

RAAEDS:
A Requirements Analysis Aid for

Embedded Digital Systems

Tsorng-Ming Chen* (tmchen@cc.vit.edu.tw), and Brian Wilkins
*Department of Electronic Engineering

Van-Nung Institute of Technology
Jungli, Taoyuan 320, Taiwan, ROC

Abstract
 The system design process of refining mission objectives into a
system specification must be involved with manual effort, such as
checking the missing, incorrect, inconsistent, ambiguous requirements.
Besides, it also involves engineering estimation and judgement,
tradeoffs, interpretation based on common sense, etc. Therefore, this
design process cannot be done fully automatically by state-of-art
technology. Many past system failure cases show that human design
errors are major factors in this error-prone process. How to help the
designers to spot the design errors has been identified as one of the
main system design issues.
 To alleviate the problem, one hundred and five design guidelines
are developed and are organized into eighteen categories. These
criteria and guidelines are built into a handy database written in ASP
language. Hence, the database facilitates the access of these criteria
and guidelines and the analysis on functional requirements of digital
systems. This work represents important further effort to improve the
system design process.
Keywords
Requirements analysis, system design validation, design guidelines
database

1. Introduction

In the design process of a digital system, as depicted in Figure 1, there

are several major system verification and validation activities. In this
figure, the Manufacturing verification (or testing) is to ask “Is what I
manufacture what I implement?” the implementation (or synthesis)
verification to ask “Is what I implement what I specify?” the design
verification to ask “Is what I specify what I want?” and the design
validation is to ask “Is what I specify what the user wants?”
 The mission objectives (M.O.) describe what the desired system has
to do to fulfill the objectives of users (or customers). This document
is usually written in a natural language, and suffers from all the
limitations of any unrestrained human language, in The mission
objectives (M.O.) describe that it may (and usually will) contain
statements that are incomplete, inconsistent, imprecise, or based on
unspecified and incorrect assumptions. As an example, the “cars” for
a car park gate and capacity control system may have different
meanings to different people – the customers or users may mean small
cars, caravans, trailers, limousines, and/or even lorries; while the
system designer may think cars mean small cars only. This is an
essential problem in refining M.O. and in designing a system.
Therefore, constant and iterative validation is necessary.

A system designer takes M.O., studies it, and refines it into a more
detailed document that will rectify all the ambiguities and fully
describe the external behavior of the system desired, or the system
requirements in the diagram.

Down the design flow, the specification is a document that defines
the overall architecture of a system, and defines architecture, behavior,
and interfacing requirements for each of its subsystems at different
levels. The description of the lowest level of subsystems is detailed
enough and is ready to be assigned to a person to implement it. The
details must include what the response(s) are for any sequence of inputs,
together with its timing behavior, and its interfacing requirements with
other subsystems. Therefore, for any sequence of the inputs, how the
system responds will be known exactly (including those input
combinations not mentioned in the M.O. or the system requirements).
For example, the specification must have removed all the “don’t cares”
responses for any sequence of inputs (not mentioned or defined in the
system requirements), and have assigned certain definite value with
timing properties to these “don’t cares” responses for this sequence of
inputs. It can be seen that design validation activity asks an important
question, “whether the specification produced is all right for the
designers to use for detailed synthesis or implementation”.

The statistics of the past system engineering practice shows that
validation is a serious problem. As an example, in the A-7E software
project of U.S. Navy, non-clerical errors account for up to 77% of
requirement errors [1]. Even worse, some requirements were not
feasible and finally led to failed project [2,3]. According to the
statistics cited in the literature [4], as high as 56% of sources of errors
are identified to be from the requirements, while 82% of total efforts
are devoted to correct them. Another statistics said, “Experiences
have shown that many design failures are due to ill-defined
(inconsistent and unclear) requirements or misinterpretation of the

Mission Objectives

System Requirements

System Specification

Product

Netlist

Design

Verification

Design

Validation

Implementation

Verification

Manufacturing

Verification

Figure 1 The main validation and verification activities
in the digital systems

 2

original problem statement (from the user). These account for up to
85% of requirement errors”[5]. According to statistics shown in
Boehm’s paper [1,3], for large software projects , the cost of up to 200:1
is possible if the requirements errors cannot be found and corrected
earlier in the system development cycle. Please refer to Table 1.

