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Parallel, multithreaded Java applications such as web servers, database servers, and scientific
applications are becoming increasingly prevalent. For these applications, the dynamic memory
manager (i.e., the garbage collector) is often a bottleneck that limits program performance and
processor utilization on multiprocessor systems. Traditional garbage collectors suffer from long
garbage collection pauses (stop-the-world mark-sweep algorithm) or inability of collecting cyclic
garbage (reference counting approach). Generational garbage collection, however, is based only on the
weak generational hypothesis that most objects die young. In this paper, a new multithreaded
concurrent generational garbage collector (MCGC) based on mark-sweep with the assistance of
reference counting is proposed. The MCGC can take advantage of multiple CPUs in an SMP system and
the merits of light weight processes. Furthermore, the long garbage collection pause can be reduced
and the garbage collection efficiency can be enhanced. To simulate the real-world workload (i.e., the
SPECjvm98 benchmark), we have implemented the proposed scheme into the Kaffe JVM version 1.0.6
running on Linux RedHat 6.2. Measurement results indicate that the MCGC improves the garbage
collection pause time up to 96.75% over the traditional stop-the-world mark-sweep garbage collector.
Moreover, the MCGC receives minimal time and space penalties as shown in the report of the total
execution time, the memory footprint and the sticky reference count rate.

Index Terms— dynamic memory management, object-oriented programming, multithreaded
programming, Java Virtual Machine, concurrent garbage collection system, modified buddy
system, parallel garbage collector

1. Introduction

While a battery of concurrent garbage collectors have been proposed in the literature [BR 01, DeT 90,

DKP 00, DL 93, DLM 76, Dom 00, HuW 98, JoL 98, LP 01, Rov 85], very few of them have been imple-

mented and especially been incorporated into Java virtual machines (JVMs) [BR 01, DKP 00, Dom 00, LP 01]. 

The first concurrent garbage collector using the tricolor abstraction (white, grey, black) is pro-posed

by Dijkstra, et al. [DLM 76]. In their design, the mutator and the garbage collector can run con-currently. How-

ever, in the original tricolor reasoning, the marker must be strictly followed by the sweeper because the white

object could be marked black if the marking phase is not done yet. This restriction may potentially result in a

larger memory footprint because the identified garbage objects are not swept timely.

Recently, the development of concurrent garbage collection for Java is based on either reference

counting or mark-sweep. The work based on reference counting is the Recycler proposed by Bacon and Rajan
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[BR 01] and the on-the-fly reference counting garbage collector proposed by Levanoni and Petrank [LP 01].

On the other hand, the generational on-the-fly garbage collector proposed by Domani et al. [Dom 00, DKP 00]

is based on mark-sweep.

Although both the Recycler [BR 01] and the on-the-fly reference counting (RC) garbage collector [LP

01] are based on reference counting, there are differences between them. Firstly, the Recycler uses a mutator

buffer to solve the synchronization issue in updating the reference counter whereas the on-the-fly RC intro-

duces the sliding view idea. Secondly, the Recycler is implemented into Jalapeno JVM whereas the on-the-fly

RC is implemented into Sun JVM. Thirdly, the Recycler adopts a novel on-the-fly cycle detector whereas the

on-the-fly RC collects cyclic garbage by seldom running a marker. Fourthly, the Recycler handles the sticky

reference count by using a hash table to keep the real reference count whereas the on-the-fly RC uses the

marker to restore it.

Among the recent development of concurrent garbage collectors, the generational on-the-fly garbage

collector [Dom 00, DKP 00] is a generational garbage collector based on the work of Doligez and Leroy [DL

93]. Although there are young and old generations, the on-the-fly collector does not move objects. Neverthe-

less, this approach only performs well in some cases but not always. Moreover, some quantitative performance

analyses such as maximal garbage pause, etc., have not been reported.

Other work such as the multithreaded generational garbage collector for ML is proposed by Doligez

and Leroy [DL 93]. Their garbage collector, called “quasi real-time” collector, combines two generations in

which a copying collector works for the young generation and a marking collector collects on the old genera-

tion. All threads’ stacks and minor heaps belong to the young generation whereas the major heap shared among

all threads is considered as the old generation. The surviving objects from the copying collector in the young

generation will be copied into the major heap which is collected by a mark-and-sweep garbage collector.

In 1998, a very concurrent mark-sweep garbage collector (VCGC) for SML/NJ, proposed by Huels-

bergen and Winterbottom, can be used to run a marker, a mutator and a sweeper concurrently [HuW 98]. In this

design, an epoch is used to interpret colors abstracted in tricolor reasoning. By separating three epochs, one for

the mutator, one for the marker and the other for the sweeper, the mutator thread and GC threads can work

together. However, for example, the marking effort can be further reduced drastically if the floating garbage is

collected in a timely manner.

