
 1

ICS 2002

Workshop on Databases and Software Engineering

Title :
A Dual Language Approach to Software Formal Specifications
and Safety Analysis

Abstract
 In this paper we present a systematic approach to apply Statecharts modeling
and analysis to safety-critical systems. Procedures are devised to first convert
Startchart specifications to fault trees for hazard analysis, and then analyze the
constructed fault trees to generate accident sequences and express them in UML
sequence diagrams. Thus, incorrect or hazardous states and scenarios can be
identified so as to assist the designer to modify the system. Our systematic approach
makes the conventional subjective fault tree construction objective and repeatable.
Thus, safety analysis using formal specifications can be done automatically.
Furthermore, we convert the statechart specifications into temporal logic for safety or
correctness proof. With the dual specification languages, our method takes the
advantages of statecharts’ visual understandability and temporal logic’s proof clarity.
A railroad-crossing case is given to demonstrate the feasibility and effectiveness of
our method.

Keywords: statechart, temporal logic, safety analysis, fault tree analysis, sequence
diagram.

Authors: Chin-Feng Fan1, Chia-Ho Sun1, and Swu Yih2
Affiliation: 1Computer Engineering & Science Dept., Yuan-Ze University, Taiwan

2 I&C Dept., Nuclear Energy Research, Lung-Tang, Taiwan

Address: 135 Far East Road, Chung-Li, Taiwan 320
E-mail: csfanc@saturn.yzu.edu.tw
Fax : (03)4638850
Contact: Chin-Feng Fan

 2

A Dual Language Approach to Software Formal Specifications
and Safety Analysis*

Chin-Feng Fan1, Chia-Ho Sun1, and Swu Yih2

1 Computer Engineering & Science Dept.
 Yuan-Ze University, Chung-Li, Taiwan

2 I&C Dept., Nuclear Energy Research, Lung-Tang, Taiwan

Abstract

 In this paper we present a systematic approach to apply Statecharts modeling and
analysis to safety-critical systems. Procedures are devised to first convert Startchart
specifications to fault trees for hazard analysis, and then analyze the constructed fault
trees to generate accident sequences and express them in UML sequence diagrams.
Thus, incorrect or hazardous states and scenarios can be identified so as to assist the
designer to modify the system. Our systematic approach makes the conventional
subjective fault tree construction objective and repeatable. Thus, safety analysis
using formal specifications can be done automatically. Furthermore, we convert the
statechart specifications into temporal logic for safety or correctness proof. With the
dual specification languages, our method takes the advantages of statecharts’ visual
understandability and temporal logic’s proof clarity. A railroad-crossing case is
given to demonstrate the feasibility and effectiveness of our method.

Keywords: statechart, temporal logic, safety analysis, fault tree analysis, sequence
diagram.

1. Introduction

Formal specifications are important to safety-critical software since formal
specifications facilitate safety analysis and verification. A dual language approach
originally refers to one language in the computer executable programming language;
the second language is the specification (or assertion) language. Manna and Pnueli
[10] extended the dual–language approach to incorporate fair transition systems and
temporal logic framework together in specification. This paper extends the dual
language concept to include both a model-based and a property-based specification

* This research is supported in part by Atomic Energy Research and National Science Council under the
grant number NSC91-2623-7-155-001.

 3

language; however, these two languages are used for different purposes. We utilize the
visual understanding of Statecharts, a model-based language, to facilitate subsequent
hazard analysis; while, we utilize the ease of verification of temporal logic, a
property-based language, to perform correctness and safety proof. Systematic
conversion from statecharts to temporal logic is also presented. We apply fault trees
to safety analysis of a safety-critical system. However, different from the current
subjective fault tree construction, we propose an algorithmic approach to construct
fault trees from statechart specifications. To obtain better understanding of the
potential accident sequences, we then convert the constructed fault tree into UML
sequence diagrams so as to facilitate design modification. Once the correct
statecharts are converted to temporal logic, safety or correctness verification can then
be performed. Thus, our approach consists of the following steps:

1. Use statecharts to model the system.
2. Construct fault tree based on state chart specifications
3. Express identified accident sequences in UML sequence diagrams.
4. Modify system design if needed
5. Convert the correct statecharts into temporal logic specifications
6. Verification of temporal logic specifications.