 As another set of numerical evidence, in Lutz’s study of the software
requirements errors in safety-critical embedded systems [6] she showed
that only three of the safety-critical faults found were programming
mistakes, and very few problems were attributed to failures in
programming occurring during flight. Among the rest of the faults,
approximately three-fourths is due to “function faults” (faults within a
single software module), and about one-fourth is due to “interface
faults” (interactions with other modules or system components).
Among the function faults, two thirds of them were attributed to flawed
requirements, omissions, impreciseness, unsystematic, or wrong
specifications of requirements; while one third of them were due to
incorrect implementation of requirements (i.e. faulty design or
algorithms). Requirement errors in software system design seem to be
a serious problem [6,7].

From these statistical figures, it seems proper to say that the errors
in the software specifications (similarly in hardware specifications)
happen very often and can be very expensive to correct if they are not
found earlier enough. Besides, the manual inspection, according to
the system designers' own experiences and intuition, with the help of
some kind of good design criteria checklist, is an important way of
finding errors in a system requirement or a specification document.

2. The Type of Systems Concerned in This Study

In this paper, the digital systems to be discussed are something like that
depicted in Figure 2. Although this system model by no means covers
all possible existing digital systems, it does cover a large number of
useful systems.

As shown in Figure 2, a system is interacting with its environment;
namely, the system receives stimuli signals from the environment and
responds to these signals by generating responses, which will be sent to
the environment to meet needs of a system. The stimulus signals are
converted into digital binary signals before they can be processed by
the internal digital information processing subsystem. That is, the
digital systems concerned are the binary digital systems.

The environment of a system here can be a physical one from
which an analog stimulus can be detected and can be converted into a
binary digital information for further processing, such as human
operators, a hardware subsystem as an environment for a software

subsystem, or a whole interacting with one of its subsystems as an
environment for this subsystem. This environment will in general
provide asynchronous stimuli, which is to be synchronized with the
operation of the system; i.e. the systems to be discussed are basically
synchronous real-time ones, instead of the batch-processing ones. In
a real-time system meant here, the arriving time of the inputs from the
As environment are in general not predictable, and their corresponding
responses are expected to be generated within a finite and specified
delay [8], which is required by or implied in the original mission
objectives. While in a batch processing system, all the inputs to be

processed line up in some kind of queue(s) and are to be processed
according to certain priority policy, such as “FIFO (first in first out)”.
Usually, a batch-processing system does not specify the delay between
the inputs and their corresponding outputs. The delay usually depends
on how many higher-priority and/or earlier-arriving jobs are waiting for
processing. The users usually expect the delay.

In this paper, a system is referred as a set of functional elements
organized together to satisfy a set of mission objectives. These
elements usually include hardware ones and software ones. A digital
system refers to a system whose hardware elements are purely digital
(software is stored as binary digital information in the memory
elements), instead of analog, although the interfaces to the physical
environment may need analog transducers plus analog to digital
converters.

The digital systems mainly concerned are single-processor (or
CPU, the Central Processing Unit) systems, but the developed checklist
can also be applied to multi-processor systems as well, although the
considerations may not be enough, say, how to spot the errors in the
communication protocols among different processors are not
thoroughly considered.

On the other hand, from the hierarchical point of view about a
system, the interactions among the subsystems or those among the
modules in a subsystem are basically following the same interfacing
principle. Therefore, a general checklist of criteria or guidelines
applied to all of them would help to identify the potential interfacing
problems that have to be considered.

