

Workshop: Databases and Software Engineering

Title: Object-Oriented Conceptual Modeling for Collaboration Management

in Virtual Enterprises

Authors: Jyhjong Lin and Tsui-e Lin
Department of Information Management
Chaoyang University of Technology
Wufeng, Taichung County, Taiwan
E-mail: {jjlin@mail.cyut.edu.tw, linlingo@mail.ht.net.tw}, Fax: 886-4-23742337

Contact author: Jyhjong Lin
Department of Information Management
Chaoyang University of Technology
Wufeng, Taichung County, Taiwan
E-mail: jjlin@mail.cyut.edu.tw, Fax: 886-4-23742337

Abstract

For the rapid progress of Internet technologies in recent years, Electronic Commerce (EC)
has gained attention as a major theme for enterprises to keep their competitiveness. From the
perspective of effective resources utilization, it becomes now an important goal for an
enterprise to promote its performance and competitiveness through integrating itself and
relevant suppliers and consumers as a virtual group to achieve the so-called Business-to-
Business EC. In this paper, we propose an object-oriented modeling approach that addresses
the management of collaboration on the Internet between enterprises. The approach divides
those required mechanisms for collaboration management into three layers: commitment, role,
and activity ones. With this architecture, two enterprises may collaborate via the
establishment and maintenance of commitment, the collaboration and coordination between
roles, and the interaction and coordination between activities. For specification, an
object-oriented model is presented for each layer that describes the working details of that
layer. To illustrate, these models are applied in a simplified supply chain management
application among various enterprises.

Keywords: virtual enterprise, collaboration management, object-orientation, conceptual
modeling

 1

Object-Oriented Conceptual Modeling for
Collaboration Management in Virtual Enterprises

Jyhjong Lin and Tsui-e Lin

Department of Information Management
Chaoyang University of Technology
Wufeng, Taichung County, Taiwan

E-mail: {jjlin@mail.cyut.edu.tw, linlingo@mail.ht.net.tw}, Fax: 886-4-23742337

Abstract

For the rapid progress of Internet technologies in
recent years, Electronic Commerce (EC) has
gained attention as a major theme for enterprises
to keep their competitiveness. From the
perspective of effective resources utilization, it
becomes now an important goal for an enterprise
to promote its performance and competitiveness
through integrating itself and relevant suppliers
and consumers as a virtual group to achieve the
so-called Business-to- Business EC. In this paper,
we propose an object-oriented modeling approach
that addresses the management of collaboration on
the Internet between enterprises. The approach
divides those required mechanisms for
collaboration management into three layers:
commitment, role, and activity ones. With this
architecture, two enterprises may collaborate via
the establishment and maintenance of commitment,
the collaboration and coordination between roles,
and the interaction and coordination between
activities. For specification, an object-oriented
model is presented for each layer that describes
the working details of that layer. To illustrate,
these models are applied in a simplified supply
chain management application among various
enterprises.

Keywords: virtual enterprise, collaboration
management, object-orientation, conceptual
modeling

1 Introduction

Conceptual modeling is an important step in
developing a computer-based application that
collects adequate user requirements about the
application domain (e.g., the structural, behavioral,
and possibly desirable control/safety aspects of

the application). It has been recognized that failure
to identify the real application domain knowledge
may result in late delivery, poor quality, and high
maintenance costs. In general, conceptual
modeling can be done by using function-, data-, or
object-oriented approaches where the
development of object-oriented ones is
particularly motivated by the drawbacks and
problems in the other two kinds: the significant
features and benefits of object-oriented models
would make application software easier to be
understood, maintained, and reused.

