Exploiting Petri nets Model for Performing

Multithreaded Processors

Chin-Yung Chen”, Dong-Liang Lee", Rifu Du® and Jerry Tang"
Y, ¥: The Department of Information management
®: The Department of Electronic Engineering
¥: Department of Information management, Chihlee Institute of Commerce
St. John’s & St. Mary’s Institute of Technology
499, Sec. 4, Tam King Road, Tamsui, Taipei, Taiwan
{cychen, lee, tu} @mail.sjsmit.edu.tw, jerrytang@mail.taipeilink.net

Abstract

A Petri nets is an abstract and formal model of
information flow. Petri nets provide a natural
representation of systems where control and state
information is distributed Petri nets can also be used
to represent system hierarchically. Petri nets theory
supply analysis techniques that are useful for
verifying design before they are synthesized.

In this paper, we describes a Petri nets based
methodology for modeling and evaluation
multithreaded processors. A general purpose Petri
nets simulator has been developed using trace-driven
approach. Using this simulator, the execution of the
Petri nets models of some sub-models have been
simulated. In this paper we only concern on the
scheme that makes the Petri nets to model the
communication control of multithreaded processors,
and to compare the performance and
cost/performance ratio (CPR) of the multithreaded
processors to single thread processor.

Keywords: Petri nets (PN), multithreaded
processors (MTP), cost/performance
ratio (CPR), and transaction.

1 Introduction

While signal chip processors become more powerful,
the use of pipelining scheme to speed up instructions
fetching, decoding, execution, and write back have
become more prevalent. The most model processors
are supported new features to improvement the
performance such as instructions prefetching, I-cache
and D-caches, parallel and distributed techniques,
and multithreading scheme. To improve the
performance gap between memory systems and
processors, and reduce the memory latency incurred
by access from memory. There are many methods of
solving this latency problem, the latency hiding
techniques such as coherent cache, prefetching, and
relaxed memory models have been developed.
Multithread is the attractive techniques to reduce
processor idling time and to raise processor

utilization by fast context switching to a read-to-run
thread [6].

Multithreaded processors utilize the simple and
efficient sequential execution technique of control
flow combined with data flow like concurrency. This
supports the conceptually simple but quite powerful
idea of rescheduling rather than blocking when
waiting for data transmission latencies. A
multithreaded processor’s efficiency is determined by
four parameters: (1) the number of contents
supported by the hardware, (2) the cost of switching
between contents, (3) the number of cycles executed
between context switching and (4) the characteristic
latency of the operations that are to be hidden
[8,11,13,15].

In processors design, understanding the detailed
timing of such processors is extremely difficult and
therefore understanding the bottlenecks in systems
that use them is also difficult. The use of Petri nets
provides convenient means of specifying concurrent
systems at the behavioral level, their analysis and
verification, as well as synthesis of their hardware
implementations [19]. The Petri nets (PN) had been
extend many kinds of Petri nets classification and
developed hierarchical. This means that we can
construct a large Petri net by relating smaller Petri
nets to each other, in a well-defined way. The
hierarchical construct of Petri nets play a role similar
to that of submodels, procedures and models of main
model.

The possibility of using both top-down and
bottom-up approaches in the design processor means
Petri nets are efficient tool for rapid prototyping.
This paper addresses the needs for tools, which can
permit rapid construction of faithful models of
multithreaded processors.

Petri nets are becoming increasingly attractive as
a formal model for hardware system design. The
graphical nature of the Petri net notation makes it
more attractive to circuit designers than algebraic
notations.

Several multithreaded-processor architectures
had recently been proposed and implemented of
different multithreading methods [1,3,4,5,6,7,9,10].
In this paper, we design of simple multithreaded

processors to be developed future into a fully
operational version. We demonstrate the design
method that is used a Petri nets to model their
modeling power. We also show how to use a
trace-driven simulation tools to simulation, analyze
and compare the performance of the proposed
multithreaded processors.