3. Taxonomy and Samples of Design Guidelines

According to the ANSI/IEEE-ANS-7-4.3.2-1982 standard,
NASA-STD-2100-91 Documentation Standard, Jaffe et al’s paper [12],
and the author’s own investigation, the important groups of problems

Stage Relative Cost of Repair

Requirements 0.1 – 0.2

Design 0.5

Coding 1

Unit Test 2

Acceptance Test 5

Maintenance 20

Table 1 The relative cost to repair a software error

in different stages of system life cycle [1]

Figure 2 The type of systems concerned in this study

 3

that should be considered carefully in system design are summarized
below. If available, some example application case will be put
alongside.

(1) Initialization/Finalization
Sample Guideline 1: The specification of a subsystem
initialization process has to be ensured for no adverse effect on
other subsystems or even the whole system’s initialization process,
through some common facility or medium, if any, such as a power
line, a data bus, a control bus, an address bus, a radio, an
optical-electrical data link, a shared memory, a public queue, and
so on.
e.g.1 In the incident of the failure of the launch of first shuttle,
Columbia, showed that in a bus initialization routine, a slightly
increased time-delay constant than before, was put into the timer
queue without being noticed. As a result, it caused unexpected
influence on the initialization of the backup computer system ---
the calculation of start time in the first GPC (General Purpose
Computer), through the common medium timer queue in its
operating system. This delay constant, without being noticed by
the designers, was mistaken as the data for computing starting
time of the system. It therefore caused unexpected system
initialization and synchronization failure. As a result, the launch
failed and was put off for two days. [13]

(2) Synchronization
 Sample Guideline 2: If there are subsystems that use different

system clocks, it should be ensured that these different clocks are
directly derived from the same master clock (therefore, they are
synchronized one another), and some coordination method is
used to provide an identical start-up time for all of them.
e.g.2 On 10 April, 1981, in the launch of first shuttle Columbia,
the backup computer and the four primary computers were one
time unit out of phase during the initialization, as a result of an
extremely subtle 1-in-67 chance timing error. [2,13]

(3) Input/Output Information Description:
Sample 3: Precision of Data Representation
(a) Does the way to represent the data and the rounding scheme

adopted in the specification allow the system to work in a
desirable way with enough precision?

(b) Is the precision too coarse to differentiate two different control
data?

(c) Is the precision too fine to meet the required system
performance and/or to increase the system cost beyond
budget?

(d) Are different precisions used in different subsystems or
modules? Are they compatible with one another? When
they encounter, will they cause problems?

e.g.3 During the Persian Gulf War, the Patriot system was initially
regarded as highly successful, but in the subsequent analyses,
the estimates of its effectiveness downgraded from 95% to
13% (or less).

This clock drift over a 100-hour period resulted in a
tracking error of 678 metres, which was blamed for the
Patriot missing barracks in Dhahran, killing 29 and injuring
97.

 The later report stated that the software used two different
and unequal versions of the number 0.1--- in 24-bit & 48-bit
representations. [2]

(4) Input Trigger Stimuli
Sample Guideline 4:
(a) If a system is required to process multiple simultaneous stimuli,

then the timing relationships among them should be
investigated for possible affection on the behaviour of the
system.

 (b) One or more of the stimuli must be buffered for later
processing.

e.g.4 In a system equipped with two buttons, “start” button and
“stop”, the possibility that both of these buttons are pressed
simultaneously should be considered in the specification, no
matter whether only one button is required to initiate an action or
not.

(5) Output Specification/environment Capacity
 Sample Guideline 5 :Internal State Display

Are all critical system’s internal states clearly and correctly
displayed at the desired time for the operators to know what the
system’s current status is for reliable and easier controlling of the
system?
e.g.5 In the Three Mile Island accident, the control indicators did
not show the actual positions of the valves but instead the intended
positions. The resulting ambiguity as to the actual settings
caused enormous confusion. [2]

(6) Output to Input Trigger Stimuli Relationships
 Sample Guideline 6 : Closed-loop Control

(a) In a safety-critical system, an input that the system can use to
detect the effect of any output on a process should be
specified. The specification should include the proper checks
on these inputs in order to detect failures or errors.