For the rapid progress of Internet technologies in
recent years, Electronic Commerce (EC) has
gained attention as a major theme for enterprises
to keep their competitiveness. From the
perspective of effective resources utilization, it
becomes now an important goal for an enterprise
to promote its performance and competitiveness
through integrating itself and relevant suppliers
and consumers as a virtual group to achieve the
so-called Business-to-Business EC. As a common
recognition, a software system that realizes such a
virtual enterprise (VE) environment needs to
explicitly capture and manage the functional and
contractual relationships between participant
enterprises in VE. This kind of systems in
particular have to support the establishment and
maintenance of contracts between two enterprises,
and the interaction/coordination of working
processes between these two enterprises. To deal
more efficiently with these complex aspects, it is
not uncommon to think of the powerful
object-oriented paradigm that possesses such
features as encapsulation of an object’s specifics
and interacted/coordinated nature of its behaviors;
these features make an object-oriented approach
easier to be configured for full supports of these
aspects. To account for this, we propose in this
paper an object-oriented modeling approach that

 2

provides extensive supports for the specification
of collaboration management between two VE
members.

For an open environment as on the Internet, any
contractual collaboration between two VE
members must comply with certain prescribed
rules under which each member plays an
appropriate role(s). That is, each member has to
have its processes strictly follow those rules with
regard to that role(s) it plays to collaborate with
the other member. In the literature, many
approaches have been proposed for specifying
these requirements [2-7,9-11,13,14,17,18,20].
Among them, in our knowledge, the
commitment-based approach in [9,10] provides a
most natural way to deal with how VE members
may comply with the requirements of the role(s)
they play. Based on this idea, our approach
divides those required mechanisms for
collaboration management into three layers:
commitment, role, and activity ones - a
commitment is joined by a set of participant roles
where each role offers under required rules
various capabilities (i.e., functionalities) to be
realized by a set of working activities (i.e.,
processes). With this architecture, two enterprises
may collaborate via the establishment and
maintenance of contractual commitments, the
collaboration and coordination between those
roles under the commitments, and the interaction
and coordination between those activities that
realize the roles. For specification, an
object-oriented model is presented for each layer
that describes the working details of that layer: (1)
a commitment model that specifies the joined
roles and associated rules of commitments; (2) a
role model that presents the capabilities of and the
rule-complied collaboration/coordination between
roles; and (3) an activity model that describes the
behaviors of and the rule-complied coordination
between activities.

With these three models that describe the
collaboration between VE members from a
higher-level of abstraction to a lower-level of
realization, the activity model in particular
imposes formal constructs based on Petri nets
[15,16] for verification of rule-compliance during
the collaboration. In our knowledge, this is very
critical for a VE environment, since no one is truly
trustable in such an open environment. For

illustration, the three models are applied to the
specification of a simplified supply chain
management application among various
enterprises.

This paper is organized as follows. Section 2
overviews the background and motivation of the
proposed approach. Section 3 presents the three
models in the approach. A method that describes
how these models are applied to the specification
of a VE application will be presented in section 4.
Finally, section 5 has the conclusions and future
work.

2 Background and motivation

For an open environment as on the Internet, any
contractual collaboration between two VE
members must comply with certain prescribed
rules under which each member plays an
appropriate role(s). In the literature, there have
already been many discussions related to this issue
as in [2-7,9-11,13,14,17,18,20]. Among them, in
our knowledge, the authors in [9,10] proposed a
sophisticated SoCom (Sphere of Commitment)
concept to address the management of
commitments in VE. In SoCom, a set of roles and
the commitments these roles must satisfy are
defined. In particular, their representing and
reasoning about commitments was prototyped
using IBM’s ABE [1] that includes a rule-based
reasoning system with sets of declarative rules and
facts. In general, SoCom provides a sound
mechanism for collaboration management, but, by
using a declarative approach, it lacks a visual
formalism for specifying and verifying how the
collaboration proceeds and satisfies desired
commitments. As commonly recognized, however,
a visual formalism for behavioral specification
and verification provides a better conduit for
comprehension and reasoning about the
application being developed. Similar approaches
can be found in [14,20] that used propositional
temporal logic as its specification and verification
tool. These approaches, anyway, support well only
the specification of commitments; they do not
provide sufficient mechanisms for collaboration
management as presented in SoCom.