The major virtue of our method is that most of these steps can be carried out

systematically and objectively.

2. Background

Dual languages in this paper refer to statechart and temporal logic specifications.
Thus, we will first briefly introduce them.

The statechart was introduced by Harel [4]. It is an extension of conventional
finite-state machines. The Statechart adds structures, hierarchies, and concurrency to
the conventional finite-state machines so that it is appropriate to represent behavior of
complex control systems. A statechart includes states, super-states, concurrent states,
and events as well as transitions. A transition can be labeled as α[C]/β whereαis
a trigger event, and C is a condition that guards the transition from being taken unless
it is true whenα occurs, and βis an action that is carried out if the transition is
taken. Also, at the entrance and exit points of a state, actions can be performed; this
will be denoted as “entering/action” and “exiting/action” in side the state box.
Statecharts use broadcast fashion for message passing. However, in this paper for
clarity’s sake, we use channels to pass messages. Send and Receive are assumed to be
two predefined events with the format “Send or Receive (channel, message)” .

 4

Besides the conventional propositional connectives and quantifiers, Temporal
Logic [3,9, 10, 11] introduces special temporal operators including the following:
[] P：In all future states, the state predicate P is true.
◇ P：In some future state, the state predicate P is true.
()P：In the next state, the state predicate P is true.
[－]P：In all the past states, the state predicate P is true.
＜－＞P：In some past state, the state predicate P is true.
（－）P：In the previous state, P is true.
S：Since operator
U、 u ：until operator
W：unless、waiting for

For safety analysis, we use fault trees. Fault tree analysis (FTA) is widely used in

aerospace, nuclear and electronics industries for system safety analysis. FTA is a
means for analyzing causes of hazards. It uses logic AND, OR gates to describe the
combinations of individual faults that can constitute a hazardous event. A square
box in a fault tree indicates an event resulting from a combination of events through a
logic gate. A circle indicates a terminal fault event. A diamond denotes an event that is
not developed further. This is shown in Fig. 1.There are several procedures proposed
to automatically synthesize a fault tree, but only for systems consisting purely of
hardware elements. Software fault trees at instruction level were proposed by Nancy
Leveson [7]; they can be partially generated automatically. However, for software
specification and design level fault analysis, or analysis of systems with both
hardware and software [1,2], current fault tree construction cannot be fully automatic.
These fault trees are usually constructed subjectively; i.e., different persons may
construct different fault trees for the same top event. Thus, a systematic construction
method is urgently needed.

Top event

Fig. 1. A fault tree

In conventional safety analysis, once fault trees have been constructed, event

 5

trees [12] can be built to enumerate all possible combination of event sequences. Yet
event trees may have the exponential explosive problem. We may be only interested
in some fault sequences, and moreover, we may be particularly interacted in the
interaction between subsystems. Thus, a UML sequence diagram can express such
accident sequences in a much clearer fashion than an event tree. In our method,
UML sequence diagrams for potential faulty scenarios are generated from the
constructed fault trees to assist designers for system modification.

3. Our systematic approach

 Our approach consists of the steps shown in Fig. 2. Steps 2, 3, and 5 can be done
systematically. Thus, details of these steps are described below.