For the performance analysis of the
multithreaded processors, we will compare the
cost/performance ratio (CPR) of multithreaded
processors to the single thread processor architecture
one's. Through this examine, we have verified that
the multithreaded processors has higher CPR than
single thread processor one's.

The remainder of this paper is organized as
follows: Section 2 introduces the Petri nets and
highlights the properties of the model. Section 3
makes the model of multithreaded processors using
the Petri nets. In Section 4 illustrates the
SES/workbench simulation tools to verify the
multithreaded processors with Petri nets. The
performances are analyzed in Section 5. Finally, we
remark the conclusions and take into the future in
Section 6.

2. The Properties of Colored Petri nets

The concept of the Petri net is a graphical and
mathematical tool; it had origin by Carl Adam Petri’s
dissertation in 1962[20]. There are many researchers
have proposed extensions to the Petri net notation for
the accurate modeling of circuit properties such as
timing information, Timed Petri nets [24], Stochastic
Petri nets (SPN) [16,18] that is model associated with
each transition an exponential firing time, and
Colored Petri nets [14,26]. The Colored Petri nets
(CPN of CP-net) are a formalism, which extends
ordinary Petri nets with data types and modularity.
This makes them a very efficient tool for designing
systems dealing with parallel and distributed, or
multithreaded processors. The Colored Petri net
provides a framework for the design, specification,
validation, and verification of system. Colored Petri
nets are promising tool for describing and studying
information processing system. They are
characterized as being concurrent, asynchronous,
distributed and parallel, non-deterministic, and/or
stochastic Colored Petri nets can be used as a visual
communication and similar to flow charts, block
diagrams, and networks. In addition, tokens are used
in these nets to simulate the dynamic and current
activities of systems.

A Petri net is combined of a particular kind of
directed graph, which is together with an initial state
called the initial marking and a bipartite graph that is
consisted of two kinds of nodes, places (P) represents

the state of a Petri net and transitions (T) represents
the actions of a Petri net. Between the places and
transitions, where arcs are either from a place to a
transition or from a transition to a place.

In graphical representation, places are drawn as
circles, transitions as bars or boxes, and arcs are
labeled with their weights, where a K-weighted arc
can be interpreted as the set of K parallel arcs. The
basic Petri net is usually defined as a system
composed of a finite, nonempty set of places,
transitions and directed arcs. Usually the set of places
connected by directed arcs to a transition is called the
input set of a transition, and the set of placed
connected by directed arcs outgoing from a transition,
its output set [17,19,22].

In modeling of all kinds of Petri nets, are using
the concept of conditions and events, places represent
conditions and transitions represent events. Some
typical interpretations of transitions and their input
places and output places are shown in Table 1. A
formal definition of a Petri nets are given in Table 2.

The behavior of many systems can be described
in terms of system states and their changes. In order
to simulate the dynamic behavior of a system, a state
or marking a Petri nets is changed according to the
following transition rule [2,19]:

Table 1. Some type interpretation of transitions and
places
Input Places Transition Output Places
Preconditins Event Postconditions
Input data Computaion Output data

Input signals Signal processor Output signals

Resources needed Task or job Resources released

Conditions Cause in logic ~ Conclusions
Buffers Processor Buffer
Table 2. Formal definition of a Petri nets

A Petri nets (PN) is a sample, CPN (P,T,F,W,Mo) where:

P={P1,P2,,Pn} is a finite set of places,

T={T1, T2,,Tn} is a finite set of transitions,

F< (P*T) U (T*P) is a set of arcs (flow relation),
W:F—>{1,2,3,...} is aweight function,

Mo:P—{0,1,2,3.....} is the initial marking,

PNT=0and P U T#0.

A Petri nets structure N=(P,T,F, W) without any specific initial
marking is denoted by N.

