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Abstract 
   The system design process of refining mission objectives into a 
system specification must be involved with manual effort, such as 
checking the missing, incorrect, inconsistent, ambiguous requirements. 
Besides, it also involves engineering estimation and judgement, 
tradeoffs, interpretation based on common sense, etc.  Therefore, this 
design process cannot be done fully automatically by state-of-art 
technology.  Many past system failure cases show that human design 
errors are major factors in this error-prone process.  How to help the 
designers to spot the design errors has been identified as one of the 
main system design issues.  
   To alleviate the problem, one hundred and five design guidelines 
are developed and are organized into eighteen categories.  These 
criteria and guidelines are built into a handy database written in ASP 
language.  Hence, the database facilitates the access of these criteria 
and guidelines and the analysis on functional requirements of digital 
systems.  This work represents important further effort to improve the 
system design process.     
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1. Introduction 

In the design process of a digital system, as depicted in Figure 1, there 

are several major system verification and validation activities.  In this 
figure, the Manufacturing verification (or testing) is to ask “Is what I 
manufacture what I implement?” the implementation (or synthesis) 
verification to ask “Is what I implement what I specify?” the design 
verification to ask “Is what I specify what I want?” and the design 
validation is to ask “Is what I specify what the user wants?” 
  The mission objectives (M.O.) describe what the desired system has 
to do to fulfill the objectives of users (or customers).  This document 
is usually written in a natural language, and suffers from all the 
limitations of any unrestrained human language, in The mission 
objectives (M.O.) describe that it may (and usually will) contain 
statements that are incomplete, inconsistent, imprecise, or based on 
unspecified and incorrect assumptions.  As an example, the “cars” for 
a car park gate and capacity control system may have different 
meanings to different people – the customers or users may mean small 
cars, caravans, trailers, limousines, and/or even lorries; while the 
system designer may think cars mean small cars only.  This is an 
essential problem in refining M.O. and in designing a system.  
Therefore, constant and iterative validation is necessary. 

A system designer takes M.O., studies it, and refines it into a more 
detailed document that will rectify all the ambiguities and fully 
describe the external behavior of the system desired, or the system 
requirements in the diagram. 

Down the design flow, the specification is a document that defines 
the overall architecture of a system, and defines architecture, behavior, 
and interfacing requirements for each of its subsystems at different 
levels.  The description of the lowest level of subsystems is detailed 
enough and is ready to be assigned to a person to implement it.  The 
details must include what the response(s) are for any sequence of inputs, 
together with its timing behavior, and its interfacing requirements with 
other subsystems.  Therefore, for any sequence of the inputs, how the 
system responds will be known exactly (including those input 
combinations not mentioned in the M.O. or the system requirements).  
For example, the specification must have removed all the “don’t cares” 
responses for any sequence of inputs (not mentioned or defined in the 
system requirements), and have assigned certain definite value with 
timing properties to these “don’t cares” responses for this sequence of 
inputs.  It can be seen that design validation activity asks an important 
question, “whether the specification produced is all right for the 
designers to use for detailed synthesis or implementation”. 

The statistics of the past system engineering practice shows that 
validation is a serious problem.  As an example, in the A-7E software 
project of U.S. Navy, non-clerical errors account for up to 77% of 
requirement errors [1].  Even worse, some requirements were not 
feasible and finally led to failed project [2,3].  According to the 
statistics cited in the literature [4], as high as 56% of sources of errors 
are identified to be from the requirements, while 82% of total efforts 
are devoted to correct them.  Another statistics said, “Experiences 
have shown that many design failures are due to ill-defined 
(inconsistent and unclear) requirements or misinterpretation of the 
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Figure 1 The main validation and verification activities 
in the digital systems  
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original problem statement (from the user).  These account for up to 
85% of requirement errors”[5].  According to statistics shown in 
Boehm’s paper [1,3], for large software projects , the cost of up to 200:1 
is possible if the requirements errors cannot be found and corrected 
earlier in the system development cycle.  Please refer to Table 1. 

