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Abstract 
 
  In this paper we present a systematic approach to apply Statecharts modeling and 
analysis to safety-critical systems. Procedures are devised to first convert Startchart 
specifications to fault trees for hazard analysis, and then analyze the constructed fault 
trees to generate accident sequences and express them in UML sequence diagrams.  
Thus, incorrect or hazardous states and scenarios can be identified so as to assist the 
designer to modify the system. Our systematic approach makes the conventional 
subjective fault tree construction objective and repeatable.  Thus, safety analysis 
using formal specifications can be done automatically. Furthermore, we convert the 
statechart specifications into temporal logic for safety or correctness proof.  With the 
dual specification languages, our method takes the advantages of statecharts’ visual 
understandability and temporal logic’s proof clarity.  A railroad-crossing case is 
given to demonstrate the feasibility and effectiveness of our method. 
 
Keywords: statechart, temporal logic, safety analysis, fault tree analysis, sequence 
diagram.  
 
1. Introduction 
 

Formal specifications are important to safety-critical software since formal 
specifications facilitate safety analysis and verification. A dual language approach 
originally refers to one language in the computer executable programming language; 
the second language is the specification (or assertion) language.  Manna and Pnueli 
[10] extended the dual–language approach to incorporate fair transition systems and 
temporal logic framework together in specification. This paper extends the dual 
language concept to include both a model-based and a property-based specification 
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language; however, these two languages are used for different purposes. We utilize the 
visual understanding of Statecharts, a model-based language, to facilitate subsequent 
hazard analysis; while, we utilize the ease of verification of temporal logic, a 
property-based language, to perform correctness and safety proof. Systematic 
conversion from statecharts to temporal logic is also presented.  We apply fault trees 
to safety analysis of a safety-critical system.  However, different from the current 
subjective fault tree construction, we propose an algorithmic approach to construct 
fault trees from statechart specifications. To obtain better understanding of the 
potential accident sequences, we then convert the constructed fault tree into UML 
sequence diagrams so as to facilitate design modification.  Once the correct 
statecharts are converted to temporal logic, safety or correctness verification can then 
be performed.  Thus, our approach consists of the following steps: 

1. Use statecharts to model the system. 
2. Construct fault tree based on state chart specifications 
3. Express identified accident sequences in UML sequence diagrams. 
4. Modify system design if needed 
5. Convert the correct statecharts into temporal logic specifications 
6. Verification of temporal logic specifications. 
 
The major virtue of our method is that most of these steps can be carried out 

systematically and objectively.   
 

2. Background  
 

Dual languages in this paper refer to statechart and temporal logic specifications. 
Thus, we will first briefly introduce them.  

The statechart was introduced by Harel [4].  It is an extension of conventional 
finite-state machines. The Statechart adds structures, hierarchies, and concurrency to 
the conventional finite-state machines so that it is appropriate to represent behavior of 
complex control systems.  A statechart includes states, super-states, concurrent states, 
and events as well as transitions.  A transition can be labeled as α[C]/β whereαis 
a trigger event, and C is a condition that guards the transition from being taken unless 
it is true whenα occurs,  and βis an action that is carried out if the transition is 
taken. Also, at the entrance and exit points of a state, actions can be performed; this 
will be denoted as “entering/action” and “exiting/action” in side the state box. 
Statecharts use broadcast fashion for message passing. However, in this paper for 
clarity’s sake, we use channels to pass messages. Send and Receive are assumed to be 
two predefined events with the format “Send or Receive (channel, message)” .  
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Besides the conventional propositional connectives and quantifiers, Temporal 
Logic [3,9, 10, 11] introduces special temporal operators including the following: 
[ ] P：In all future states, the state predicate P is true. 
◇ P：In some future state, the state predicate P is true. 
( )P：In the next state, the state predicate P is true. 
[－]P：In all the past states, the state predicate P is true. 
＜－＞P：In some past state, the state predicate P is true. 
（－）P：In the previous state, P is true. 
S：Since operator  
U、 u ：until operator 
W：unless、waiting for 