In contrast, the authors in [5,17] proposed an
advanced approach for managing process and service

 3

Buy-Sell
Commitment

Buyer Seller

place_order(),
receive_parts(),

check_parts_quality(),
process_parts(),

temporal_penalty(),
quality_penalty()

receive_order(),
process_order(),

ship_order()

Order, Shipped_parts,
Received_parts

Order, Received_order,
Prepared_parts, Shipped_parts

b
s

rule 1: @(b.place_order) --> ◇[10,10] @(b.receive_parts) V ◇[11,12] @(b.tempal_penalty)
rule 2: @(b.receive_parts) --> ◇[3,4] @(b.process_parts) V ◇[2,4] @(b.quality_penalty)

Figure 1: specification of a commitment with roles and rules

Commitment

Role 1

capabilities
resources

x

Role n

y

......

role instance

joined by

Figure 2: graphical symbols of the commitment model

o

Order

place_order()

b

Buyer

[0,1] pre: b exists
 post: b updated
 o and c produced

Figure 3: specification of a capability of a role

 4

fusion in VE. Their CMI infrastructure provides a
well visual way to specify the management of
collaboration processes; a state transition diagram
(STD) is adopted and extended for specifying the
behaviors of participant VE members. Although
this approach addresses very well and completely
collaboration management in VE, it does not deal
with the needs of specifying and verifying how the
collaboration proceeds and satisfies desired
commitments.

Our method is proposed to supplement the
abovementioned deficiencies in these approaches
by combining the specification and satisfaction of
commitments with the modeling of collaborative
behaviors in VE. It uses an object-based timed
temporal logic OTTL [12] to specify desired rules,
and employs an object-oriented model to specify
under these rules the behaviors of participant VE
members. In order to deal with the complexity of
modeling contractual collaboration, the
object-oriented model supports the specification in
a top-down fashion. As results, a higher-level
commitment model is created first that describes
effectively the joined roles and associated rules of
a commitment without considering detailed
specification. That is, the detailed specification via
role and activity models start after all roles and
rules have been described in an abstract level. We
think this provides better understanding about
collaboration management before proceeding too
early to formally specify them using some complex
notations. Finally, due to its formal semantics of
the activity model, behavioral verification of
satisfying those desired rules in OTTL can be
conducted via formal analysis of the model [12].

3 Modeling constructs

The modeling constructs of our approach include
three models: (1) a commitment model that
specifies the joined roles and prescribed rules of a
commitment; (2) a role model that presents the
capabilities of and the rule-complied
interaction/coordination between roles; and (3) an
activity model that describes the behaviors of and
the rule-complied coordination between activities.

3.1 The commitment model

By the definition of a commitment using roles
[9,10], the commitment model specifies the joined
roles of a commitment. Two kinds of object types

are used in the model: commitment ones and role
ones. Figure 1 shows an example model that
specifies by appropriate object types a commitment
and its constituent two roles. Each role comes also
with a set of capabilities it provides and the
resources these capabilities may access. The small
circle attached to each role (object type) refers to
an instance of the role with which instances of
other roles are able to interact. In addition to the
structural aspect of the commitment, a set of rules
associated with the commitment that these roles
must comply with is also specified by using the
statements in OTTL [12]. OTTL is an object-based
timed temporal logic that is defined for specifying
and verifying the temporal and safety constraints
between objects. In our view, it is also well able to
address the temporal and obligation constraints
that are commonly desirable between two
collaborative roles. For illustration, the rule 1
specifies a temporal constraint between a buyer and
a seller: an order issued by the buyer needs to be
processed and returned by the seller with desired
parts at the 10th time unit (e.g., day) or a temporal
penalty will be issued by the buyer within 11 to 12
days. The rule 2 is an obligation constraint: after
receiving desired parts, the buyer will process the
parts within 3 to 4 days or for some quality reasons,
a quality penalty will be raised within 2 to 4 days.
The reader is referred to [12] for more details
about OTTL. Figure 2 has the graphical symbols of
the commitment model.