(b) A mechanism should be used to compare the actual effects of
outputs from the system with the predicted effects, that is, a
feedback loops (including echoes). [12]

e.g.5 In a ferry accident, some time after the captain issued a
command to lift up the door, he thought the door should have been
closed. He then commanded to sail the ferry off the dock. The
ferry sank and caused the accident.

(7) System Loading/buffering
Sample Guideline 7: If a system is interacting with an
environment constantly providing input stimuli in an
unpredictable manner, and if it uses any kind of buffers to hold the
input stimuli for later processing, then there is always a
probability that the buffer may overflow. A strategy to handle
the possible buffer overflow and recovery method should be
specified.

(8) System State Transitions
Sample Guideline 8: Correctness of State Transitions
Every single precondition, any minterm in the guarding logical
predicate, and any datum involved in deciding an output response
or a state transition, should be checked for validity and
correctness, according to the mission objectives and the system
requirements.
e.g. A state transition statement, like If (A or B) then state C
transits to state D, should be checked for the correctness and
validity of all component minterms of (A or B), namely, A’B, AB’,
and AB.

(9) Errors/faults Handling
Sample Guideline 9: It is never safe to remove protections, unless
it is proved that the stimulating event(s) will never happen.

 4

 e.g.9 In Therac-25 accidents, it was found that hardware interlock
was omitted, because it was thought that it would be implemented
in software. However, in a case that an operator tried to correct
her wrong operation, an unexpected software bug triggered the
accident.

(10) Input Information Gathering: Whenever there is an event
coming into the input information gathering module (IIGM),
accurate information corresponding to that event must be
produced. On the other hand, if there is information produced
from the IIGM, then it must imply that there is a corresponding
event coming into IIGM, not other events.

During the transmission process, the information should be kept
correct, without being corrupted.

 E.g.10 Input Data Seemingly Healthy But Actually Obsolete
 In validating the requirements specification of a spacecraft
project in Jet Propulsion Lab, the validators found that a failure
mode was not identified before.

Inaccurate input data from a sensor could in effect disable the
execution of a software response that was needed. This may
happen when the input data appeared to be healthy, but was
actually reflecting an obsolete state.

After searching the possible circumstances in which the
software would actually receive seemingly healthy but actually
obsolete data, the validators found that the current interface
requirements allowed obsolete data from a failed sensor to be
continually sent to the software. If the sensor failed with healthy
valves, then that data would continue to be used indefinitely to
cause the failure mode.

Later, the requirements were modified to have the data from a
sensor pass a test first, before the software uses them to activate a
response. [2]

(11) Interrupt Handling
Sample Guideline 11:
(a) Don’t use interrupts in the system, unless it is nece ssary.
(b) If it is indeed used, then the fact that they can come at any

awkward time should be considered, such as during
(1) the storing period of the status of current system state,
(2) the critical data adjusting period,
(3) a higher level operation regarded as an atomic action, but

in lower level of granularity, it may consist of two or more
smaller operations,

(4) the different operation modes switching period,
(5) a state transition period,
(6) error recovery period, and so on.

(12) Existing Subsystems Reuse
 Sample Guideline 12

(a) Any subsystem that is to be embedded into a system must be
fully defined and documented. For examples, its inputs, its
outputs, its internal functions, its original embedded design
rationales, its assumptions about the operational
environment, its design constraints and limitations, should be
fully explored.

(b) Besides, its interaction with the rest of the system should also
be thoroughly analyzed for without having unwanted
behaviors.

e.g.12 Therac-25: Much of the software in the Therac-25 medical
electron accelerator, which lead to massive overdoses of
radiation and subsequent deaths of six patients, had been used
in an earlier machine without accident. [2]

(13) Hazard Analysis
 Sample Guideline 13: All paths from hazardous states must lead
to safer states. In other word, the system should be designed in a way
that the system will most probably stay in a safer state while the system
fails.

e.g.13 In Galileo spacecraft project many of the software related
errors (approximately 20%) involved the on-board autonomous
error-recovery responses incorrectly included or omitted actions
that allowed hazardous states to be entered or re-entered.
Examples of such actions are turning off Gyros, switching to
backup memory, or disabling certain software process in a
particular mode. [15]