 
For safety analysis, we use fault trees. Fault tree analysis (FTA) is widely used in 

aerospace, nuclear and electronics industries for system safety analysis. FTA is a 
means for analyzing causes of hazards. It uses logic AND, OR gates to describe the 
combinations of individual faults that can constitute a hazardous event.  A square 
box in a fault tree indicates an event resulting from a combination of events through a 
logic gate. A circle indicates a terminal fault event. A diamond denotes an event that is 
not developed further. This is shown in Fig. 1.There are several procedures proposed 
to automatically synthesize a fault tree, but only for systems consisting purely of 
hardware elements. Software fault trees at instruction level were proposed by Nancy 
Leveson [7]; they can be partially generated automatically.   However, for software 
specification and design level fault analysis, or analysis of systems with both 
hardware and software [1,2], current fault tree construction cannot be fully automatic.  
These fault trees are usually constructed subjectively; i.e., different persons may 
construct different fault trees for the same top event.  Thus, a systematic construction 
method is urgently needed.   

Top event 

 
Fig. 1.  A fault tree 

 
In conventional safety analysis, once fault trees have been constructed, event 
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trees [12] can be built to enumerate all possible combination of event sequences.  Yet 
event trees may have the exponential explosive problem. We may be only interested 
in some fault sequences, and moreover, we may be particularly interacted in the 
interaction between subsystems. Thus, a UML sequence diagram can express such 
accident sequences in a much clearer fashion than an event tree.  In our method, 
UML sequence diagrams for potential faulty scenarios are generated from the 
constructed fault trees to assist designers for system modification.  
 
3. Our systematic approach  
 

 Our approach consists of the steps shown in Fig. 2. Steps 2, 3, and 5 can be done 
systematically.  Thus, details of these steps are described below. 

 

Step 1:  Statechart modeling

Step 2:  Fault trees analysis 
(constructed from statecharts)

Step 3:  Accident sequence diagrams
(based on the fault trees)

Step 4:  Correct statecharts

Step 5: Temporal logic specification
(converted from statecharts)

Step 6: Proof (correctness or safety)

 
Fig.2. Our approach steps 

 
 
3.1. Construct a fault tree based on statechart specifications 
 

To construct a fault tree, an undesired top event (a hazardous situation) should be 
identified first. Then, the relevant subsystems, states, and transitions leading to the 
concerned states are then located. Basically, the process of generating lower level 
causes in a fault tree is a tracing loop -- tracing from the related transition backwards 
in the statecharts to its action, trigger events and conditions.  The loop will terminate 
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when it reaches a terminal event, which is hardware failure, an external event, or 
when there are no more new nodes. The tracing process is shown in Fig. 3. We trace 
from the abnormal events concerning action A backwards, along the path from 
transition t1 to t2; all the triggering events and conditions as well as action in the 
traced path may be abnormal. With dedicated channels, the tracing is easier. There are 
two kinds of abnormality that we deal with in our fault trees. They are Case 1: “what 
should have happened, but it hasn’t happened”, and Case 2: “what shouldn’t have 
happened, but it has happened”. The former is omission errors; the latter is 
commission errors.  For each omission error, we consider the following causes: 

1. the trigger event did not occur or condition was not true, 
2. the trigger event and condition were true, but transition action failed 
3. the trigger event occurred but was not received. 

For commission errors, we consider the following cases: 
1. the trigger event and condition abnormally occurred or were true 
2. the trigger event and condition did not happen, but the action has abnormally 

been taken.  
For simplicity’s sake, we use “triggering event” representing “triggering events and 
their related conditions”. Fig. 4 is the  conceptual diagram of the constructed fault 
trees. Each undesired event is a root of a fault tree. The algorithm constructing a fault 
tree based on statecharts is given below:  

 

Tracing from action A to transition t2

Receive m from Subsystem  I /
action A

s0
S1

Event E ^ Condition C /
Send m to Subsystem J

s4
s2

s3

Subsystem I Subsystem J

t1t2

 
Fig. 3  Tracing in a statechart  
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E related transition t in S 