A PN with the given initial marking is denoted by (N, Mo)

1) A transition is said to enabled if each input
place of transition is marked with at least
w(p,t) tokens, where w(p,t)is the weight of
the arc from place to transition.

2) An enabled transition may or may not fire that
depends on whether or not the event actually
takes place.

3) A firing of an enabled transition removes
w(p,t) tokens from each input place to
transition, and adds w(t,p) tokens to each
output place of transition, where w(t,p) is the
weight of the arc from transition to place.

3. Implement Multithreaded Processors
with Petri Nets

We follow the top-down design methodology in
which after deciding upon the top-level specification.
We refine the specification until we reach the
implemental level. The main objective of the first
design stage is to produce a labeled Petri nets that
have transitions labeled only when actions of the
corresponding modules. During the second stage, we
transform this high-level labeled Petri net into one
that contains explicit transactions of control elements,
and can therefore be translated into a circuit.

Petri nets model of a hardware system consists
of a description of a set of possible events in the
system. Each event has pre-conditions that must be
true in order for the event to occur and
post-conditions that become true once the event has
occurred in multithreaded processors. Typical events
include: initial thread dispatch, initiate instruction
prefetch, initiate instruction dispatch OPcode to
function units, initiate operand fetch, the storing of
results, needed data read, result data commit, and the
handshaking events of communication unit among
threads.

We start with the initial specification, initialize
transition, of Petri nets shown in Figure 1. This
follows the most abstract specification of the
multithreaded processor’s operation: it alternates
between threads context switch modes through
communication unit. Thus, the initial specification is
simply a labeled Petri nets with transitions
representing those modes.

In this multithreaded execution model, a
program is a collection of partially ordered threads,
and a thread consists of a sequence of instructions,
which are executed, in the traditional pipeline
processor model. The executions of threads for
thread slots are model by thread issue transition. The
executions of instructions are model by the
conventional pipelined processors and fired by the
program counter (PC) transition. Each thread slot is a
logical pipeline processor. Typical pipeline
architecture has five stages, including instruction
fetch, instructions decode, operand fetch, execution,
and results write back. We extend the data memory
pipeline stage and embed a communication unit to

transfer the needed data via handshaking protocols.

While the instructions decode stage, the needed
data accessed and the Opcode decoded can be
operated on simultaneously. Thus the thread slot
must decide where read the needed data, which may
be obtained from general-purpose register (GPR),
D-cache, or other thread slot. We use the data
selection place to present the decided and to obtain
the needed data from the one of above three data
source.

s 134
Send Request Send Reduest

33
43
Rayions Reasyfons

B,
ata memory

The Petri net model for multithreaded
processors.

Fig. 1.

The context switch among threads is executed of
a communication unit. The communication
handshaking is started the transition of dependence
data request. Through the communication protocols
(shown in Figure 2), the needed data are transferred
from one thread slot to other thread slot. First, the
requesting thread slot sends the dependence data
request signal to the request queue of communication
unit, then the queuing request is sent to the requested
threaded slot from communication unit. If the needed
data is resident in the requested thread slot and it is
needed for the requesting thread slot, then the
requested thread slot sends a acknowledge signal to

the communication unit, immediately. Thus, the
acknowledge signal is through the communication
unit transmitted to the requesting thread slot. Finally,
upon the requesting thread slot receiving the needed
data, the requesting thread slot send a signal to excite
the data transfer transition of communication unit to
active. Thus, the needed data are transferred from the
requested thread slot to the requesting thread slot via
the communication unit.

Thread slot A

Thread slot B Communication unit

Data

t .
Dependence data reques! selection

Request]queue

end request
Request
received s

end acknowledae

Ready td Ack.
Transfy, acknowjag,
Ige

RSB " Data Trqnsfer Ack.
(Result received
bufier)
utier
Data T \
Smit GPR

Fig. 2. Communication protocol among thread slots.