Step 1: Statechart modeling

Step 2: Fault trees analysis
(constructed from statecharts)

Step 3: Accident sequence diagrams
(based on the fault trees)

Step 4: Correct statecharts

Step 5: Temporal logic specification
(converted from statecharts)

Step 6: Proof (correctness or safety)

Fig.2. Our approach steps

3.1. Construct a fault tree based on statechart specifications

To construct a fault tree, an undesired top event (a hazardous situation) should be
identified first. Then, the relevant subsystems, states, and transitions leading to the
concerned states are then located. Basically, the process of generating lower level
causes in a fault tree is a tracing loop -- tracing from the related transition backwards
in the statecharts to its action, trigger events and conditions. The loop will terminate

 6

when it reaches a terminal event, which is hardware failure, an external event, or
when there are no more new nodes. The tracing process is shown in Fig. 3. We trace
from the abnormal events concerning action A backwards, along the path from
transition t1 to t2; all the triggering events and conditions as well as action in the
traced path may be abnormal. With dedicated channels, the tracing is easier. There are
two kinds of abnormality that we deal with in our fault trees. They are Case 1: “what
should have happened, but it hasn’t happened”, and Case 2: “what shouldn’t have
happened, but it has happened”. The former is omission errors; the latter is
commission errors. For each omission error, we consider the following causes:

1. the trigger event did not occur or condition was not true,
2. the trigger event and condition were true, but transition action failed
3. the trigger event occurred but was not received.

For commission errors, we consider the following cases:
1. the trigger event and condition abnormally occurred or were true
2. the trigger event and condition did not happen, but the action has abnormally

been taken.
For simplicity’s sake, we use “triggering event” representing “triggering events and
their related conditions”. Fig. 4 is the conceptual diagram of the constructed fault
trees. Each undesired event is a root of a fault tree. The algorithm constructing a fault
tree based on statecharts is given below:

Tracing from action A to transition t2

Receive m from Subsystem I /
action A

s0
S1

Event E ^ Condition C /
Send m to Subsystem J

s4
s2

s3

Subsystem I Subsystem J

t1t2

Fig. 3 Tracing in a statechart

 7

E related transition t in S

E1 related transition t1 in S1

E2 related transition t2 in S2

Fig. 4 Fault tree generated from statechart specifications

Undesired event

What should not have happened
(event E’ in S3) but it has

t4’s triggering
event E4 occurred
abnormally

t3’s action
abnormal token

t4’s action
abnormal
token

t5’s action
abnormal

What should have happened
(event E in S) but it has not

t1’s triggering event
E2 failed

S failed to
received t’s
triggering event

t1’s action
failed

t2’s action
failed

t2’s triggering event
failed

…

E’ related transition t3 in S3

…

E3 related transition t4 in S4

E4 related transition t5 in S5

t’s triggering event E1
failed

t3’s triggering
event E3 occurred

abnormally

t’s action
failed

S1 failed to
received t1’s
triggering
event

Time T

T-1

T-2

T-3
t5’s triggering

event E5
occurred

 8

1. For each undesired event Do

2. Begin

 identify its top level causes

 Ci = (assumption A, erroneous event E) at Time T including

 Case 1=“what should have happened but it has not happened”

Case 2=“what shouldn’t have happened but it has happened”

3. Trace back in statecharts and identify the subsystem S, its state, and transition t related to E

4. Assign next level OR causes to be:

 Case 1: (t’s action failed) OR (t’s triggering event failed)

 Case 2: (t’s action abnormally taken)

 OR (t’s triggering event abnormally occurred)

5. FOR each non-terminated cause C LOOP

 // assume C related to transition t0 in subsystem S0

6. Trace the statecharts back to t0’s triggering

 subsystem S1 and related transition t1

7. Generate the fault tree’s next level OR causes to be:

 Case 1: (S0 failed to receive triggering message)

 OR (t1’s action failed)

 OR (t1’s triggering event failed)

 Case 2: (t1’s action abnormally taken)

 OR (t1’s triggering event abnormally occurred)

8. Until the cause is hardware failure or an external event or no more new causes

9. END FOR

In the above construction, we considered both hardware and software failure,

including sensor errors, device failure, message passing , message receiving problems,
and software problems. Our fault trees may not ensure completeness in all situations;
however, the generation process is systematic and automatic.