E1 related transition t1 in S1 

E2 related transition t2 in S2 

Fig. 4  Fault tree generated from statechart specifications

Undesired event 

What should not have happened 
(event E’ in S3) but it has 

t4’s triggering 
event E4 occurred 
abnormally 

t3’s action 
abnormal token

t4’s action 
abnormal 
token 

t5’s action 
abnormal 

What should have happened 
(event E in S) but it has not 

t1’s triggering event 
E2 failed 

S failed to 
received t’s 
triggering event

t1’s action 
failed 

t2’s action 
failed 

t2’s triggering event 
failed 

… 

E’ related transition t3 in S3 

… 

E3 related transition t4 in S4

E4 related transition t5 in S5

t’s triggering event E1 
failed 

t3’s triggering 
event E3 occurred 

abnormally

t’s action 
failed 

S1 failed to 
received t1’s 
triggering 
event

Time T 

T-1 

T-2 

T-3 
t5’s triggering 

event E5 
occurred
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1. For each undesired event Do 

2. Begin     

 identify its top level causes  

           Ci = (assumption A, erroneous event E) at Time T including  

     Case 1=“what should have happened but it has not happened”        

Case 2=“what shouldn’t have happened but it has happened” 

3.  Trace back in statecharts and identify the subsystem S, its state, and transition t related to E 

4.  Assign next level OR causes to be: 

       Case 1: (t’s action failed) OR (t’s  triggering event failed) 

       Case 2: ( t’s action abnormally taken)  

                       OR ( t’s triggering event abnormally occurred) 

5. FOR each non-terminated cause C  LOOP  

          //  assume C related to transition t0 in subsystem S0 

6.   Trace the statecharts back to t0’s triggering  

       subsystem S1 and related transition t1 

7.   Generate the fault tree’s next level OR causes to be: 

              Case 1: ( S0 failed to receive triggering message)  

                            OR (t1’s action failed) 

                            OR  (t1’s triggering event failed) 

              Case 2: (t1’s action abnormally taken) 

                            OR  (t1’s triggering event abnormally occurred) 

8.  Until the cause is hardware failure or an external event or no  more new causes 

9.  END FOR 

    
In the above construction, we considered both hardware and software failure, 

including sensor errors, device failure, message passing , message receiving problems, 
and software problems. Our fault trees may not ensure completeness in all situations; 
however, the generation process is systematic and automatic. 
 
3.2.  Construct UML Sequence diagram from fault trees 
 

To further express the accident sequences and subsystem interaction identified by 
the fault trees, UML sequence diagrams are then generated.  However, sequence 
diagrams of normal scenarios are first built as basic templates. Then, the abnormal 
parts of the accident scenarios will be composed from the above fault trees and 
incorporated into their related basic templates.  Currently, we only consider scenarios 
with a single failure.  Fig. 5 demonstrates how to construct a faulty portion of a 
sequence diagram from a fault tree. In a fault tree, leaves conflicting with the top 
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event are trimmed first.  The generation of faulty sequences starts from the bottom 
level. We only consider single-failure cases for the time being; thus, one leaf is for 
one faulty scenario.  Note that our fault trees have two major branches (omission and 
commission errors). For each branch, each of our fault trees has at most one 
non-terminated node at each level. First, a sequence diagram for a normal scenario is 
generated as a template.  A faulty scenario is composed by negating all the lower 
level non-terminated causes in the fault tree until the concerned leaf; then the path 
from this leaf up to the root will be taken.  Take Fig. 5 for example, our algorithm 
may generate the abnormal scenario for node A by considering A^B^C^E^F; for node 
X, we consider the path ¬ A^ ¬ B^X^C^E^F; for node D, we consider the path 
¬ A^ ¬ B^¬ C^D^E^F. These faulty paths are thus generated and then incorporated 
into normal sequence diagram templates to compose complete accident sequences. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5  Sequence diagram generation 
 
 

3.3 Conversion from Statecharts to Temporal Logic 
 

Notations are easier to manipulate in proof process than graphs. Thus, we may 
systematically convert Statecharts to temporal logic to facilitate the verification 

 

 

Top event 

C 

B 

D

X Y 

A 

 
 

 

 

Conflict with the top 

Scenario: ¬ A∧ ¬ B ∧ ¬ C ∧ D∧E∧ F 

S1 S1 S1 

¬ A

¬ B 

¬ C ∧ D∧

E∧  F 

E B 
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process. To enhance temporal logic’s readability, we categorize temporal logic rules 
into the following five groups: General Rules, Backward Rules, Forward Rules, 
Transition Rules, and Temporal Constraint Rules. The following notations are used: 
 
State:   (subsystem = state) 
Transition: (subsystem: state1  state 2) 
Event :  Each event has a system-wise unique name. 
Channel: from subsystem 1 to subsystem 2 defined as (subsystem1_subsystem2) 
Message passing :  Send (channel, message ), Receive(channel, message). 
 