4. Simulation Model

Our simulation model is done by using
SES/workbench simulation environment on a SUN
SPARC workstation. SES/workbench is a design
specification, hierarchical, modeling and simulation
tool. It can be used to construct and evaluate
proposed system designs, and to analyze the
performance of implemented systems. The
SES/workbench®, which is an integrated collection
of software tools for specifying and evaluating
system model design hierarchically [23]. The
simulator simply generates a trace, which is simply
the description of the initial states of the system,
followed by a series of state deltas describing how
the state of the system changes over time

A statistical simulation uses populations and
utilization to characterize the workload parameters.
Populations are the number of transactions present at
the node, which in a SES/workbench model
represents the manipulation of a physical or logical
resource or some other processing step, in a model or
sub-model. Utilization is the number of elements
(servers or resources) of use on a node of model or
sub-model. SES/workbench is an integrated set of
software tools that specify and evaluate system
designs. The major components of SES/workbench
are: SES/design — a graphically oriented
design-interface module, for specifying, or capturing,
a system design— and SES/sim— a transactions,
which is similar to token, and simulation module for
converting the design specification into an executable
simulation model.

We wuse SES/workbench to evaluate the
performance and correctness of a design of a Petri
nets system. We can specify arbitrary C declarations,
expressions, statements, and functions almost
anywhere in a SES/workbench model. Performance
is evaluated by simulating the operation of the model.
Correctness is evaluated by executing, during the
simulation assertions called consistency constraints,
attached to any component in the specification of a
design.

Performance measurements are reported based
on total execution time and as a percentage speedup
over a multithread machine with different
instructions size and different thread slots. The
system model is implemented as a hierarchy of
nested sub-models (structured modeling approach).
This method keeps the model simple and easy to
understand, because it represents a block of a
function as a sub-model without including all the
implementation details for that block or function.
Different higher-level sub-models of the system can
call the same lower level sub-model. In this case the
type of the transaction entering the lower level
sub-model indicates the feature of the service
requested by the higher-level sub-models.

The main graphical part of the PN model of
multithreaded processor is described as SES/design.
The main flow of data takes place from the top to
bottom. At first glance, the model shows the main
stage of multithreaded processor. The main model of
this multithreaded processor is constructed of two
parts, thread-level-parallelism and instruction-level-
parallelism. The thread dispatcher submodel consists
of several thread slots to simulate the thread
concurrent execution and thread context switching
when instruction suspends, dispatch instructions to
each thread slots, and the needed data
communication between threads.

The thread slot submodel is used to simulate the
thread slot in which the block-instruction is executed.
The thread transactions entering the thread slot
submodel request the necessary number of blocks for
the thread dispatcher to generate the proper number
of new transactions to the corresponded thread slot.
If the needed data is lack for the corresponded thread
slot, then a dependence data request signal is sent
from the corresponded thread slot to the
communication unit.

The instruction-pipeline submodel is constructed
as logical pipeline architecture’s, which consists of
the program counter, instruction register, decoder,
register file, function unit, write back and the
committed of the execution results to memory. When
the instructions load into this submodel, which are
processed by the logical pipeline processor.

The communication unit submodel, which

transfers the data among threads when data
dependency occurs. Thus the needed data is
transferred from the result store unit of requested
thread slot to the function unit of the requesting
thread slot via the handshaking control.

5. Analyzing the Performances

When the multithreaded processor model is
simulated, a transaction is generated amongst other
things, contains the timing data that we are expected.
The simulator takes binaries compiled with gecc for
the hierarchical model. A statistical simulation uses
populations and utilization to characterize the
workload parameters:

Throughput is defined to as follows, a total

amount of transactions done in a give simulated time,
which is defined as the average number of
transactions executed by the submodel per second
(TPS).
All results are presented in this section. Those are
obtained by simulation of the corresponding net
models. Figure 3 shows the throughput of the
multithreaded processor as a function of 4 thread
slots and a one-thread slot, which is similar to a
traditional pipeline structure of the uni-processor.