(14) Assumptions
Sample Guideline 14: If an operational scenario is possible,
then it will happen. Unless there is something designed to make
the possible become impossible, all possible input combinations
would finally happen.
e.g.14 An aircraft was damaged when the computer raised the
landing gear in response to a test pilot’s command while the
aircraft was standing on the runway. It seems that the designer
assumed raising-the-landing-gear command would not be issued
while the aircraft was standing on the ground. [2]

(15) Modeling
Sample Guideline 15: A model needs to be simple, but includes
all concerned parameters and assumptions and no fewer. The
assumptions and parameters should also be carefully reviewed,
such that it is accurate enough for its behavior desired, especially
in the area of discontinuities. [2]
e.g.15 Afterward analysis about the structural failures of the
Electra aircraft were apparently due to simulation having omitted
dynamic effect (gyroscopic coupling) that had never been
significant in plane with piston engine. [2]

(16) Design Methodology
Sample Guideline 16: Design Decisions Evaluation:
The rationale of every design decision should be recorded and
carefully evaluated for its possible influence on the system
behavior, preferably by other experts of the team or of other
teams.

e.g.16 In Ariane5 Flight 501 failure report, several design
decisions were found to be fatal to the system.

(1) In order to reach the maximum workload target of 80%
having been set for the IRS (Inertial Reference System)
computer, some conversion from 64-bit floating point to
16-bit signed integer were not protected. As a result, an
unexpected data value caused the conversion fail and the IRS
software to raise the software exception in which a diagnostic
bit pattern was produced. The On-board Computer then
misinterpreted this diagnostic bit pattern as flight data and
finally caused the launcher disintegrate.

(2) The specification about the exception-handling mechanism
also represented a wrong design decision. It was found that
the system specification of the exception-handling
mechanism stated that: In the event of any kind of exception,
the IRS (Inertial Reference System) should be shut down.

It was the decision to shut down the IRS processor that was
proved fatal. Please refer to Failure Case No.9 in Chapter 4
for more details.

 5

(17) Design Constraints/Feasibility
 Sample Guideline 17: Environmental Constraints

 Any sensitive part in the system, which will easily pick up an
interference that is intrinsic in the operational environments,
should be identified.

e.g.17 9 from 16 robotic accidents in Japan are due to interference
from the environment to the system. [2]

(18) Communication Protocol

Sample Guideline 18: In a communication protocol definition, in
case that each of multiple hardware modules in the system would
issue a command at the same time, the rules in the protocol should
define the coordination of these commands in a way for the system
to react desirably, say, without causing mutual conflicts of actions
among modules, or resulting in modules falling into a
simultaneous waiting state --- a deadlock state.

4. The Database for Design Guidelines

 The database of the design guidelines is implemented in ASP
language and in the Microsoft Access environment. There are totally
eighteen categories of guidelines, and one hundred and five design
guidelines. This database is intended to make the access of the
guidelines easier to facilitate the design validation process. The
design guidelines can be retrieved by keywords, or by the guideline
category number. Besides, the users can access the system failure
cases (if available) accompanying each design guideline by simply
clicking the identification numbers of the system failure cases.

Furthermore, because the database is implemented in ASP
language for Internet environment, it can be put into a server and can
be accessed through Internet. Therefore, it is a handy tool for refining
and validating a requirements or a specification document.
 In the future, more guidelines and more failure system failure
cases will be added so that it would become an even more
comprehensive tool for requirements and specification analysis. Two
screens of the database are shown respectively in Figure 3 and in
Figure 4.

5. Conclusions

In designing a digital system, defining a correct functional system
specification is the first major task in the system design life cycle.
However, since a specification is evolved from the a documents of
mission objectives or requirements, which is usually written in a natural
language, there isn’t anything precise to verify against. Besides, a lot
of engineering judgments and tradeoffs are involved in this process.
As a result, only manual validation is possible, according to some
formulated criteria or guidelines as a checklist to validate the easily
neglected design aspects (although automatic tools, if available, may be
helpful, but only for those formally formulated routine checks).
Please note that if a design error is not captured earlier enough, then its
total amending cost could be 200 times or more costly. Therefore,
how to spot this kind of design errors in the early stage is important.