3.2. Construct UML Sequence diagram from fault trees

To further express the accident sequences and subsystem interaction identified by
the fault trees, UML sequence diagrams are then generated. However, sequence
diagrams of normal scenarios are first built as basic templates. Then, the abnormal
parts of the accident scenarios will be composed from the above fault trees and
incorporated into their related basic templates. Currently, we only consider scenarios
with a single failure. Fig. 5 demonstrates how to construct a faulty portion of a
sequence diagram from a fault tree. In a fault tree, leaves conflicting with the top

 9

event are trimmed first. The generation of faulty sequences starts from the bottom
level. We only consider single-failure cases for the time being; thus, one leaf is for
one faulty scenario. Note that our fault trees have two major branches (omission and
commission errors). For each branch, each of our fault trees has at most one
non-terminated node at each level. First, a sequence diagram for a normal scenario is
generated as a template. A faulty scenario is composed by negating all the lower
level non-terminated causes in the fault tree until the concerned leaf; then the path
from this leaf up to the root will be taken. Take Fig. 5 for example, our algorithm
may generate the abnormal scenario for node A by considering A^B^C^E^F; for node
X, we consider the path ¬ A^ ¬ B^X^C^E^F; for node D, we consider the path
¬ A^ ¬ B^¬ C^D^E^F. These faulty paths are thus generated and then incorporated
into normal sequence diagram templates to compose complete accident sequences.

Fig. 5 Sequence diagram generation

3.3 Conversion from Statecharts to Temporal Logic

Notations are easier to manipulate in proof process than graphs. Thus, we may
systematically convert Statecharts to temporal logic to facilitate the verification

Top event

C

B

D

X Y

A

Conflict with the top

Scenario: ¬ A∧ ¬ B ∧ ¬ C ∧ D∧E∧ F

S1 S1 S1

¬ A

¬ B

¬ C ∧ D∧

E∧ F

E B

 10

process. To enhance temporal logic’s readability, we categorize temporal logic rules
into the following five groups: General Rules, Backward Rules, Forward Rules,
Transition Rules, and Temporal Constraint Rules. The following notations are used:

State: (subsystem = state)
Transition: (subsystem: state1 state 2)
Event : Each event has a system-wise unique name.
Channel: from subsystem 1 to subsystem 2 defined as (subsystem1_subsystem2)
Message passing : Send (channel, message), Receive(channel, message).

The five groups of temporal rules are explained below:

1. General Rules： Define all subsystems’ possible states.
2. Backward Rules： Describe each state’s preceding states.
3. Forward Rules：Describe each state’s next states.
4. Transition Rules：For each transition, describe its trigger event, condition and its

action. For example, Subsystem A changes from State a to State b, its
transition rule is defined as:
(A=a)∧(trigger event)∧ (guard condition)⇒ ()((A：a b)∧ (output action))
Also, at a state’s entering or exiting points, action may be taken:

Subsystem = entering (State) ⇒ () action
Subsystem = exiting (State) ⇒ () action

 5. Constraint Rules： Extra constraints or properties, if needed, can be added.
Also, to expedite proof, preconditions or constraints for some concerned
transitions can be traced back to its triggering transition or conditions.

Besides the possible extra properties added in category 5, the above conversion

can be generated systematically from statecharts. Without those extra properties, these
temporal rules are actually equivalent to the original statecharts. However, the rule
format facilitates and expedites verification process.

Take Fig. 3 for example, part of the generated rules is as follows:
1. General rule: [](I=S2 || S3 || S4)
2. Backward rule: I=S3 =>（-）(I=S2 || S3 ||S4)
3. Forward rule: I=S2 => () (I=S2 || S3)
4. Transition rule: (I= S2) ∧ E ∧ C => (I: S2-> S3) ∧ SEND(I_J, m)
5. Constraint rule: (J: S0->S1) =>＜-＞(I: S2 S3)

 11

3. Case Study: railroad crossing example

We use a railroad crossing example as our case study to demonstrate how to use
our proposed method. There are three subsystems in this example: a train, a controller,
and a gate. The train has traveling, approach, ingate, and exit states; the controller
keeps in working state; while the gate’s state is either up or down. When the train
approaches the intersection, it sends a message to inform the controller; controller
then commands the gate to lower it. When the train exits, it will again send a message
to inform the controller, which then issues a command to lift the gate. The original
statecharts are shown in Fig. 6. In the example, trigger events include trainapproach,
ingate, leave, send, and receive.