In this paper, a multithreaded concurrent generational garbage collection (MCGC) algorithm is pro-

posed and its performance is measured. Our goal is to keep the mutators running with minimal interruption

from the garbage collection threads such as the marker and the sweeper. Meanwhile several mutators can call

the new instruction in parallel. The design of the MCGC algorithm is based on the Dijkstra's tricolor abstract,

the VCGC algorithm and the mark-sweep algorithm with the assistance of reference counting. The MCGC
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algorithm can collect floating garbage on the fly and outperforms the VCGC algorithm and the pure stop-the-

world mark-sweep garbage collection. The MCGC algorithm has been implemented into the Kaffe JVM ver-

sion 1.0.6. Measurement results obtained by running the SPECjvm98 benchmark on the Kaffe JVM with/with-

out the MCGC algorithm in Linux RedHat v6.2 are presented. The results show that the maximal garbage

collection pause for the MCGC is less than 8.8 milliseconds (javac) and its average garbage collection pause is

less than 1.8 milliseconds (javac and mtrt). The speedup of the GC pause over the stop-the-world mark-sweep

GC can be up to 182 and 177 for maximal GC pause and the average GC pause, respectively.

2. Previous Work: Very Concurrent Garbage Collection (VCGC)

The very concurrent garbage collection was proposed by Huelsbergen and Winterbottom in 1998

[HuW 98]. The original design aimed to run a mutator thread, a marker thread and a sweeper thread concur-

rently without explicit fine-grain synchronization. To achieve their goal, an innovative coloring scheme is

devised. Memory objects are distinguished by their colors. Colors are interpreted as a function (COLOR) of

epoch, i.e., epoch modulo 3. The mutator color, the marker color and the sweeper color are defined as

COLOR(epoch), COLOR(epoch - 1) and COLOR(epoch - 2), respectively. The mutator thread associates each

newly allocated object with the mutator color. The marker thread traverses the object reference graph and

brings those reachable objects to have the mutator color. It is worth noting that the marker thread is the only

thread that can change objects’ colors. The sweeper thread, on the other hand, reclaims garbage objects that

have the sweeper color. Once an object becomes garbage, only the sweeper can access it. Thus, there is no need

for synchronization between the marker and the sweeper or the mutator and the sweeper. However, the marker

and the mutator still require some synchronization which is resolved by applying a store set. 

In the VCGC algorithm, a store set is used to solve the mutator and the marker handoff. It records the

current content of references prior to the mutator updates them. In [WJN 95], this is called a snapshot-at-the-

beginning algorithm since it retains the data reachable from the roots at the beginning of an epoch into the next

epoch. By the time the marker and the sweeper finish, the store set is examined until all the objects are tra-

versed. The mutator is then suspended and this concludes an epoch. The root set is obtained from the mutator at

the end of an epoch and used by the marker for the next epoch. All the threads are deleted and the next epoch

starts.

2.1 Problems with the very concurrent garbage collection (VCGC)

The very concurrent garbage collection algorithm has been proposed and proven to outperform the tra-

ditional generational garbage collection in terms of the garbage collection pause time. The major advantage is

that it allows the mutator, the marker and the sweeper to run concurrently. This is a great improvement over

Dijkstra, et al.’s algorithm [DLM 76] in that the sweeper must be executed strictly following the marker. How-

ever, we have found some of its drawbacks which are summarized as follows:
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• This algorithm is limited to one mutator thread and one marker thread. When introducing multi-
ple mutators and markers, the synchronization between mutators and markers, among mutators,
or among markers becomes very complex. 

• There are two scenarios which prolong the marking time. Firstly, the mutator allocated a lot of
objects remaining alive in the previous epoch. Secondly, most of the memory objects in the
entire heap are long lived. One of the reasons for this long marking time is that the marker does
not have any information about an object’s age. Thus, tenure objects are repeatedly marked. As
a result, the memory footprint may be larger because the garbage may not be collected in a
timely manner. 

• The memory footprint may be dominated by the sweeper if there is a large amount of garbage in
some epoch. More memory from the operating system may be requested by the mutator because
of the longer sweeping time. 

• The sweeping time may degrade the VCGC efficiency because the sweeper needs to go over the
whole heap even though there is no garbage.

