
An Intrusion Prevention System using Wrapper *

Tsung-Yi Tsai, Kuang-Hung Cheng, Chi-Hung Chen, Wen-Nung Tsai
Department of Computer Science and Information Engineering,

National Chiao-Tung University
{tytsai, chengkh, chihung, tsaiwn}@csie.nctu.edu.tw

Abstract
Over the past several years, the Internet

environment has become more complex and
untrusted. There are always crackers and business
competitors trying to penetrate security system and
then steal confidential information. Some of them
would also spread malicious software or files to
attack our computer system, making our system
paralyzed, unable to provide service. Even more, the
attacker may gain full access to our system without
any trace.

Based on the system call interception technique,
we developed a real-time intrusion prevention system,
IPSW (Intrusion Prevention System using Wrapper).
This system intercepts every system call invoked by
applications and tries to match any of the penetration
scenarios. Once there is any evidence showing some
penetration being undertaken, the system can
terminate the penetration process before it gets
injured. This wrapper system can also wrap
Commercial Off-The-Shelf (COTS) software
components to provide robustness and security.

Keywords: IDS, IPS, System call Interception,

Virus, Wrapper.

1. Introduction1

Computer security has been a seesaw battle
between users and intruders since long time ago.
With the help of security tools like firewalls,
anti-virus products and intrusion detection systems, it
seems that the situation has been controlled.
However, no matter how powerful these security
tools are, there are always new tricks to elude their
security defense line ingeniously.

Take anti-virus products as example, they use
virus-definitions as the checking rules to detect
whether a certain file is a virus. Virus-definition is a
collection of some machine instructions and
meta-data of this virus. These machine instructions
and meta-data are chosen carefully so that the

* This work was supported in part by National
Science Council, Taiwan, Contract No.
NSC92-2213-E-009-096.

probability of another file having the same
virus-definition is very small. Although anti-virus
engines can detect suspect virus file accurately using
pattern matching, they still cannot detect variant
virus of the same family very well.

To stop hackers and to avoid the above situation,
the computer security system should provide more
abstract representation of attack behavior and more
flexible configuration interface to absorb minor
variations. For example, we know that a virus is a
piece of code that copies itself into another program.
By this definition, we can roughly say that: "Every
process that opens an executable file and inserts itself
into this file should be monitored". Certainly, this
statement still needs some modifications to adapt to
various virus infection techniques (like compression)
and target platform, but it did provide a more general
definition of all kinds of viruses than thousands of
hundreds of virus signatures.

From another point of view, only when the
intruder has accessing privilege to system resource
can he cause certain degree of damages to the victim
system. And the only possible way to access system
resource is via the system call interfaces provided by
the Operating System.

In this paper, we proposed a real-time Intrusion
Prevention System (IPS) that can be implemented in
the Linux kernel. Based on the state-transition
diagram technique, we can define an attack pattern as
a set of states and transition arcs. Each state
represents one of the key signatures of this attack
scenario and each arc connected with two states
represents the required system call invocation that
causes transition from one state to another state. With
visual thinking, security officers can define attack
patterns more easily and intuitively, and the attack
pattern can be more complex than ever with less
maintenance efforts.

To take a better battle position, the IPS will wrap
around the kernel like a shell. The kernel process of
IPS engine has the full information of target system.
With this complete information and splendid strategy
point, the IPS can check every new created process
and determine whether this process is a malicious
one. Once been judged suspected, the suspected
process will be monitored all his life until terminated

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1218

finally, or will be ferreted out as a compromise
process during execution time before damage occurs.

This paper is organized as follows. Section 2 is a
brief discussion of related work. The strategies we
choose and the resulting system architecture are
described in section 3, followed by the technical
details of our approach in section 4. Section 5 gives
two applied examples in our security model. Section
6 presents the conclusions and future works.

2. Related Work

Much of the work related to this paper falls in
two categories: kernel-level wrapper [11][1][9] and
state-based intrusion detection system [7][4][3].

2.1 Kernel-Level Wrapper

In order to provide accurate and efficient

intrusion prevention, most wrapper systems will
reside in Kernel space with superuser execution
privilege. For efficiency reason, there will be no
extra context switches compared with user-level
process tracing technique. For accuracy reason, the
kernel wrapper has equal rights as the kernel code
and hence has full access to system information and
system call parameters. In the following paragraphs,
we will have a brief discussion for each kernel
wrapper that is implemented in FreeBSD and Linux
operating system respectively.