To check whether the current system design is correct or safe; a fault tree
following the algorithm in Section 3.1. is constructed. It is shown in Fig. 7 with the
top event “train is ingate and the gate is up”. The next level reasons include two
branches: Case 1: the gate was not put down; and Case 2: the gate was lifted up. Each
node in the fault tree is expressed as 2-tuple, (subsystem: trigger message, action).
Also, to simplify the expression, messages are indicated as “sender.message” in the
diagram. The numbers shown in the un-trimmed leaves are the case numbers used in
faulty sequence diagrams (Fig. 9) later.

The sequence diagram of a normal scenario is shown in Fig. 8. There are 8
untrimmed leaves in the built fault tree; thus, eight potential faulty partial scenarios
may be generated and put in the context of the normal sequence diagram. These
faulty single-failure scenarios are shown in Fig. 9. Among these 8 cases, diagrams
labeled as Fig. 9-1 and Fig.9-6 are due to sensor problems, Fig. 9-3 and Fig. 9-7 are
caused by controller software problems, Fig. 9-5 and Fig. 9-8 are due to gate hardware
malfunction, and Fig. 9-2 and Fig.9-4 are due to message receiving problems.

There are many possible ways to modify this system to ensure its safety.
Hardware design diversity or redundancy and software n-version programming are
among such possible solutions. However, if we only consider software controller

 12

Train
traveling

approach

ingate

exit

trainapproach[]/

send(controller_train, approach)

ingate[]/-

leave[]/send(controller_train, leave)

Controller
receive(controller_train,m)

[m=approach]/send(controller_gate, down)

receive(controller_train,
m)[m=leave]/send(controller_gate, up)

work

Gate
receive(controller_gate,
m)[m=down]/let gate down

receive(controller_gate, m)[m=up]/let gate up

up down

Fig. 6. Original statecharts

problems, we may solve controller’s problems by using hardware interlock to ensure
that the train is ingate if and only if the gate is down. The modified statecharts are
shown in Fig. 10. Now the train has a new state, the interlock state. Immediately after
the gate is entering the down state, a message will be sent to the train; this will trigger
the train to change from the interlock state to the ingate state. Thus, assuming
hardware has no problem, this solution solve the concerned risk. The sequence
diagram for this modified version is shown in Fig. 11.

To facilitate proof, we then convert the modified startchart specifications into
temporal logic. These rules are shown in Fig. 12. In this case, no extra properties are
added into the temporal rules. Thus, these temporal rules are equivalent to statecharts.
Note that the redundant backward and forward rules as well as constraint rules are
designed to expedite the proof process. Assume that hardware systems are correct,
we would like to prove that the controller functions correctly. That is, we prove that
the situation (train=ingate ∧ gate=up) will not hold. The proof using backward
search is shown in Fig. 13.

 13

Fig. 7. The Fault tree systematically generated from statechart specifications

(train = ingate) ^ (gate = up)