The five groups of temporal rules are explained below: 

 
1. General Rules：  Define all subsystems’ possible states. 
2. Backward Rules： Describe each state’s preceding states. 
3. Forward Rules：Describe each state’s next states. 
4.  Transition Rules：For each transition, describe its trigger event, condition and its 

action.  For example, Subsystem A changes from State a to State b, its 
transition rule is defined as: 
(A=a)∧(trigger event)∧ (guard condition)⇒  ( )( ( A：a b)∧ (output action)) 
Also, at a state’s entering or exiting points, action may be taken: 

Subsystem = entering (State) ⇒  ( ) action 
Subsystem = exiting (State) ⇒  ( ) action 

 5. Constraint Rules： Extra constraints or properties, if needed, can be added. 
Also, to expedite proof, preconditions or constraints for some concerned 
transitions can be traced back to its triggering transition or conditions.  

 
Besides the possible extra properties added in category 5, the above conversion 

can be generated systematically from statecharts. Without those extra properties, these 
temporal rules are actually equivalent to the original statecharts.  However, the rule 
format facilitates and expedites verification process. 
 
Take Fig. 3 for example, part of the generated rules is as follows: 
1. General rule: [ ](I=S2 || S3 || S4) 
2. Backward rule: I=S3  =>（-）(I=S2 || S3 ||S4) 
3. Forward rule: I=S2 => ( ) (I=S2 || S3) 
4. Transition rule: ( I= S2) ∧ E ∧ C => (I: S2-> S3) ∧ SEND(I_J, m ) 
5. Constraint rule: (J: S0->S1) =>＜-＞(I: S2  S3) 
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3. Case Study: railroad crossing example 
 

We use a railroad crossing example as our case study to demonstrate how to use 
our proposed method. There are three subsystems in this example: a train, a controller, 
and a gate. The train has traveling, approach, ingate, and exit states; the controller 
keeps in working state; while the gate’s state is either up or down.  When the train 
approaches the intersection, it sends a message to inform the controller; controller 
then commands the gate to lower it. When the train exits, it will again send a message 
to inform the controller, which then issues a command to lift the gate. The original 
statecharts are shown in Fig. 6.  In the example, trigger events include trainapproach, 
ingate, leave, send, and receive.   
 

To check whether the current system design is correct or safe; a fault tree 
following the algorithm in Section 3.1. is constructed. It is shown in Fig. 7 with the 
top event “train is ingate and the gate is up”.  The next level reasons include two 
branches: Case 1: the gate was not put down; and Case 2: the gate was lifted up. Each 
node in the fault tree is expressed as 2-tuple, (subsystem: trigger message, action). 
Also, to simplify the expression, messages are indicated as “sender.message” in the 
diagram. The numbers shown in the un-trimmed leaves are the case numbers used in 
faulty sequence diagrams (Fig. 9) later.  
 

The sequence diagram of a normal scenario is shown in Fig. 8.  There are 8 
untrimmed leaves in the built fault tree; thus, eight potential faulty partial scenarios 
may be generated and put in the context of the normal sequence diagram.  These 
faulty single-failure scenarios are shown in Fig. 9. Among these 8 cases, diagrams 
labeled as Fig. 9-1 and  Fig.9-6 are due to sensor problems, Fig. 9-3 and Fig. 9-7 are 
caused by controller software problems, Fig. 9-5 and Fig. 9-8 are due to gate hardware 
malfunction, and Fig. 9-2 and Fig.9-4 are due to message receiving problems.    
 

There are many possible ways to modify this system to ensure its safety.   
Hardware design diversity or redundancy and software n-version programming are 
among such possible solutions.  However, if we only consider software controller  
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Train
traveling

approach

ingate

exit

trainapproach[]/

send(controller_train, approach)

ingate[]/-

leave[]/send(controller_train, leave)

Controller
receive(controller_train,m)

[m=approach]/send(controller_gate, down)

receive(controller_train, 
m)[m=leave]/send(controller_gate, up)

work

Gate
receive(controller_gate, 
m)[m=down]/let gate down

receive(controller_gate, m)[m=up]/let gate up

up down

Fig. 6.  Original statecharts 
 
problems, we may solve controller’s problems by using hardware interlock to ensure 
that the train is ingate if and only if the gate is down. The modified statecharts are 
shown in Fig. 10. Now the train has a new state, the interlock state. Immediately after 
the gate is entering the down state, a message will be sent to the train; this will trigger 
the train to change from the interlock state to the ingate state. Thus, assuming 
hardware has no problem, this solution solve the concerned risk.  The sequence 
diagram for this modified version is shown in Fig. 11. 
    