Generic Software Wrappers [11], or GSW in short,
is a generic wrapper prototype developed by NAI
labs for a Solaris or FreeBSD platform. GSW is a
kernel-resident and non-bypassable software
extension for augmenting security without
modification of COTS source. The wrapper in GSW
is a software module that surrounds other software
components and is used to augment and control
interactions between components. The GSW
provides a Wrapper Life Cycle framework (WLC) to
manage wrappers. WLC uses a small configurable
rule-based database to manage the run-time
relationships between wrapper instances and
processes executing COTS applications. Every
wrapper will experience five states in its life cycle:
install, activate, duplicate, deactivate and uninstall.

Linux Kernel Loadable Wrappers [9], KLW in
short, provide non-bypassable security wrappers for
application specific security requirements and can
also be used to provide replication service. The
primary goal of KLW is to protect the user system
from malicious active content downloaded via web
browser. It develops three application specific
wrappers: the Netscape KLW, the Apache Server
KLW and the replication KLW. A Netscape KLW is
used to protect a user from downloading and
executing malicious active content when browsing on
the Internet. An Apache Server KLW is used to
restrict the web server to access only a subset of files.
In this way, even if the web server is compromised,

other resource that the Apache server cannot access
will be secure. A replication KLW is used to replicate
a file or set of files transparently. The replication
KLW can backup of changes to a file immediately
without having to modify any applications that are
making the actual change.

2.2 STAT Intrusion Detection System

STAT [7][4][14] is the acronym of State

Transition Analysis Tool. In STAT, it models
penetrations as a series of state changes that lead
from an initial secure state to a target compromised
state. With the help of state transition diagrams, the
graphical representation method can describe more
complex penetration scenarios than rule-based
intrusion detection systems. When performed in
real-time, STAT can use audit data to track user
behaviors and determine if a user’s current actions
represent a threat to security. STAT can perform both
on-line and off-line intrusion analysis. In the off-line
mode, STAT will use stored audit records to trace
suspected illegal behavior. In the on-line mode, each
penetration rule-chain is translated to a scenario
plug-in and dynamically loaded to the STAT runtime
core. As soon as the audit record is generated and
formatted, they will be sent to these scenario plug-ins
to perform intrusion detection analysis in real-time.

3. IPSW System Architecture

In order to design a better intrusion prevention
engine, we first discuss the implementation issues
observed in the related works and then, bring up the
corresponding design strategies to overcome those
problems. Based on the chosen strategies, we
designed a real-time intrusion prevention system on
Linux platform, which will be described in detail in
section 3.2.

3.1 Implementation issues and strategies

There are several ways to provide
security-wrapping service. One possible method is to
link the application to a different library that contains
wrapped functions [2]. However, every program that
linked statically must be re-linked with the new
modified version of library. To get rid of re-linking
overhead, user-level process tracing techniques such
as ptrace or /proc filesystem are alternative choices
[5][6]. However, there will be two context switches
per system call interception that may decrease
performance dramatically. In order to provide
intrusion prevention with unnoticeable performance
degradation, we chose kernel-level system call
interception technique as our basis. Kernel-level
system call interception is achieved by altering the
interested system call table entry to the wrapped one.
For each corresponding wrapped function, it can first
perform some pre-actions, then invoke the original

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1219

kernel function and finally perform the post-actions
if required. In the simplest situation, the wrapped
function is able to call the original kernel function
only. It can do neither the pre-actions nor the
post-actions. In this case, the only extra system
overheads are two jump instructions. And compared
to the context switch time needed in user-level
system call interception, the cost of jump instruction
is negligible.

To write a rule for a rule-based IDS system,
programmers have to learn the rule language for the
specific IDS product. However, to write a perfect
chain of rules, the programmer has to be an expert in
that IDS product domain. Besides, in order to specify
complicated intrusion behaviors, the rule chain will
be very complex and uneasy to maintain. To lower
the doorsill for usage and to make things simple, we
chose to specify the intrusion scenario as a state
transition diagram.

3.2 Architecture Overview

Based on the chosen strategies, our proposed
system, IPSW(Intrusion Prevention System using
Wrapper), is implemented on Linux platform. It’s
system architecture is shown in Figure 1. The core
wrapper components are resident in Linux kernel in
the form of Linux loadable kernel module and
responsible for distinct jobs respectively. There are
four major components in this system.

(1) Wrapper Driver (WD). WD is the bridge

between application-level UIs and OS-level
components. The State-based rule configuration
interface can issue commands to wrapper driver,
and via the wrapper driver, to ask the wrapper
manager to update certain system information.