Gate：down up

Gate：
receive controller.up
, up

Controller：
receive train.leave,
send controller.up

8. Gate：
Not receive
controller.up

7. Controller：
Not receive
train.leave,
send

Train：
leave

6. Train：
Not leave,
send

Gate：not down

Gate：
not receive controller.down
, －

Controller：
not receive train.approach
, －

4. Gate：fail to
receive

controller.down

5. Gate：receive
controller.down
, not down

2. Controller：
fail to receive
train.approach,
--

3. Controller：
receive train.approach,

not send

1. Train：
trainapproach,

not send

Train：not
trainapproach,
－

 14

traincontrollergate

traveling

exit

ingate

approach

up
work

Normal sequence diagram

approach
down

leave
up

down

up

Fig. 8 Sequence diagram template

5. Conclusion

We have presented a systematic construction method to convert a formal
specification to fault trees and then generate UML sequence diagrams for accident
scenarios identified by the fault trees. This systematic approach makes the
conventional subjective fault tree construction objective and repeatable. UML
sequence diagrams are more understandable than conventional event trees in
expressing interaction among subsystems and devices. Thus, safety analysis using
formal specifications can be automatically performed. Moreover, to obtain the
advantages of both model-based and property-based specifications, we have
developed a systematic way to convert statechart specifications to temporal logic
specifications so as to facilitate verification process. A railroad crossing case using
the proposed steps to ensure its software safety has been reported. It demonstrated the
feasibility and effectiveness of our method. The virtue of our approach lies in that it is
procedural and thus repeatable.

Our method can be applied to a statecharts with multiple layers. We have also
applied the same approach to a digital reactor protection system to verify its safety.
This case study will be reported shortly.

 15

traincontrollergate

traveling

exit

ingate

approach

upwork

Fig. 9-1: Sensor errors

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

Fig. 9-2: Message receiving errors

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

Fig. 9-3: Controller software errors

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

down

Fig. 9-4: Message receiving error

 16

traincontrollergate

traveling

exit

ingate

approach

upwork

approach

down

Fig.9-5: Gate hardware errors

traincontrollergate

traveling

exit

ingate

approach

up
work

approach

down

leave

up

down

up

Fig. 9-6: Sensor errors

traincontrollergate

traveling

exit

ingate

approach

up

work

approach

down

up

down

up

Fig.9-7: Controller software errors

traincontrollergate

traveling

exit

ingate

approach

up
work

approach

down

down

up

Fig. 9-8 :Gate hardware errors

 17

Train
traveling

approach

ingate

exit

trainapproach[]/send(controller_train,
approach)

ingate[]/-

leave[]/send(controller_train, leave)

Controller
receive(controller_train,
m)[m=approach]/send(controller_gate,
down)

receive(controller_train,
m)[m=leave]/send(controller_gate, up)

work

gate
receive(controller_gate,
m)[m=down]/let gate down

receive(controller_gate, m)[m=up]/let gate up

up
down
entering/

send(gate_train, down)

interlock

receive(gate_train, m)[down]/-

Fig. 10. Modified system design

traincontrollergate

traveling

exit

ingate

approach

up
work

approach
down

leave
up

down

up

interlock

down

Fig. 11. Modified sequence diagram

 18

Single Train General Rules：

1. [](train=traveling || approach || interlock || ingate || exit)
2. [](gate=up || down)
3. [](controller=work)

Single Train Backward Rules：

1. train=traveling ⇒（-）(train=traveling)
2. train=approach ⇒（-）(train=approach || traveling)
3. train=interlock ⇒（-）(train=interlock || approach)
4. train=ingate ⇒（-）(train=ingate || interlock)
5. train=exit ⇒（-）(train=exit || ingate)
6. gate=up ⇒（-）(gate=up || down)
7. gate=down ⇒（-）(gate=down || up)
8. controller=work ⇒（-）(controller=work)

Single Train Forward Rules：

1. train=traveling ⇒ ()(train=traveling || approach)
2. train=approach ⇒ ()(train=approach || interlock)
3. train=interlock ⇒ ()(train=interlock || ingate)
4. train=ingate ⇒ ()(train=ingate || exit)
5. train=exit ⇒ ()(train=exit)
6. gate=up ⇒ ()(gate=up || down)
7. gate=down ⇒ ()(gate=down || up)
8. controller=work ⇒ ()(controller=work)

Single Train Transition Rules：

1. (train=traveling)∧ trainapproach ⇒
() (train：traveling approach)∧ (SEND(controller_train, approach))

2. (train=approach)∧ interlock ⇒ ()(train：approach interlock)
3. (train=interlock)∧RECEIVE(gate_train, m)∧ (m=down) ⇒