 As another set of numerical evidence, in Lutz’s study of the software 
requirements errors in safety-critical embedded systems [6] she showed 
that only three of the safety-critical faults found were programming 
mistakes, and very few problems were attributed to failures in 
programming occurring during flight.  Among the rest of the faults, 
approximately three-fourths is due to “function faults” (faults within a 
single software module), and about one-fourth is due to “interface 
faults” (interactions with other modules or system components).  
Among the function faults, two thirds of them were attributed to flawed 
requirements, omissions, impreciseness, unsystematic, or wrong 
specifications of requirements; while one third of them were due to 
incorrect implementation of requirements (i.e. faulty design or 
algorithms).  Requirement errors in software system design seem to be 
a serious problem [6,7]. 

From these statistical figures, it seems proper to say that the errors 
in the software specifications (similarly in hardware specifications) 
happen very often and can be very expensive to correct if they are not 
found earlier enough.  Besides, the manual inspection, according to 
the system designers' own experiences and intuition, with the help of 
some kind of good design criteria checklist, is an important way of 
finding errors in a system requirement or a specification document. 

2. The Type of Systems Concerned in This Study 

In this paper, the digital systems to be discussed are something like that 
depicted in Figure 2.  Although this system model by no means covers 
all possible existing digital systems, it does cover a large number of 
useful systems. 

As shown in Figure 2, a system is interacting with its environment; 
namely, the system receives stimuli signals from the environment and 
responds to these signals by generating responses, which will be sent to 
the environment to meet needs of a system.  The stimulus signals are 
converted into digital binary signals before they can be processed by 
the internal digital information processing subsystem.  That is, the 
digital systems concerned are the binary digital systems. 

The environment of a system here can be a physical one from 
which an analog stimulus can be detected and can be converted into a 
binary digital information for further processing, such as human 
operators, a hardware subsystem as an environment for a software 

subsystem, or a whole interacting with one of its subsystems as an 
environment for this subsystem.  This environment will in general 
provide asynchronous stimuli, which is to be synchronized with the 
operation of the system; i.e. the systems to be discussed are basically 
synchronous real-time ones, instead of the batch-processing ones.  In 
a real-time system meant here, the arriving time of the inputs from the 
As environment are in general not predictable, and their corresponding 
responses are expected to be generated within a finite and specified 
delay [8], which is required by or implied in the original mission 
objectives.  While in a batch processing system, all the inputs to be 

processed line up in some kind of queue(s) and are to be processed 
according to certain priority policy, such as “FIFO (first in first out)”.  
Usually, a batch-processing system does not specify the delay between 
the inputs and their corresponding outputs.  The delay usually depends 
on how many higher-priority and/or earlier-arriving jobs are waiting for 
processing.  The users usually expect the delay. 

In this paper, a system is referred as a set of functional elements 
organized together to satisfy a set of mission objectives.  These 
elements usually include hardware ones and software ones.  A digital 
system refers to a system whose hardware elements are purely digital 
(software is stored as binary digital information in the memory 
elements), instead of analog, although the interfaces to the physical 
environment may need analog transducers plus analog to digital 
converters. 

The digital systems mainly concerned are single-processor (or 
CPU, the Central Processing Unit) systems, but the developed checklist 
can also be applied to multi-processor systems as well, although the 
considerations may not be enough, say, how to spot the errors in the 
communication protocols among different processors are not 
thoroughly considered. 

On the other hand, from the hierarchical point of view about a 
system, the interactions among the subsystems or those among the 
modules in a subsystem are basically following the same interfacing 
principle.  Therefore, a general checklist of criteria or guidelines 
applied to all of them would help to identify the potential interfacing 
problems that have to be considered. 

3. Taxonomy and Samples of Design Guidelines  

According to the ANSI/IEEE-ANS-7-4.3.2-1982 standard, 
NASA-STD-2100-91 Documentation Standard, Jaffe et al’s paper [12], 
and the author’s own investigation, the important groups of problems 

Stage Relative Cost of Repair 

Requirements 0.1 – 0.2 

Design 0.5 

Coding 1 

Unit Test 2 

Acceptance Test 5 

Maintenance 20 

Table 1 The relative cost to repair a software error 

in different stages of system life cycle [1] 

Figure 2 The type of systems concerned in this study 
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that should be considered carefully in system design are summarized 
below.  If available, some example application case will be put 
alongside. 