(2) Wrapper Manager (WM). WM is the most
important component in this system. It is
responsible for the registration of penetration
templates, and for monitoring related tasks. To
carry on the registration of penetration templates,
the WM will produce a new penetration template
data structure, fill in the nodes, arcs and actions
received from WD, and then insert this data
structure to the penetration table resident in
Wrapper Information Center. When the system is
running, the WM is responsible to search the
penetration table to determine whether the newly
created process is the suspect defined in
penetration table, and then to update the status of
each monitored process.

(3) Wrapper Information Center (WIC). There are
two major system tables in the WIC. One is the
penetration template table, which is used to store
all the penetration scenarios defined by users. The
other is the penetration instance table, which is
used to store the FSMs of all the suspected
process.

(4) State-based Rule Configuration Interface

(SRCI). SRCI is used to specify a penetration
scenario in the form of state-transition diagram.

Figure 1. System Architecture of IPSW.

4. System Design and Implementation

As shown in Figure 2, it is the overall usage
scenario of our IPSW system. In this section, we
describe how to use the wrapper system to
demonstrate how we design the whole system.

In the very first time, user has to do rule
configuration through SRCI. After that, whenever
there is a new process created (either by fork or exec
system call family), the wrapper manager will check
Penetration Template Table to see whether this
process should be monitored. Once the process is
being judged a suspected attack process, the wrapper
manager will create a penetration instance and insert
it into Penetration Instance Table for further tracing.

Figure 2. IPSW Overall usage scenario.

4.1 Rule Configuration

There are two steps to create a new rule. The first
step is Penetration Scenario Specification and the
second step is Penetration Scenario Registration.

To specify a penetration scenario for IPSW, user
has to draw a state transition diagram like the one in
Figure 3 to characterize “in what situations, the
newly created process should be monitored by this
template”. The diagram represents a Finite State
Machine (FSM). In our prototype, the prerequisite is
an expression. If the evaluation of this expression is

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1220

true, then the newly created process should be
monitored using this FSM. Afterwards, user can add
nodes and arcs to represent the process behavior that
he or she would like to trap. Each arc may be a single
system call invocation, a compound event that
represents a sequence of system calls, or a certain
predefined penetration scenario. On each arc,
programmer can write pre-actions and post-actions
related to this event. These actions will be compiled
as object code and will be executed dynamically
when this corresponding event is triggered. In
addition, the system provides a timer to trigger a
certain transition and action. On the final state, user
can specify what action the system should perform.
In our prototype, there are three actions the system
can do when facing a compromised state: (1)
terminate the execution, (2) log the event in a file,
and (3) wait for the decision from the user.

After creating the state transition diagram of
certain penetration scenario, SRCI will parse the
penetration diagram and request the wrapper driver
to insert this penetration template into Penetration
Template Table (PTT) for future use.

4.2 Process Life Cycle

Any process created by fork or exec system call

families will have three stages in its life cycle: newly
created, execution stage, and termination stage.

The wrapper manager will intercept every fork
and exec system call. In this way, every newly
created process will be under the control of the
wrapper manager and has no way to escape from the
security checking. Whenever there is a newly created
process, the wrapper manager has to search the
Penetration Template Table to decide which the
templates should be used to monitor this process.
Once the newly created process is judged as a
suspected one for certain penetration scenario, the
wrapper manager will create a penetration instance
for this template, and insert these instances into
Penetration Instance Table. Each process can be
monitored by “stack” of templates, as long as the
prerequisite of this process is satisfied with target
penetration template. It means that each process can
be traced concurrently among related penetration
templates during one system call to another. If
multiple penetration instances are waiting for the
same event to make a transition, these penetration
instances will turn to the next state as defined in their
state transition diagram once the specific event is
triggered.

Whenever there is a system call being intercepted,
the execution control will transfer to the wrapper
manager. Based on the process id, the wrapper
manager can find out all the penetration instances
related to this process. For each penetration instance
waiting for this system call, the wrapper manager
will perform its pre-action first. If the pre-action
finds something illegal, it can turn on the illegal flag

and the wrapper manger will not perform the original
kernel function. If the illegal flag is not turn on, the
wrapper manager will check whether the next state
of this instance is the compromised state. If the next
state were the compromised state, the wrapper
manager would not perform the original kernel
function either and instead, the wrapper manager will
perform the punitive sanctions defined in the next
compromised state. Afterwards, the wrapper manager
will do the post-action we specified.

Only the process that abides by the law can
execute to the end. Otherwise, it will be punished,
either terminated immediately or forced to wait for
the judgment from users. However, normal process
without being monitored will execute as if the
wrapper system does not exist.