() (train：interlock ingate)
4. (train=ingate)∧ leave ⇒ ()(train：ingate exit)∧ (SEND(controller_train,

leave))
5. (gate=up)∧RECEIVE(controller_gate, m)∧ (m=down) ⇒

()(gate：up down)∧ (let gate down)
6. (gate=down)∧RECEIVE(controller_gate, m)∧ (m=up) ⇒

() (gate：down up)∧ (let gate up)

 19

7. (controller=work)∧RECEIVE(controller_train, m)∧ (m=approach) ⇒
()(controller：work work)∧ SEND(controller_gate, down)

8. (controller=work)∧RECEIVE(controller_train, m)∧ (m=leave) ⇒
()(controller：work work)∧ SEND(controller_gate, up)

9. (gate= entering(down)) ⇒ ()SEND(gate_train, down)

Single Train Constraint Rules：

1. (gate：up down) ⇒ ＜-＞(train：traveling approach)
1. (gate：down up) ⇒ ＜-＞(train：ingate exit)
2. (train：interlock ingate) ⇒ ＜-＞(gate：up down)

Fig. 12. Converted temporal logic rules

Proof:

Prove P= (train=ingate)∧ (gate=up) is true.
We use backward search.
Considering the previous state may be as follows:

Case I: (train=interlock)∧ (gate=up)
Case II: (train=ingate)∧ (gate=down)

Case I ：
(1) (train=interlock)∧ (gate=up) P & Backward Rule 4
(2) train: interlock ingate P& (1)
(3) ＜-＞(gate：up down) (2) & Constraint Rule 3
(4) (gate：up down)∧＜＞(gate：down up) (3) & P (gate=up)
(5) ＜-＞(train：traveling approach)∧＜-＞(train：ingate exit)
 (4) & Constraints Rules 1 & 2
Yet, (5) conflicts with P since the single train has not exited yet

Case II:
(1) (train=ingate)∧ (gate=down) P & Backward rule 6
(2) gate: down up previous transition. (1) & P
(3) ＜-＞(train：ingate exit) (2) & Constraint Rule 2
Yet, (3) conflicts with P where (train=ingate)

Thus, both cases are not true. Thus, P cannot be true.

Fig. 13. Correctness proof

 20

References

[1] C, Fan and S. Yih, “Frame-based safety analysis approach for decision-based
errors,” Reliability Eng. & System Safety, 55, pp. 243-256, 1997.
[2] C. Fan and W. Chen, “Accident sequence analysis of human-computer interface
design,” Reliability Eng. & System Safety, 67, pp29-40, 2000.
[3] A. Galton (editor), Temporal Logics and their Applications, Academic Press, 1987.
[4] D. Harel, “Statecharts: a visual formalization for complex systems,” Sci. Comput.

Program, Vol. 8, pp. 231-274 , 1987.
[5] N. M. Heimdahl and N. Leveson, “Completeness and Consistency in Hierarchical

State-Based Requirements,” IEEE Transactions on Software Engineering, Vol. 22,
No. 6, pp. 363-377, June 1996.

[6] F. Kroger, Temporal Logic of Programs, Springer-Verlag, 1986.
[7] N. Leveson and J. Stolzy, “Safety Analysis Using Petri Nets,” IEEE Transactions

on Software Engineering, Vol. SE-13, NO. 3, pp. 386-397. 1987.
[8] N. Leveson, et.al, Safety verification of Ada Programs using Software fault trees,

IEEE Software, 8(7), pp. 48-59, July 1991.
[9] J. Ostroff, Temporal Logic for Real-Time Systems, Research Studies Press Ltd.,

1989.
[10] A . Pnueli, “The temporal logic of programs,” Proc. of the 18the IEEE Annual

Symposium on th Foundations of Computer Science, pp. 46-57, Nov. 1977.
[11] N. Rescher and A. Urquhart, Temporal Logic, Springer-Verlag, Library of Exact

Philosophy, 1971.
[12] WASH-1400, NUREG 75/014, Reactor safety study, US NRC, Oct. 1974.