3.2 The role model

With a commitment model, the role model is used
to address more details about the capabilities of the
roles in the commitment model. It describes how
these capabilities access relevant resources to
achieve desired functionality and how they
interact/coordinate with each other under the rules
specified in the commitment model. The modeling
constructs of the role model include four kinds of
object types: role ones, resource ones, control ones,
and fault ones. In particular, the resource objects
specify those things or entities in the application
domain where the capabilities of each role may
access to achieve their functionality. The control
objects are used to give control flows between
capabilities in order to satisfy the prescribed rules.
Lastly, the fault objects are used to model the
detection of any failures, i.e., violations of the
rules, occurred during the interaction between
capabilities.

 5

receive_order() n

Received Order
s

Seller

o

Orderplace_order()

b

Buyer

ship_order()

s

Seller

v

Prepared parts

p

Shipped parts

receive_parts()

b

Buyer

Temporal Control

c
f

temporal_penalty()

Buyer

b
temporal_failure()

Temporal fault

f

r

Received parts

check_parts_quality() quality_penalty()

Buyer

b

process_order()

s

Seller

[1,1] pre: c exists
 post: f produced

[0,1] pre: f and b exist
 post: b updated

[1,2] pre: b exists and
 r.faults > threshold
 post: q produced

[1,2] pre: q and b exist
 post: b updated

process_parts()

Buyer

b

[3,4] pre: r and b exist
 post: b updated

delay()

[10,10] pre: c exists
 post: c updated

[0,0] pre: c and p exist
 post: b updated
 r produced

[0,1] pre: o and s exist
 post: s updated
 n produced

[6,8] pre: n and s exist
 post: s updated
 v produced

[0,1] pre: v and s exist
 post: s updated
 p produced

[0,1] pre: b exists
 post: b updated
 o and c produced

Buyer

b
f

Quality fault

q

Figure 4: specification of roles and capabilities joined in a commitment

Role

r

r

Resource

Control

c

f

Fault

f

instances of a role
object type referred to

by a variable r

instances of a resource
object type referred to

by a variable r

instances of a control
object type referred to

by a variable c

instances of a fault
object type referred to

by a variable f

capability()

delay()

failure()

r

c

f

r

c

f

r

c

f

a capability of a role object type

a delay operation of a control object type

a failure operation of a fault object type

role object produced

control object produced

fault object produced

role object updated

control object updated

fault object updated

role object consumed

control object consumed

fault object consumed

r

c

f

role object referenced

control object referenced

fault object referenced

Figure 5: graphical symbols of the role model

 6

r

c

f

r

c

f

r

c

f

role/resource
object produced

control object produced

fault object produced

role/resource
object updated

control object updated

fault object updated

role/resource
object consumed

control object consumed

fault object consumed

r

c

f

role/resource
object referenced

control object referenced

fault object referenced

temporal_control

temporal_failure

quality_penalty

normal transition

failure transition

control transition

b global access
interface

Figure 6: graphical symbols of the activity model

In the model, the capabilities of each role are
specified one at a time, together with its execution
effects on relevant resources. As shown in Figure 3,
each capability is specified with a name, a set of
interaction objects where its execution accesses, a
pre/post-condition that its execution satisfies, and a
time interval within which its execution takes place.
With this specification, a capability is executable if
and only if its pre-condition is true, and since then,
its execution occurs within the specified time
interval that makes its post-condition true. Figure 4
illustrates the specification of how the capabilities
of a buyer and a seller behave and interact via
relevant resources with each other to accomplish a
simplified buy-sell cycle (the use of control and
fault objects will be introduced below). Figure 5
shows the graphical symbols of the role model.