5. Examples to use the IPSW

In this section, we introduce two examples to
demonstrate the capability of our proposed system.

5.1 Deny a Socket Connection

As shown in Figure 3, a TCP network connection
is created by issuing those system calls shown on
arcs. In this example, any process monitored by this
penetration template would be blocked if it is trying
to establish a network connection. There is no need
to perform any pre-actions and post-actions. When
the execution reaches state s4, and there is an
“accept” system call request issued by this process,
the wrapper system will log the error message and
terminate the process.

Figure 3. Deny a socket connection

5.2 Prevention From Virus Infection

A virus is a piece of code that copies itself into
another program. Based on this definition of virus,
the state transition diagram that represents the
intrusion behavior of virus can be designed as shown
in Figure 4.

Figure 4. Virus behavior as a state diagram

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1221

 In order to evaluate the overhead incurred by the
IPSW, we first run a small program that opens and
writes a certain file in 1000, 10000 and 50000 times
respectively. This evaluation program will measure
the time spent both when the “Prevention From Virus
Infection Wrapper (PVIW)” is loaded and not loaded,
as shown in Table 2.

The virus process can open an object file to be the
infection target, and then open itself to prepare the
virus body. The order can be diversified; hence we
use two transitions to let either way go. When the
execution reaches state s3, and there is a “write”
system call request issued by this process that wants
to write into this open object file, the wrapper system
will log the event and terminate the process.

Each testing result is measured by “gettimeofday”
system call, and the penalty is calculated using the
following formula:

 6. Discussions and Conclusions
%100)()(x

lledtPVIWinstaTimeWithou
lledtPVIWinstaTimeWithoudIWinstalleTimeWithPVpenalty −

=

There are several researches regarding intrusion

detections and intrusion preventions as described in
related works. All these researches have their pros
and cons. In this section, we will discuss the
difference between previous approaches and our own
approach. Then, there will be a summary about the
contributions of this paper. Finally, we will present
some ideas that can be used for future investigations.

 1000 times 10000 times 50000 times

No PVIW 75756 sµ 726339 sµ 3353957 sµ

PVIW

installed

81892 sµ 800281 sµ 3710352 sµ

Penalty 8.10 % 10.1% 10.6%
6.1 Strength of our approach

Table 2. PVIW performance evaluation of
IO-bound program.

The most important key features of this paper are
kernel-level intrusion prevention and
state-transition-based rule configuration interface.

In this evaluation result, the overall performance

overhead is about 10%. The PVIW wrapper will
intercept the following system calls: “execve”,
“open”, “write”. For this reason, intensive IO
operations make the whole system with PVIW loaded
have 10% performance downgrade.

Based on the kernel-level process tracing
technique, the wrapper system provides a way to
monitor only suspected processes with little overhead
transparently and stops the malicious process from
proceeding before disaster taking place.

Based on the graphical rule configuration
interface, it is more practical to specify complicated
intrusion scenario in a finite state machine.

In order to evaluate the performance of
CPU-bound program, we run another program that
does 100 by 100 matrix multiplication in 1000,
10000 and 50000 times respectively. This evaluation
program will also measure the time spent in both
when the PVIW is loaded and not loaded. Table 3
shows the testing result. In the same manner, each
testing result is measured by “gettimeofday” system
call and the penalty is calculated using the above
formula.

In Table 2, we compare the difference between
related existing approaches and our own approach.

 Our
approach GSW KLW STAT

Real-time
intrusion

prevention

YES YES YES NO

Graphical rule
configuration

YES NO NO YES

Customized
rule

configuration

YES YES NO YES

Transparency YES YES YES YES
Non-root usage

mode
YES NO NO NO

Partial
interception

YES NO NO N/A

Timmer support YES NO NO NO

 1000 times 10000 times 50000 times

No PVIW 192970 sµ 1922763 sµ 9620897 sµ

PVIW

installed

199106 sµ 1986736 sµ 9840510 sµ

Penalty 3.18% 3.32% 2.28%

Table 3. PVIW performance evaluation of
CPU-bound program

In this evaluation result, the overall

performance overhead is about 2% ~ 4%. In this case,
the testing CPU-bound program has only
computation jobs. Hence, it makes the system suffer
from much lower overhead. However, during the

Table 1. Comparison between existing
approaches and our approach.

6.2 Performance Evaluation

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1222

Reference execution time of this CPU-bound program, the
tested operating system had done several context
switches for other programs, and the PVIW
continually intercepted every execve system call to
see whether the newly created process is a suspected
one or not. Therefore, there is still a little overhead
even though the CPU-bound testing program had no
IO operations when the PVIW is installed.