(1) Initialization/Finalization  
Sample Guideline 1: The specification of a subsystem 
initialization process has to be ensured for no adverse effect on 
other subsystems or even the whole system’s  initialization process, 
through some common facility or medium, if any, such as a power 
line, a data bus, a control bus, an address bus, a radio, an 
optical-electrical data link, a shared memory, a public queue, and 
so on.  
e.g.1 In the incident of the failure of the launch of first shuttle, 
Columbia, showed that in a bus initialization routine, a slightly 
increased time-delay constant than before, was put into the timer 
queue without being noticed.  As a result, it caused unexpected 
influence on the initialization of the backup computer system --- 
the calculation of start time in the first GPC (General Purpose 
Computer), through the common medium timer queue in its 
operating system.   This delay constant, without being noticed by 
the designers, was mistaken as the data for computing starting 
time of the system. It therefore caused unexpected system 
initialization and synchronization failure.  As a result, the launch 
failed and was put off for two days. [13] 

(2) Synchronization 
    Sample Guideline 2: If there are subsystems that use different 

system clocks, it should be ensured that these different clocks are 
directly derived from the same master clock (therefore, they are 
synchronized one another), and some coordination method is 
used to provide an identical start-up time for all of them.   
e.g.2 On 10 April, 1981, in the launch of first shuttle Columbia, 
the backup computer and the four primary computers were one 
time unit out of phase during the initialization, as a result of an 
extremely subtle 1-in-67 chance timing error. [2,13] 

(3) Input/Output Information Description:  
Sample 3: Precision of Data Representation 
(a) Does the way to represent the data and the rounding scheme 

adopted in the specification allow the system to work in a 
desirable way with enough precision? 

(b) Is the precision too coarse to differentiate two different control 
data? 

(c) Is the precision too fine to meet the required system 
performance and/or to increase the system cost beyond 
budget?  

(d) Are different precisions used in different subsystems or 
modules?  Are they compatible with one another?  When 
they encounter, will they cause problems? 

e.g.3 During the Persian Gulf War, the Patriot system was initially 
regarded as highly successful, but in the subsequent analyses, 
the estimates of its effectiveness downgraded from 95% to 
13% (or less). 

This clock drift over a 100-hour period resulted in a 
tracking error of 678 metres, which was blamed for the 
Patriot missing barracks in Dhahran, killing 29 and injuring 
97. 

   The later report stated that the software used two different 
and unequal versions of the number 0.1--- in 24-bit & 48-bit 
representations. [2] 

 

(4) Input Trigger Stimuli  
Sample Guideline 4: 
(a) If a system is required to process multiple simultaneous stimuli, 

then the timing relationships among them should be 
investigated for possible affection on the behaviour of the 
system.  

    (b) One or more of the stimuli must be buffered for later 
processing. 

e.g.4 In a system equipped with two buttons, “start” button and 
“stop”, the possibility that both of these buttons are pressed 
simultaneously should be considered in the specification, no 
matter whether only one button is required to initiate an action or 
not. 

(5) Output Specification/environment Capacity  
    Sample Guideline 5 :Internal State Display  

Are all critical system’s internal states clearly and correctly 
displayed at the desired time for the operators to know what the 
system’s current status is for reliable and easier controlling of the 
system? 
e.g.5 In the Three Mile Island accident, the control indicators did 
not show the actual positions of the valves but instead the intended 
positions.  The resulting ambiguity as to the actual settings 
caused enormous confusion. [2] 

(6) Output to Input Trigger Stimuli Relationships  
        Sample Guideline 6 :  Closed-loop Control  

(a) In a safety-critical system, an input that the system can use to 
detect the effect of any output on a process should be 
specified. The specification should include the proper checks 
on these inputs in order to detect failures or errors. 

(b) A mechanism should be used to compare the actual effects of 
outputs from the system with the predicted effects, that is, a 
feedback loops (including echoes). [12] 

e.g.5 In a ferry accident, some time after the captain issued a 
command to lift up the door, he thought the door should have been 
closed.  He then commanded to sail the ferry off the dock.  The 
ferry sank and caused the accident. 

(7) System Loading/buffering 
Sample Guideline 7:  If a system is interacting with an 
environment constantly providing input stimuli in an 
unpredictable manner, and if it uses any kind of buffers to hold the 
input stimuli for later processing, then there is always a 
probability that the buffer may overflow.  A strategy to handle 
the possible buffer overflow and recovery method should be 
specified.  

(8) System State Transitions 
Sample Guideline 8: Correctness of State Transitions 
Every single precondition, any minterm in the guarding logical 
predicate, and any datum involved in deciding an output response 
or a state transition, should be checked for validity and 
correctness, according to the mission objectives and the system 
requirements. 
e.g. A state transition statement, like If (A or B) then state C 
transits to state D, should be checked for the correctness and 
validity of all component minterms of (A or B), namely, A’B, AB’, 
and AB. 