Control objects are used to give required control
flows between capabilities in order to satisfy the
collaborative rules defined in the commitment
model. Their specification is similar to that for the
roles; each control object type has operations to be
specified one at a time for modeling of a
time/temporal relationship between two
capabilities. For illustration, in Figure 4 the delay()
operation of the control object type
Temporal_Control provides a modeling of 10 time
units delay between the place_order() and
receive_parts() capabilities of a buyer in order to
satisfy the rule 1 described in Figure 1: an order
issued by the buyer is expected to be returned with
desired parts at the 10th day.

Fault objects are used to model the detection of
any failures, i.e., violations of the rules, occurred
during the interaction between capabilities. Their
specification is also similar to that for the roles;
each fault object type has operations to be
specified one at a time for modeling of a failure
occurred during the interaction between

capabilities. For illustration, in Figure 4 the
temporal_failure() operation of the fault object
type Temporal_Fault provides modeling of the
failure to the rule 1 described in Figure 1: an order
issued by a buyer is expected to be returned with
desired parts at the 10th day. In this case, a fault
object f is produced that is to be used by the
temporal_penalty() capability of the buyer for
satisfying the second part of the rule 1: once the
order cannot be returned at the 10th day, a
temporal penalty will be issued within 11 to 12
days.

3.3 The activity model

With a role model, the activity model is used to
address how the capabilities of the roles in the role
model are realized by a set of working activities. In
our approach, an activity is defined as a task that
contributes to the fulfillment of a capability (or
part of it). The modeling constructs of the activity
model are based on Petri nets [15,16] with a set of
transitions and places. Transitions specify the
activities that occur in the system, which in turn
have three kinds: normal transitions that describe
the working processes occurred in the system,
control transitions that impose the control flows
between working processes, and failure transitions
that capture the failures occurred during the
interaction between working processes. Likewise,
places are divided into three kinds: normal places
that hold role or resource objects for the execution
of transitions, control places that hold control
objects for the control of the execution of
transitions, and fault places that hold fault objects
for the recognition of the failures occurred.

Each transition is specified with a name, a set of
interaction places that its execution accesses, a
pre/post-condition that its execution satisfies, and a
time interval within which its execution takes place.

 7

receive_order

o

suspend_orderprepare_ordered_parts

n

replenish_parts

prepare_backordered_parts

ship_backorder

ship_order

u

u

u

p

v

place_order

s

temporal_penalty

b

temporal_control

receive_parts

r

temporal_failure

process_partscheck_parts_quality

quality_penalty

c

c

f

q

[10,10]

[1,1]

[0,1] [0,0]

[1,2]

[1,2]

[3,4]

[0,1]

[0,1]

[0,1]

[2,3] [0,0]

[4,5]

[2,3]

[0,1]

Figure 7: specification of activities that realize capabilities

With this specification, a transition is executable
if and only if each of its input places contains an
object that together makes its pre-condition true,
and since then, its execution occurs within the
specified time interval. Once executed, objects in
its input places are either consumed or referenced
by the transition, and objects in its output places
are produced that make its post-condition true.
Figure 6 shows the graphical symbols of the
activity model.

In Figure 7, an activity model is presented that
describes more details how the capabilities in
Figure 4 are realized by various activities. As
shown in the figure, it can be found that each
capability in Figure 4 is mapped here into a
corresponding transition except for the
process_order() capability that is mapped into the
prepare_ordered_parts, suspend_order,
replenish_parts, and prepare_backordered_parts
transitions, and for the ship_order() capability
that is mapped into the ship_order and
ship_backorder transitions. This reflects the fact
that the requests/services a role issues may be
realized by more working processes in the
application. It is also noted that for those
transitions derived from the capabilities of buyer

and seller roles, they all access (update) the
corresponding buyer and seller objects, and this is
specified in a succinct manner through respective
global access interfaces denoted at the rectangle
boxes.