[1] Calvin Ko, Timothy Fraser, LeeBadger, Doublas

Kilpatrick, “ Detecting and Countering
System Intrusions Using Software Wrapper,” in
Proceedings of the 9th Usenix Security
Symposium, 2000, pp.145-156.

[2] Ghosh A., Schmid M., Hill F., “Wrapping
Windows NT Software For Robustness,” in
Symposium on Fault-Tolerant Computing, 1999,
pp. 344-347.

6.3 Future Work

By dragging and drawing, users can easily
specify penetration scenarios in an FSM diagram.
However, user has to be familiar with various system
calls and the nature of attack can he specify a good
penetration diagram. With these considerations, the
most important future work is to provide higher level
description language other than system calls in rule
configuration module, such as C-library or short
human language sentence. Each human language
sentence is a small pattern that matches a basic
attacking action. Based on these patterns, users can
build a more complicated scenario without knowing
or reinventing the wheel of detail actions.

[3] Giovanni Vigna and Richard A. Kemmerer.
“NetSTAT: A Network-based Intrusion Detection
 System,” Journal of Computer Security, Vol.
 7, 1999, pp. 37-71.

[4] Giovanni Vigna, Steve T. Eckmann, Richard A.
Kemmerer. “The STAT Tool Suite,” in
Proceedings of DISCEX 2000, Vol. 2, 2000, pp.
46-55.

[5] Ian Goldberg, David Wanger, Randi Thomas, “A
Secure Environment for Untrusted Helper
Application,” in Proceedings of the 6th Usenix
Security Symposium, 1996, pp. 1-13.

[6] K. Jain, R. Sekar, “User-Level Infrastructure for
System Call Interposition: A Platform for
Intrusion Detection and Confinement,” in
Proceedings of the ISOC Network and
Distributed Security Symposium, 2000, pp.
19-34.

In addition, a distributed IPSW would be a better
intrusion prevention system. Every IPSW agent can
forward their detection result to dedicated wrapper
servers as shown in Figure 5. These dedicated
wrapper servers collect all information from network
and analysis whether there is some kind of
distributed Denial of Service (DDoS) is undertaking.
Once there is someplace under attacked, the
dedicated IPSW wrapper system can inform other
agents to take prevention actions, such as updating
their penetration rules. The distributed wrapper
system will block DDoS intrusions as soon as there
are some workstations reporting their auditing results.
Installing the distributed wrapper system is
equivalent to set up a neural network and a slight
abnormal behavior will cause the whole system in
action.

[7] Koral Ilgun, Richard A. Kemmerer, Phillip A.
Porras, “State Transition Analysis: A Rule-Based
Intrusion Detection Approach,” IEEE
Transactions on Software Engineering, 1995, pp.
181~199.

[8] Massimo Bernaschi, Emanuele Gabrielli, Luigi
 V. Mancini. “REMUS: A Security-Enhanced
 Operating System,” ACM Transactions on
 Information and System Security, 2002, pp.
36-61.

[9] Mitchem, T., Lu R., O'Brien R., “Linux Ker
nel Loadable Wrappers,” in Proceedings of
DISCEX 2000, Vol. 2, 2000, pp.296-307.

[10] Steven T. Eckmann, Giovanni Vigna, Richard
A. Kemmerer. “STATL: An Attack Language
for State-based Intrusion Detection,” Journal
of Computer Security, 2002, pp. 71~103.

[11] Timothy Fraser, LeeBadger, Mark Feldman,
“ Hardening COTS Software with Generic
Software Wrappers,” in Proceeding of the 1999
IEEE Symposium on Security and Privacy, 1999,
pp. 2-16.

[12] Entercept™ Security Technologies. “System
Call Interception”. http://www.entercept.com/w
hitepaper/systemcalls/index.asp

[13] Pragmatic/THC. “(nearly) Complete Linux
Loadable Kernel Modules”. http://www.thc.org
/papers/LKM_HACKING.html Figure 5. Distributed IPSW.

[14] STAT Homepage.
 http://www.cs.ucsb.edu/~rsg/STAT/

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1223

http://www.entercept.com/whitepaper/systemcalls/index.asp
http://www.entercept.com/whitepaper/systemcalls/index.asp
http://www.thc.org/papers/LKM_HACKING.html
http://www.thc.org/papers/LKM_HACKING.html
http://www.cs.ucsb.edu/~rsg/STAT/