(9) Errors/faults Handling  
Sample Guideline 9: It is never safe to remove protections, unless 
it is proved that the stimulating event(s) will never happen. 
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 e.g.9 In Therac-25 accidents, it was found that hardware interlock 
was omitted, because it was thought that it would be implemented 
in software.  However, in a case that an operator tried to correct 
her wrong operation, an unexpected software bug triggered the 
accident.   

(10) Input Information Gathering: Whenever there is an event 
coming into the input information gathering module (IIGM), 
accurate information corresponding to that event must be 
produced.  On the other hand, if there is information produced 
from the IIGM, then it must imply that there is a corresponding 
event coming into IIGM, not other events. 

During the transmission process, the information should be kept 
correct, without being corrupted. 

    E.g.10 Input Data Seemingly Healthy But Actually Obsolete 
  In validating the requirements specification of a spacecraft 
project in Jet Propulsion Lab, the validators found that a failure 
mode was not identified before. 

Inaccurate input data from a sensor could in effect disable the 
execution of a software response that was needed.  This may 
happen when the input data appeared to be healthy, but was 
actually reflecting an obsolete state. 

After searching the possible circumstances in which the 
software would actually receive seemingly healthy but actually 
obsolete data, the validators found that the current interface 
requirements allowed obsolete data from a failed sensor to be 
continually sent to the software.  If the sensor failed with healthy 
valves, then that data would continue to be used indefinitely to 
cause the failure mode. 

Later, the requirements were modified to have the data from a 
sensor pass a test first, before the software uses them to activate a 
response. [2] 

(11) Interrupt Handling 
Sample Guideline 11:   
(a) Don’t use interrupts in the system, unless it is nece ssary. 
(b) If it is indeed used, then the fact that they can come at any 

awkward time should be considered, such as during 
(1) the storing period of the status of current system state,  
(2) the critical data adjusting period,  
(3) a higher level operation regarded as an atomic action, but 

in lower level of granularity, it may consist of two or more 
smaller operations, 

(4) the different operation modes switching period,  
(5) a state transition period,  
(6) error recovery period, and so on. 

(12) Existing Subsystems Reuse 
    Sample Guideline 12 

(a) Any subsystem that is to be embedded into a system must be 
fully defined and documented.  For examples, its inputs, its 
outputs, its internal functions, its original embedded design 
rationales, its assumptions about the operational 
environment, its design constraints and limitations, should be 
fully explored. 

(b) Besides, its interaction with the rest of the system should also 
be thoroughly analyzed for without having unwanted 
behaviors. 

e.g.12 Therac-25: Much of the software in the Therac-25 medical 
electron accelerator, which lead to massive overdoses of 
radiation and subsequent deaths of six patients, had been used 
in an earlier machine without accident. [2]  

(13) Hazard Analysis 
    Sample Guideline 13: All paths from hazardous states must lead 
to safer states.  In other word, the system should be designed in a way 
that the system will most probably stay in a safer state while the system 
fails.  

e.g.13 In Galileo spacecraft project many of the software related 
errors (approximately 20%) involved the on-board autonomous 
error-recovery responses incorrectly included or omitted actions 
that allowed hazardous states to be entered or re-entered.  
Examples of such actions are turning off Gyros, switching to 
backup memory, or disabling certain software process in a 
particular mode. [15] 

(14) Assumptions 
Sample Guideline 14:  If an operational scenario is possible, 
then it will happen.  Unless there is something designed to make 
the possible become impossible, all possible input combinations 
would finally happen.   
e.g.14 An aircraft was damaged when the computer raised the 
landing gear in response to a test pilot’s command while the 
aircraft was standing on the runway.  It seems that the designer 
assumed raising-the-landing-gear command would not be issued 
while the aircraft was standing on the ground. [2] 

(15) Modeling 
Sample Guideline 15: A model needs to be simple, but includes 
all concerned parameters and assumptions and no fewer. The 
assumptions and parameters should also be carefully reviewed, 
such that it is accurate enough for its behavior desired, especially 
in the area of discontinuities. [2] 
e.g.15 Afterward analysis about the structural failures of the 
Electra aircraft were apparently due to simulation having omitted 
dynamic effect (gyroscopic coupling) that had never been 
significant in plane with piston engine. [2] 

(16) Design Methodology 
Sample Guideline 16: Design Decisions Evaluation:  
The rationale of every design decision should be recorded and 
carefully evaluated for its possible influence on the system 
behavior, preferably by other experts of the team or of other 
teams. 

e.g.16 In Ariane5 Flight 501 failure report, several design 
decisions were found to be fatal to the system. 