In this paper, a set of design guidelines for validating functional
requirements or specifications of digital systems are developed and
presented. Whenever available and appropriate, relevant system
failure cases are also given to illustrate the usefulness of the guidelines.
It can be seen that by going through these guideline database, the users
can spot many subtle design errors happening in the past.

Nevertheless, in order to make the database more comprehensive in
practice, more guidelines need to be put in the database.

Acknowledgements

This work is supported by National Science Council, Republic of China
on Taiwan, under the grant number NSC89-2213-E-014- 024.

References

1. Alan M. Davis, “Software Requirements – Objects, Functions, and
States,” Englewood Cliffs, NJ: PTR, Prentice Hall, 1993

2. Peter G. Neumann, “Computer-Related Risks”, Addison Wesley,
1995

3. Barry W. Boehm, “Verifying and Validating Software Requirements
and Design Specifications”, IEEE Software, pp75-88, Jan. 1984,

4. Donald J. Flynn, “Information Systems Requirements :
Determination and Analysis”, McGraw-Hill International (UK)
Limited, 1992

5. C.V. Ramamoorthy, and G.S. Ho, “A Design Methodology for User
Oriented Computer Systems”, Proceedings of National Computer
Conference, pp953-966, 1978

6. Robyn R. Lutz, “Analyzing Software Requirements Errors in
Safety-critical Embedded Systems”, The second International
Symposium on Requirements Engineering, San Diego, CA, USA,
pp126-133, Jan. 4-6 1992

7. John Rushby, and M. Srivas, “Formal Methods and the Certification
of Critical Systems”, Technical Report CSL-93-7, Computer Science
Laboratory, SRI International, Menlo Park, CA 94025, pp15-16,
pp125-139, December 1993,

8. T.M. Chen, and B.R. Wilkins, “A Set of New and Efficient Formulae
for Buffer Size Analysis of Real-Time Systems Using M/G/1
Models”, Proceedings of Fourth International Workshop of
Real-Time Computing Systems and Applications, Taipei, Taiwan,
pp186-190, 27-29 Oct. 1997

9. Derek J. Hatley, and I. A. Pirbhai, “Strategies for Real-time System
Specification”, Dorset House Publishing, New York, 1987

10. Jeffrey O. Graby, “System Validation and Verification”, CRC Press,
Chapter 1, pp1-50, 1998

11. Douglas Sailor, “System Engineering: An Introduction”, from
“Tutorial: System and Software Requirements Engineering”, R.H.
Thayer and M. Dorfman (Eds.), IEEE Computer Society,
Washington, D.C., pp35-47, 1990

12. M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart,
“Software Requirements Analysis for Real-time Process-control
Systems”, IEEE Transactions on Software Engineering, Vol. 17, No.
3, pp241-258, March 1991

13. John R Garman, “The ‘BUG’ Heard Round the World”, ACM
SIGSOFT, Software Engineering Notes, Vol. 6, No.5, pp3-10,
October 1981

14. Phillip A. Laplante, “Real-time System Design and Analysis – An
Engineer’s Handbook”, 2 nd Ed., IEEE Press, p13, p157, pp179-181,
pp246-253, 1997

15. Lutz, Robyn R. (1993), "Targeting Safety-related Errors During
Software Requirements Analysis", ACM SIGSOFT'93 (1993
Symposium on Foundations of Software Engineering), Los Angeles,
CA, USA, Published as ACM Software Engineering Notes, Vol.18,
No.5, pp 99-106

 6

Figure 3 Illustration of the database. The guidelines can be accessed through clicking the category number and then the
guideline number or simply clicking the category and guideline number buttons in sequence to access them

Figure 4 The screen results from the actions taken in Figure 3. The desired design guidelines are in Category Number 1 ---
Initialization and Finalization, and the second guideline is shown as the result of searching the database.

