2,S1] 12980 5%

S[S2,CL,S2] 4130 2%

S[CL,CL,CL] 3186 1%

S[S1,CL,S1] 1770 1%

RL2[CL,S2] 1584 1%

RL2[CL,CL] 32238 13%

RL2[CL,S1] 46804 19%

RL2[S1,CL] 2411 1%

RL3[CL,CL,RL2] 4874 2%

RL3[CL,RL2,S1] 308 0%

RL3[RL2,S1,CL] 630 0%

RL3[S1,CL,CL] 340 0%

RL3[S1,RL2,CL] 912 0%

Complex pattern 0 0%

Total number of event 248353 100%

 30

	1. Introduction
	2.1 Semantic meanings of control patterns
	2.1.1 The semantic meanings of simple control pattern
	2.1.2 Compound control pattern
	2.1.3 Complex control pattern

	2.2 Control patterns mining
	2.3 Mining execution log patterns
	3.2 Runtime statistics
	3.2.1 Statistics - Control pattern (Animation)
	3.2.2 Statistics - Control pattern(LinpackJava)
	3.2.3 Statistics - Control pattern (BackgroundThread & DitherTest)
	3.2.4 Statistics - Control pattern (TuringMachine)

	3.4 Comparison

	4. Conclusion