• The algorithm adopts the snapshot-in-the-beginning approach which determines liveliness at the
beginning of an epoch. Therefore, any garbage objects that are created in that epoch may not be
detected. However, they will be collected in the next epoch. Consequently, the memory foot-
print can be increased. 

• The threads are created at the beginning of an epoch and destroyed at the end of it. The thread
creation and destruction costs may be intolerable in some real-time systems. 

Base on the above analyses, an improved version of the VCGC algorithm is proposed. The new algo-

rithm is explained in detail in the next section. 

3. The Proposed Multithreaded Concurrent Generational Garbage Collection 
Algorithm Version 0 (MCGCv0)

In this section, a new multithreaded concurrent generational garbage collection algorithm (MCGC) is

introduced. The proposed algorithm overcomes all the problems of the VCGC algorithm mentioned in the pre-

vious section. The MCGC is based on the VCGC with the concept of generational garbage collection that takes

the advantage of short lived objects. This allows young garbage to be reclaimed in the same epoch. 

To clearly demonstrate the mechanism of the proposed algorithm, only one mutator, one marker and

one sweeper are assumed in the version 0 (MCGCv0). In doing so, some synchronizations are eliminated but

the algorithm can be described effectively. In Section 4. the full version of the MCGC where multiple mutator

threads are included is described.
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Figure 1 The Proposed MCGC (Version 0)

3.1  Overview of the MCGCv0

The first version of the proposed multithreaded concurrent generational garbage collection algorithm

(MCGCv0) contains one mutator, one marker and one sweeper as shown in Figure 1. By doing so, the synchro-

nizations among mutators, markers or sweepers can be isolated so that we can focus on synchronizations

between mutator and marker, marker and sweeper, and sweeper and mutator. To synchronize the mutator and

the marker, a rescanned set (RS_set), similar to the store set in the VCGC, is associated with the mutator. The

RS_set is used to memorize all objects that need to be rescanned due to asynchronous operations caused by the

mutator and the marker. The marker and the sweeper require no synchronization in this design. However, the

mutator and the sweeper do need synchronous operations on manipulating the system free lists. Moreover, to

save the cost from thread creation and deletion, all threads are created as daemon threads (Line 3 and 4 in Fig-

ure 1). Once these threads are created, they are suspended and wait for a resume signal sent by

thread_resume() function call (Line 6, 7, 8, 12, 14 and 18 in Figure 1). This threading mechanism can be done

simply by applying a mutex and a condition variable.

The MCGCv0 algorithm works similar to the VCGC algorithm. However, there are a spate of differ-

ences between the VCGC algorithm and the MCGCv0 algorithm such as the threading mechanism (as men-

tioned in previous paragraph), the function of the RS_set (called store set in VCGC), the mutator, the marker

and the sweeper. Due to the snapshot-at-the-beginning property of the VCGC, it may not collect non-reachable

objects produced in an epoch. Although these floating garbage objects will be reclaimed in a later epoch, the

size of the memory footprint may be raised drastically. However, to collect them in the same epoch, two issues

occur: how to identify garbage and how to mark them without duplicating the marking work. Identifying gar-

bage can be done by applying a reference counting mechanism and examining the reference counter. A 2-bit

(1) int epoch = 2;
(2) root_set_t roots = {}, RS_set = {}, garbage_list = {};
(3) thread_t mutator, marker, sweeper;
(4) thread_create_daemon mutator, marker, sweeper;
(5) loop forever {
(6) thread_resume(mutator(RS_set, COLOR(epoch))); 
(7) thread_resume(marker(roots, COLOR(epoch)));
(8) thread_resume(sweeper(COLOR(epoch-2)));
(9) barrier_sync (marker, sweeper); 
(10) thread_suspend(mutator);
(11) while (RS_set) {
(12) thread_resume(marker(RS_set, COLOR(epoch))); 
(13) RS_set = {};
(14) thread_resume(mutator(RS_set, COLOR(epoch)));
(15) barrier_sync(marker);
(16) thread_suspend(mutator);
(17) }
(18) send the garbage_list to sweeper;
(19) garbage_list = {};
(20) roots = get_roots(mutator);
(21) epoch++;
(22) }
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counter is proposed in the design. Note that in practice, the reference counter is incorporated into the color byte

without involving more space overhead and unlikely to be saturated. On the other hand, the marker can recur-

sively identify floating garbage in the same epoch. This reduces the marking overhead in the next epoch.

Therefore, in the write barrier procedure, the mutator pushes into RS_set not only the new object, but also the

old object if it becomes garbage after updating their reference counters. If the old object is not garbage, the

marker will mark it eventually. Thus, there is no need to put it into the RS_set. Finally, the RS_set will be res-

canned once the markers and the sweepers finish (Line 9 in Figure 1).