(1) In order to reach the maximum workload target of 80% 
having been set for the IRS (Inertial Reference System) 
computer, some conversion from 64-bit floating point to 
16-bit signed integer were not protected.  As a result, an 
unexpected data value caused the conversion fail and the IRS 
software to raise the software exception in which a diagnostic 
bit pattern was produced.  The On-board Computer then 
misinterpreted this diagnostic bit pattern as flight data and 
finally caused the launcher disintegrate. 

(2) The specification about the exception-handling mechanism 
also represented a wrong design decision.  It was found that 
the system specification of the exception-handling 
mechanism stated that: In the event of any kind of exception, 
the IRS (Inertial Reference System) should be shut down. 

It was the decision to shut down the IRS processor that was 
proved fatal.  Please refer to Failure Case No.9 in Chapter 4 
for more details. 
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(17) Design Constraints/Feasibility 
    Sample Guideline 17: Environmental Constraints 

 Any sensitive part in the system, which will easily pick up an 
interference that is intrinsic in the operational environments, 
should be identified. 

e.g.17 9 from 16 robotic accidents in Japan are due to interference 
from the environment to the system. [2] 

 
(18) Communication Protocol 

Sample Guideline 18: In a communication protocol definition, in 
case that each of multiple hardware modules in the system would 
issue a command at the same time, the rules in the protocol should 
define the coordination of these commands in a way for the system 
to react desirably, say, without causing mutual conflicts of actions 
among modules, or resulting in modules falling into a 
simultaneous waiting state --- a deadlock state. 

4. The Database for Design Guidelines  

   The database of the design guidelines is implemented in ASP 
language and in the Microsoft Access environment.  There are totally 
eighteen categories of guidelines, and one hundred and five design 
guidelines.  This database is intended to make the access of the 
guidelines easier to facilitate the design validation process.  The 
design guidelines can be retrieved by keywords, or by the guideline 
category number.  Besides, the users can access the system failure 
cases (if available) accompanying each design guideline by simply 
clicking the identification numbers of the system failure cases.   

Furthermore, because the database is implemented in ASP 
language for Internet environment, it can be put into a server and can 
be accessed through Internet.  Therefore, it is a handy tool for refining 
and validating a requirements or a specification document.  
 In the future, more guidelines and more failure system failure 
cases will be added so that it would become an even more 
comprehensive tool for requirements and specification analysis.  Two 
screens of the database are shown respectively in Figure 3 and in 
Figure 4.   
 
5. Conclusions 

In designing a digital system, defining a correct functional system 
specification is the first major task in the system design life cycle.  
However, since a specification is evolved from the a documents of 
mission objectives or requirements, which is usually written in a natural 
language, there isn’t anything precise to verify against.  Besides, a lot 
of engineering judgments and tradeoffs are involved in this process.  
As a result, only manual validation is possible, according to some 
formulated criteria or guidelines as a checklist to validate the easily 
neglected design aspects (although automatic tools, if available, may be 
helpful, but only for those formally formulated routine checks).  
Please note that if a design error is not captured earlier enough, then its 
total amending cost could be 200 times or more costly.  Therefore, 
how to spot this kind of design errors in the early stage is important. 

In this paper, a set of design guidelines for validating functional 
requirements or specifications of digital systems are developed and 
presented.  Whenever available and appropriate, relevant system 
failure cases are also given to illustrate the usefulness of the guidelines.  
It can be seen that by going through these guideline database, the users 
can spot many subtle design errors happening in the past.  

Nevertheless, in order to make the database more comprehensive in 
practice, more guidelines need to be put in the database. 
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Figure 3 Illustration of the database.  The guidelines can be accessed through clicking the category number and then the 
guideline number or simply clicking the category and guideline number buttons in sequence to access them 

Figure 4 The screen results from the actions taken in Figure 3.  The desired design guidelines are in Category Number 1 --- 
Initialization and Finalization, and the second guideline is shown as the result of searching the database. 