Referring to Figure 3, though the multithreaded
processor has higher data and instructions access
frequencies (transactions) from D-cache and I-cache,
respectively. The multithreaded processor has lower
instruction fetch from instruction queue and data
result buffer (DSR) than the one threaded slot. This
results cause that the instructions dispatched by the
thread dispatcher unit and the needed data of each
thread are directly access from the owner’s register
or request to other thread-slot’s DSR via the
communication unit. Thus the multithreaded
processor (MTP) has higher transactions transfer than
single thread processor for data and instruction
access of D-cache and I-cache, program counter, and
transactions communication of communication unit.
But the transaction numbers for each transitions of
pipeline stage, such as instruction fetch, results
writeback and commit, and execute of multithreaded
processor, are lower than the single thread processor.
Comparing the transactions transmit ratio (TTR) of
data of the multithreaded processors to single thread
processor, the TTR is defined as follows:

TTR = (The transaction of DSR [the transactions
of communication unit)/the transactions of D-cache.

where, we set the TPS of the single thread processor
is 1. Thus, we obtain the TTR of multithreaded
processor is 15.04, and the TTR of the single thread
processor is 1.85.

The performance of multithreaded processors
and single thread processor are 15.04 and 1.85,
respectively. The cost/performance ratio of both is
3.85 (15.04 is divided 4 thread-slots) and 1.85 (1.85
is divided 1 thread slot) for multithreaded processors
and single thread processor, respectively.

™ | @ Without MTP B With MTP |

80

70

60

50

40

30

20

10

0

D-Cache I-Cache Instr. fetch DSR WR unit ALL Comm. Unit PC

Fig. 3. The throughput between the proposed
multithreaded processors and the traditional
pipeline one.

6. Conclusions

In this paper, the use of Petri nets to model
multithreaded processors is demonstrated. Exploiting
model based analysis is helpful in the design
multithreaded processors. Petri nets can be modeled a
hierarchical model and be used to describe and
analyze multithreaded processors system. In this past,
various high performance processors are described
with single-threaded processors and use finite state
machine (FSM). In this paper, we attempt to exploit
Petri nets to model the multithreaded processors and
use the trace-driven simulation tool, SES/workbench,
to construct the hierarchical level. The
SES/workbench is effective to build the Petri nets
hierarchical level specification.

In this paper we only concern on the scheme that
makes the Petri nets to model the communication
control of multithreaded processors. We also have
verified that the multithreaded processors have the
higher cost/performance ratio than the single thread
processor, the CPR is 3.85 and 1.85, respectively. As
for, the Petri nets model of instructions branch and
interrupt control for pipeline or multithreaded
processors. We level these research topics to our
future works.

References

1. Haitham Akkary and Michael A. Driscoll, “A

. Hari

Dynamic ~ Multithread Processor,” The
proceedings of the 31st Micro-architecture
ACM/IEEE Annual international Symposium,
1998, pp. 226-236.

L. Anneberg and M. Singh,” Petri Net Approach
to Software Development Under Pipeline and
Parallel Processing Architecture,” IEEE 1990,
pp. 653-656.

F. P. Burns, A. M. Koelmans, and A. V.
Yakovlev, “ Analyzing Superscalar Processor
Architectures with Coloured Petri Nets,” The
Journey of STTT, Feb. 1998, pp.182-191.
Gregory T. Byrd and Mark A. Holliday,
“Multithreaded Processor Architecture,” IEEE
SPECTRUM, August 1995, pp. 38-46.

R. S. Chappell, J. Stark et al, “Simultaneous
Subordinate ~ Microthread (SSMT),” The
proceedings of the 26th Computer architecture
international Symposium, 1999, pp. 186-195.
Y-K Chong and K Hwang, “Performance
Analysis of Four Memory Consistency Models
for Multithreaded Multiprocessors,” 1EEE
Transactions on Parallel and Distributed System,
Vol. 6, No. 10, Oct. 1995, pp. 1085-1099.