To facilitate proof, we then convert the modified startchart specifications into 
temporal logic. These rules are shown in Fig. 12.  In this case, no extra properties are 
added into the temporal rules. Thus, these temporal rules are equivalent to statecharts. 
Note that the redundant backward and forward rules as well as constraint rules are 
designed to expedite the proof process.  Assume that hardware systems are correct, 
we would like to prove that the controller functions correctly.  That is, we prove that 
the situation (train=ingate ∧ gate=up) will not hold. The proof using backward 
search is shown in Fig. 13.  
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Fig. 7.  The Fault tree systematically generated from statechart specifications 

( train = ingate ) ^ ( gate = up )

Gate：down  up 

Gate： 
receive controller.up
, up 

Controller：  
receive train.leave, 
send controller.up 

8. Gate： 
Not receive 
controller.up  

7. Controller：
Not receive 
train.leave,  
send 

Train：
leave 

6. Train： 
Not leave,  
send 

Gate：not down  

Gate： 
not receive controller.down
, － 

Controller： 
not receive train.approach
, － 

4. Gate：fail to 
receive 

controller.down

5. Gate：receive 
controller.down 
, not down 

2. Controller：
fail to receive 
train.approach, 
-- 

3. Controller： 
receive train.approach, 

not  send 

1. Train： 
trainapproach,  

not send 

Train：not 
trainapproach, 
－
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traincontrollergate

traveling

exit

ingate

approach

up
work

Normal sequence diagram

approach
down

leave
up

down

up

 
Fig. 8  Sequence diagram template  

 
5. Conclusion 
 

We have presented a systematic construction method to convert a formal 
specification to fault trees and then generate UML sequence diagrams for accident 
scenarios identified by the fault trees.  This systematic approach makes the 
conventional subjective fault tree construction objective and repeatable.  UML 
sequence diagrams are more understandable than conventional event trees in 
expressing interaction among subsystems and devices. Thus, safety analysis using 
formal specifications can be automatically performed. Moreover, to obtain the 
advantages of both model-based and property-based specifications, we have 
developed a systematic way to convert statechart specifications to temporal logic 
specifications so as to facilitate verification process.  A railroad crossing case using 
the proposed steps to ensure its software safety has been reported. It demonstrated the 
feasibility and effectiveness of our method. The virtue of our approach lies in that it is 
procedural and thus repeatable.  
 

Our method can be applied to a statecharts with multiple layers. We have also 
applied the same approach to a digital reactor protection system to verify its safety.  
This case study will be reported shortly.    
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traincontrollergate

traveling

exit

ingate

approach

upwork

Fig. 9-1: Sensor errors 
 

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

Fig. 9-2: Message receiving errors 

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

Fig. 9-3: Controller software errors 
 

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

down

Fig. 9-4: Message receiving error 
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traincontrollergate

traveling

exit

ingate

approach

upwork

approach

down

Fig.9-5: Gate hardware errors 
 

traincontrollergate

traveling

exit

ingate

approach

up
work

approach

down

leave

up

down

up

Fig. 9-6: Sensor errors 

traincontrollergate

traveling

exit

ingate

approach

up

work

approach

down

up

down

up

Fig.9-7:  Controller software errors 
 

traincontrollergate

traveling

exit

ingate

approach

up
work

approach

down

down

up

Fig. 9-8 :Gate hardware errors 
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Train
traveling

approach

ingate

exit

trainapproach[]/send(controller_train, 
approach)

ingate[]/-

leave[]/send(controller_train, leave)