With the activity model based on Petri nets, its
formal semantics can then be applied for
behavioral verification of its satisfying those rules
defined in the commitment model. This can be
achieved via decision procedures that traverse the
reachability graph derived from the model. The
reader is referred to [12] for more details about
this issue.

4 The specification method

4.1 Specifying the commitment model

In our method, the specification of collaboration
management between VE members starts from
describing the desired commitment associated
with participant members in a commitment model
by using the following steps:

1. Start with describing a desirable collaboration

by identifying a commitment object. The

 8

purposes of the collaboration are then
explored to identify what roles each member
plays in order to fulfill these purposes; with
each role identified, a corresponding role
object is imposed in the model. Finally, based
on the role each member plays, the required
requests/services to achieve such a role is
defined and specified as the capabilities of the
role object.

In our example, as shown in Figure 1, two
members participate the collaboration with
two roles, buyer and seller, played
respectively. For the buyer, it places an order
to the seller and expects to receive, check
quality of, and process ordered parts.
Therefore, the buyer object provides four
capabilities as desired. Likewise, the seller
object provides three capabilities to achieve
its prospect role.

2. With role objects and their capabilities, check

with resources that these capabilities may
access. As mentioned earlier, such resources
represent those things or entities in the
application domain where these capabilities
may access to achieve their functionality.

In Figure 1, we can see that the buyer
accesses three resources: the order it placed,
the shipped parts it expects to receive, and the
parts it already received. For the seller, it
accesses four resources: the order it expects
to receive, the order it received, the ordered
parts it prepared, and the ordered parts it
shipped.

3. Consider any constraints (e.g., temporal,

quality, and cost ones) that need to be
complied with during the interaction between
capabilities. As a commitment, penalties for
violations of these constraints need also be
taken into consideration. For this purpose,
statements in OTTL are imposed to describe
what these constraints are and what penalties
for their violations are. If necessary, new
capabilities that address the issuing of
penalties can be added into appropriate role
objects.

In our example in Figure 1, two (temporal and
quality) constraints are identified and
specified by the OTTL where their violations

are captured explicitly by invoking
appropriate penalty capabilities. Therefore,
two penalty capabilities are added into the
buyer object as desired.

4.2 Specifying the role model

With an initial commitment model, our method
advocates the specification of a role model that
presents more details how the capabilities behave
and how they interact/coordinate with each other
under the constraints defined in the commitment
model. For the specification of each capability,
the following steps are followed first:

1. Identify what resources are required to

achieve its functionality, and how it accesses
(i.e., references or consumes or produces or
updates) these resources. The corresponding
objects with respect to these resources
become its interaction objects.

2. Determine its pre-condition that is

necessarily true for its execution by
referencing or consuming input interaction
objects.

3. Determine its post-condition that must be

satisfied after its execution by producing or
updating output interaction objects.

(Note that the time interval of the capability is yet
specified until the following situation has been
considered.)

We then consider any control/fault objects and
associated operations that need to be imposed
at/between capabilities to satisfy the constraints
defined in the commitment model. For example,
as shown in Figure 4, the left part of the first
constraint in Figure 1 results in a control object to
be produced by the place_order() capability and
then, after a 10 days delay modeled by a
simulated delay() operation of the control object,
consumed by the receive_parts() capability. Also,
for satisfying the right part of the constraint: a
temporal penalty will be issued within 11 to 12
days, a fault object will be produced by the
temporal_failure() operation 1 day later after the
delay() operation has been executed, and then,
used to invoke the temporal_penalty() capability.