Updating reference counter and putting objects into RS_set are part of the mutator thread’s duty. It it

worth noting that only the mutator can modify the counter and there is only one mutator in the MCGCv0 algo-

rithm. Thus, there is no synchronization problem in updating the reference counter here. However, in a multi-

threaded environment, server mutators may update a reference counter simultaneously and create a race

condition. Special care for this issue will be elaborated in a later section. On the other hand, the synchroniza-

tion on the RS_set for the mutator (producer) and the marker (consumer) may be avoided either by the asyn-

chronous store set approach [HuW 98] or by submitting the RS_set to the marker at a certain point (Line 12 and

13 in Figure 1). Our approach is simple and it does not create time penalty because the mutator has to be sus-

pended in that point in both approaches.

 The RS_set has a close relation to the young generation in the traditional generational garbage collec-

tor. The success of the generational garbage collection is highly based on the program behavior that young

objects die young. Thus, we try to collect the young garbage at the same epoch in which they become garbage.

However, in the VCGC algorithm, the newly created objects have the mutator color which are regarded as live

for at least 2 epochs. Unfortunately, this causes unwanted scanning in a later epoch. To tackle this problem, in

our approach, young objects are put into the RS_set if they become garbage. By scanning the RS_set that con-

tains mostly young objects, the young garbage objects can be detected without scanning the whole heap.

Therefore, the heap has been divided into an old generation (objects reachable from the root set) and a young

generation (garbage found in the RS_set) conceptually. Although a typical generational garbage collection

algorithm involves memory space separation into generations and copying, the MCGCv0 algorithm utilizes its

advantages in the design. 

An epoch is not advanced without the marker completely scanning the RS_set. While scanning the

RS_set, the mutator is still active until the marker catches up with it, i.e., the RS_set is empty (Line 11 in Figure

1). Keeping the mutator running can prevent long pause if it updates a lot of objects in an epoch that needs to

be rescanned. After the marker finishes marking the RS_set, a garbage_list is used to keep the garbage. The

garbage_list is given to the sweeper during the short pause (Line 18 and 19 in Figure 1). Therefore, the

sweeper can return the garbage objects in the garbage_list to the system right away (Line 8 in Figure 1). Note

that there are two types of garbage: the garbage detected through the RS_set and the garbage identified by the
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regular tricolor mechanism. Moreover, the epoch advances after the root set of the mutator has been copied

(Line 20 in Figure 1). 

4. The Proposed Multithreaded Concurrent Generational Garbage Collection 
Algorithm (MCGC): a Full Version

The proposed multithreaded concurrent generational garbage collection algorithm (MCGC) is a multi-

ple mutator version of the MCGCv0 algorithm. By allowing multiple mutators, the mutator/mutator synchroni-

zation issue such as concurrent updating reference count and manipulating the RS_set must be resolved. The

MCGC algorithm is detailed in Figure 2 where each mutator is associated with an RS_set (Line 2 in Figure 2).

The RS_set is used to keep the log for updating the reference count and the objects whose pointers are modified

due to the asynchronous operation of the marker and the mutator. By applying an RS_set to a mutator, the

mutator/mutator synchronization mentioned above can be eliminated.

Since there are multiple mutators, the store set approach proposed in [HuW 98] may not be applied

well because it can not handle concurrent appending of elements. Our approach does not have this problem.

However, whether it is better to pass these RS_set’s to the marker altogether or one by one remains to be stud-

ied. The later approach is adopted in the MCGC algorithm (Line 10 - 18 in Figure 2). Its advantage is the muta-

tors need not to be suspended at the same time. Therefore, the marker can examine the RS_set one by one (Line

10 in Figure 2). In fact, the examining sequence can be arbitrary. To shorten the mutator pause here, an RS_set

with larger size has higher priority. Note that the mutator remains suspended after the marker has caught up

with it (Line 17 in Figure 2).