Marco Fillo, Stephen W. Keckler and Willian J.
Dally, “The M-Machine Multicomputer,” The
Proceedings of the 28th Annual international
Symposium on Micr- architecture, Mon. 29-Dec.
1, 1995, pp. 146-156.

Chris Jesshope and Bing Luo,” Micro-thread A
New Approach to Future RISC,” The
proceedings of the 5th Computer Architecture
Conference, Australasiar, 1999, pp. 34-41.

K. M. Kavi, H. S. Kim et al., “A Decoupled
Scheduled Dataflow Multithreaded
Architecture,” The proceedings of 4th
International Symposium Parallel Architectures,
Algorithms, and Networks, 1999. (I-SPAN '99),
pp. 138 —143.

. Y.-H. Kim, S. H. Kim et al., “ Exploiting the

Locality of Data Structure in Multithreaded,” In
Proceedings of Parallel and Distributed Systems,
1996, pp. 352 —358.

. K. Kimura, H. Hirata et al., “Evaluation Method

of Micro architecture for multithreaded
Processor,” In proceedings ISIE’94, 1994, pp.
53-58.

. K. Khare, “Modeling of Various Addressing

Schemes for Microprocessors Using Petri Net,”
IEEE 1988, pp. 680-684.

Krishna and R. Govindarajan,
“Classification and Performance Evaluation of
Simultaneous multithreaded Architecture,” The
proceeding of 4th International Conference on
High-Performance Computing, Dec. 18-21, 1997,
pp. 34-39.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. M. Kristensen, and S. Christensen,” The
practitioner’s Guide to Coloured Petri Nets,”
The Journal of STTT, Feb. 1998, pp. 98-132.

Z. Li and J.-Y. Tsai et al., “Compiler Techniques
for Concurrent Multithread with Hardware
Speculation Support,” In Processing of the 9th
Workshop on Language and Compilers for
Parallel Computing, LNCS, August 1996, pp.
175-191.

M. A. Marsan and G. Conte, “A Class of
Generalized Stochastic Petri Nets for the
Performance Evaluation of Multithreaded
Systems,” ACM Transactions on Computer
Systems, Vol. 2, No. 2, May 1984, pp. 93-122.

K. P. Mikkilineni, Y. -C. Chow and Y. W. Su,
“ Petri Net-Based Modeling and Evaluation of
Pipelined Processing of Concurrent Database

Queries,” IEEE Transaction on Software
Engineering, Vol. 14, No. Nov. 1988, pp.
1656-1667.

M. K. Molloy, ”Performance Analysis Using
Stochastic Petri Nets,” IEEE Transaction on
Computer, Vol. C-39, No. 9, Sept. 1982, pp.
913-917.

T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE, Vol. 77,
No. 4, Aril 1989, pp. 541-580.

C. A. Petri, "Communication with Automate”,
New York: Griffiss Air Force Base, Tech. Rep.
RADC-TR-65-377, Vol. 1, and September 1996.
R. R. Razouk, “ The Use of Petri Nets for
Modeling Pipelined Processors,” On Proceeding
of the 5th ACM/IEEE Design Automation
Conference, 1988, pp. 548-553.

Semenov, A. M. Kolemans, L. Lloyd, and A.

Yakovlev, “ Designing an Asynchronous
Processor Using Petri Nets,” IEEE Micro,
March/April 1997, pp. 54-64.

SES/Workbench, “SES/Workbench User’s

Menu,” Scientific and Engineering Software,
Inc., 1996.

Zimmermann, J. Freiheit, and G. Hommel,
“ Discrete Time Stochastic Petri Nets for
Modeling and Evaluation of Real-Time
Systems,” On Proceedings 15th International
Parallel and Distributed Processing Symposium.
2001, pp.1069 -1074.