After specifying control/fault objects and their

 9

associated operations, we continue to specify
lastly the time interval of each capability. This
can be done by checking the constraints identified
earlier such that the time interval is specified to
satisfy (timing parts of) these constraints. For
example, as shown in Figure 4, in order to satisfy
the first constraint in Figure 1, the
temporal_penalty() capability has [0,1] time
interval such that, after the 10 days delay imposed
by the delay() operation plus the 1 day execution
by the temporal_failure() operation, its execution
represents a temporal penalty issued within 11 to
12 days after an order is placed by the execution
of the place_order() capability.

4.3 Specifying the activity model

With a role model, the specification of an activity
model is then considered that presents more
details how the capabilities of each role are
realized by a set of working activities where each
activity is defined as a task that contributes to the
fulfillment of a capability (or part of it). This
reflects our view that the capabilities
(functionalities) of a role are possibly realized by
more working processes in the application. Here,
in addition to the trivial case that a capability is
realized by a single activity, for a complex
capability, its mapping into a set of activities can
be done by the following steps:

1. Using the use-case approach [8] to document

with a flow of events how the capability is
achieved by a sequence of working processes.

2. For each event identified, explore what

resources it may access and how it accesses
(i.e., references or consumes or produces or
updates) them, and determine its pre/post-
condition that is necessarily true/satisfied for
its occurrence by accessing these resources.

3. For the event first/last in the flow, check if its

pre/post-condition is consistent with that of
the capability.

4. For each event, identify its time interval such

that its execution will occur within the time
interval once its pre-condition becomes true.
From the first to the last event, however, the
lower- and higher-bound summations of their
time intervals cannot exceed those of the time
interval of the capability.

As shown in Figure 7 that is derived from Figure
4, the process_order() capability is realized by
the prepare_ordered_parts, suspend_order,
replenish_parts, and prepare_backordered_parts
activities, and the ship_order() capability is
realized by the ship_order and ship_backorder
activities.

5 Conclusions

Software requirements specification is a key
activity in developing a computer-based
application. Motivated by the problems in other
methods, object-oriented specification methods
are developed in order to produce software more
understandable and maintainable. The method
proposed in this paper is based on the
object-oriented paradigm for formal specification
of collaboration management in VE. In order to
deal with the complexity of modeling contractual
collaboration between VE members,
commitments, roles, and activities are identified
and specified in a top-down fashion. As results, a
higher-level commitment model is created first
that describes effectively the joined roles and
associated rules of a commitment without
considering detailed specification. That is, the
detailed specification via role and activity models
start after all roles and rules have been described
in an abstract level. We think this provides better
understanding about collaboration management
before proceeding too early to formally specify
them using some complex notations. Finally, due
to its formal semantics of the activity model,
behavioral verification of satisfying desired rules
can be conducted via formal analysis of the
model.

The work for collaboration management in VE is
not a new idea. Many researches about it have
been done, but none of them provides a complete
mechanism for both commitments and visual
formalisms for behavioral collaboration. Our
method presented herein provides an effort on this
issue. As VE gets more attentions in business
enterprises, a software system that realizes it
becomes now much more desirable. Thus, the
development of such a system is a desired field. In
our knowledge, using object-oriented techniques
together with sound modeling constructs is a
promising approach for an effective construction
of the system.

 10

As our future work, a tool to facilitate practical
application of our model will be constructed.
These include a design environment for building
the abstract commitment model and then deriving
the role and activity models. The specification
method presented in section 4 will be integrated
with the tool when constructing the three models.

Acknowledgments

The material presented in this paper is based on
work supported by Chaoyang University of
Technology under Grant CYUT 91-M-004. The
authors are grateful to K.Y. Chang and C.Y. Chen
for their helps in preparing the artwork of this
paper.

References

[1] Agent Builder Environment:
http://www.networking.ibm.com/iag/iagsoft.htm.

[2] G. Alonso, et al., “Wise: Business to Business
E-Commerce,” in Proc. of 9th International
Workshop on Research Issues on Data
Engineering, IEEE Computer Society Press, 1999,
pp. 132-139.