Controller
receive(controller_train, 
m)[m=approach]/send(controller_gate, 
down)

receive(controller_train, 
m)[m=leave]/send(controller_gate, up)

work

gate
receive(controller_gate, 
m)[m=down]/let gate down

receive(controller_gate, m)[m=up]/let gate up

up
down
entering/

send(gate_train, down)

interlock

receive(gate_train, m)[down]/-

Fig. 10.  Modified system design 
 

traincontrollergate

traveling

exit

ingate

approach

up
work

approach
down

leave
up

down

up

interlock

down

 
Fig. 11.  Modified sequence diagram 
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Single Train General Rules： 

1. [ ](train=traveling || approach || interlock || ingate || exit) 
2. [ ](gate=up || down) 
3. [ ](controller=work) 

Single Train Backward Rules： 

1. train=traveling ⇒（-）( train=traveling) 
2. train=approach ⇒（-）( train=approach || traveling) 
3. train=interlock ⇒（-）( train=interlock || approach) 
4. train=ingate ⇒（-）(train=ingate || interlock) 
5. train=exit ⇒（-）(train=exit || ingate) 
6. gate=up ⇒（-）(gate=up || down) 
7. gate=down ⇒（-）(gate=down || up) 
8. controller=work ⇒（-）(controller=work) 

Single Train Forward Rules： 

1. train=traveling ⇒  ( )(train=traveling || approach) 
2. train=approach ⇒  ( )(train=approach || interlock) 
3. train=interlock ⇒  ( )( train=interlock || ingate) 
4. train=ingate ⇒  ( )(train=ingate || exit) 
5. train=exit ⇒  ( )( train=exit) 
6. gate=up ⇒  ( )(gate=up || down) 
7. gate=down ⇒  ( )(gate=down || up) 
8. controller=work ⇒  ( )(controller=work) 

Single Train Transition Rules： 

1.  (train=traveling)∧ trainapproach ⇒  
( ) (train：traveling approach)∧ (SEND(controller_train, approach)) 

2.  (train=approach)∧ interlock ⇒  ( )(train：approach interlock) 
3.  (train=interlock)∧RECEIVE(gate_train, m)∧ (m=down) ⇒  

( ) (train：interlock ingate) 
4.  (train=ingate)∧ leave ⇒  ( )(train：ingate exit)∧ (SEND(controller_train, 

leave)) 
5.  (gate=up)∧RECEIVE(controller_gate, m)∧ (m=down) ⇒   

( )(gate：up down)∧ (let gate down) 
6.  (gate=down)∧RECEIVE(controller_gate, m)∧ (m=up) ⇒  

( ) (gate：down up)∧ (let gate up) 
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7.  (controller=work)∧RECEIVE(controller_train, m)∧ (m=approach) ⇒  
( )(controller：work work)∧ SEND(controller_gate, down) 

8.  (controller=work)∧RECEIVE(controller_train, m)∧ (m=leave) ⇒  
( )(controller：work work)∧ SEND(controller_gate, up) 

9. (gate= entering(down)) ⇒  ( )SEND(gate_train, down) 

Single Train Constraint Rules： 

1. (gate：up down) ⇒  ＜-＞(train：traveling approach) 
1. (gate：down up) ⇒  ＜-＞(train：ingate exit) 
2. (train：interlock ingate) ⇒  ＜-＞(gate：up down) 

Fig. 12. Converted temporal logic rules 
 
Proof: 

Prove P= (train=ingate)∧ (gate=up) is true. 
We use backward search.  
Considering the previous state may be as follows: 

Case I: (train=interlock)∧ (gate=up) 
Case II: (train=ingate)∧ (gate=down) 
 

Case I ： 
(1) (train=interlock)∧ (gate=up)    P & Backward Rule 4 
(2) train: interlock  ingate     P& (1) 
(3) ＜-＞(gate：up down)        (2) & Constraint Rule 3 
(4) (gate：up down)∧＜＞(gate：down up)  (3) & P (gate=up) 
(5) ＜-＞(train：traveling approach)∧＜-＞(train：ingate exit)    
                                  (4) & Constraints Rules 1 & 2 
Yet, (5) conflicts with P since the single train has not exited yet  
 
Case II: 
(1)  (train=ingate)∧ (gate=down)      P & Backward rule 6 
(2)  gate: down  up       previous transition. (1) & P 
(3) ＜-＞(train：ingate exit)    (2) & Constraint Rule 2 
Yet, (3) conflicts with P where ( train=ingate )  
 
Thus, both cases are not true. Thus, P cannot be true. 

Fig. 13.  Correctness proof 
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