[3] M. Aparicio, IV, et al., “Agent Information
Contracts within Virtual Private Networks,” in
Proc. of 3rd IEEE International Conference on
High-Assurance Systems Engineering Symposium,
1998, pp. 304-311.

[4] D. Baker, et al., “Providing Customized
Process and Situation Awareness in The
Collaboration Management Infrastructure,” in
Proc. of 4th IFCIS Conf. on Cooperative
Information Systems, IEEE Computer Society
Press, 1999, pp. 79-91.

[5] D. Georgakopoulos, et al., “Managing Process
and Service Fusion in Virtual Enterprises,”
International Journal of Information Systems, vol.
24, no. 6, 1999, pp. 429-456.

[6] A. Geppert, et al., “Market-Based Workflow
Management,” Journal of Cooperative
Information Systems, vol. 7, no. 4, 1998, pp.
297-314.

[7] Y. Hoffner, “Supporting Contract Match-
Making,” in Proc. of 9th International Workshop

on Research Issues on Data Engineering, IEEE
Computer Society Press, 1999, pp. 64-71.

[8] I. Jacobson, Object-Oriented Software
Engineering – A Use Case Driven Approach,
Addison Wesley, 1992.

[9] K. Jain, et al., “Agents for Process Coherence
in Virtual Enterprises,” Communications of the
ACM, vol. 42, no. 3, March 1999, pp. 62-69.

[10] K. Jain and M. Singh, “Using Spheres of
Commitment to Support Virtual Enterprises,” in
Proc. of 4th ISPE International Conference on
Concurrent Engineering: Research and
Applications (CE), International Society for
Productivity Enhancements (ISPE), Aug. 1997, pp.
469-476.

[11] J. Klingemann, et al., “Deriving Service
Models in Cross-Organizational Workflows,” in
Proc. of 9th International Workshop on Research
Issues on Data Engineering, IEEE Computer
Society Press, 1999, pp. 100-107.

[12] J. Lin, et al., “Object-Oriented Specification
and Formal Verification of Real-Time Systems,”
Annals of Software Engineering, 1996, vol. 2, pp.
161-198.

[13] H. Ludwig and K. Whittingham, “Virtual
Enterprise Coordinator – Agreement-Driven
Gateways for Cross-Organizational Workflow
Management,” in Proc. of International Joint
Conference on Work Activities Coordination and
Collaboration, ACM Press, 1999, pp. 29-38.

[14] A. Ngu, “Specification of Cooperative
Constraints in Virtual Enterprise Workflow,” 9th
IEEE International Workshop on Research Issues
on Data Engineering: Information Technology for
Virtual Enterprises, 1999, pp. 140-147.

[15] J. Peterson, “Petri Nets,” ACM Computer
Surveys, vol. 9, no. 3, Sep. 1977, pp. 223-252.

[16] J. Peterson, Petri Net Theory and The
Modeling of Systems, Prentice- Hall, 1981.

[17] H. Schuster, et al., “The Collaboration
Management Infrastructure,” 16th IEEE
International Conference on Data Engineering,
2000, pp. 677-678.

 11

[18] A. Tarhan, et al., “A Distributed Tool for
Commitment Specification and Management,” in
Proc. of 25th EUROMICRO Conference, 1999, pp.
210-217.

[19] Y. Wand and R. Weber, “A Model of
Systems Decomposition,” in Proc. Of Int’l Conf.
on Information Systems, Boston, Dec. 4-6, 1989,
pp. 41-51.

[20] X. Yang, et al., “Constraints for information
cooperation in virtual enterprise systems,” 3rd
International Symposium on Cooperative
Database Systems for Advanced Applications,
2001, pp. 159-166.

[21] E. Yiannis and L. Thomas, “Specification
and Analysis of Parallel/Distributed Software and
Systems by Petri Nets with Transition Enabling
Function,” IEEE Transaction on Software
Engineering, vol. 18, no. 3, March 1992, pp.
252-261.