Figure 2  The Proposed Multithreaded Concurrent Generational Garbage Collection Algorithm (MCGC)
(1) int epoch = 2;
(2) root_set_t roots = {}, RS_set[n] = {}, garbage_list = {};
(3) thread_t mutator[n], marker, sweeper;
(4) thread_create_daemon mutator[n], marker, sweeper;
(5) loop forever {
(6) thread_resume(mutator[n](RS_set[n], COLOR(epoch))); 
(7) thread_resume(marker(roots, COLOR(epoch)));
(8) thread_resume(sweeper(COLOR(epoch-2)));
(9) barrier_sync (marker, sweeper); 
(10) for i = 1 to n do
(11)   thread_suspend(mutator[i]);
(12)   while (RS_set[i]) {
(13)     thread_resume(marker(RS_set[i], COLOR(epoch))); 
(14)     RS_set[i] = {};
(15)     thread_resume(mutator[i](RS_set[i], COLOR(epoch)));
(16)     barrier_sync(marker);
(17)     thread_suspend(mutator[i]);
(18)   }
(19) send the garbage_list to sweeper;
(20) garbage_list = {};
(21) roots = get_roots(mutator[n]);
(22) epoch++;
(23) }
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The marker in the MCGC algorithm plays an important role because it does three things: mark live

objects, mark garbage objects and update the reference count. It brings the live object to have mutator color,

identifies garbage objects with the assistance of reference count and makes the reference count up to date.

There are advantages to updating the reference count information accumulated in the RS_set. Firstly, the muta-

tor/mutator synchronization on updating the reference count can be removed nicely. Secondly, the reference

count would not be sticky soon because any local references to an object will vanish without overflowing it.

However, the marker may not be able to identify a zero-reference-count object as garbage without updating

reference counts in all the RS_set’s. This is true because some mutator may hold a reference to it. Therefore,

some objects in the garbage_list may be resurrected later. By the time all the RS_set’s being verified, the

garbage_list contains true garbage. It is interesting but not a problem in the MCGC algorithm. 

5. Implementation, Measurements and Results

The proposed multithreaded concurrent generational garbage collection algorithm (MCGC) has been

implemented into the Kaffe JVM version 1.0.6 [Kaf 99]. Results are obtained by running the SPECjvm98

benchmark [SPEC 98] on an Intel Pentium-III 650 MHz with Redhat Linux v6.2. All the benchmark programs

are measured in their maximal size of 100. The results show that the MCGC achieves up to 1052 speedup over

the traditional stop-the-world garbage collection and yields a garbage collection pause of less than 8.8 millisec-

onds. Moreover, in an epoch, the MCGC algorithm can detect up to 2806 garbage objects (javac) which are

considered as floating garbage in the very concurrent garbage collection (VCGC) algorithm. 

5.1 Benchmarks

Seven Java programs from the SPECjvm98 benchmark suite [SPEC 98] are used to study the perfor-

mance of the MCGC algorithm. These benchmark programs are designed to measure the performance of Java

Virtual Machine implementations. Several criteria such as high byte-code content, flat execution profile (large

loops), repeatability, heap usage and allocation rate, and I-cache or D-cache misses on the reference platform

are used to test JVMs. Most of the benchmarks contain integer and floating point computations, library calls, or

I/O operations; however, SPECjvm98 does not cover AWT, networking, or graphics applications. Moreover,

only mtrt is multi-threaded in the suite. 

A thorough study of SPECjvm98 was performed by Dieckmann and Hölzle [DH 99]. In their paper,

metrics such as object age, size distribution, type distribution, and object alignment overhead were reported.

Furthermore, the system-level performance investigation has been studied and reported in [LSC 00, LSC 02].

The descriptions of benchmark programs from SPECjvm98 are summarized in Table 1.
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5.2 Implementations

Since the implementation of the MCGC is based on the Kaffe GC, its design principle is summarized

as follows. The GC system in the Kaffe JVM 1.0.6 is implemented as stop-the-world mark-sweep garbage col-

lection with a segregated list allocation paradigm [WJN 95]. Its memory objects with size larger than a page

are called large objects whereas objects with size less than a page are called small objects. A small object

request is rounded up to the nearest object size predefined during the virtual machine start-up. The Kaffe Gar-

bage Collection (GC) system keeps a free list for every GC block which contains some particular objects of the

same size. Every GC block is aligned to a page. Once the GC block containing the requested object size is

found, the free object can be returned immediately by using special indexing techniques. At the same time, the

Kaffe GC needs to maintain GC object status by applying the tricolor concept (even though the Kaffe uses

more than three colors, we adopt tricolor conceptually). However, the Kaffe GC is a version of the stop-the-

world mark-sweep garbage collection. For a large object request, i.e., object size larger than one page, the

Kaffe GC will round it up to page boundary and allocate memory size of multiple pages for it, i.e., large objects

are handled separately. 

The data structures used in the MCGC implementation are defined hereinafter. Firstly, every object

has one of the six colors: inuse, free, fixed, sweeper, marker and mutator. All the colors are self-explained

except fixed color which is used for a fixed object that does not need to be collected. Secondly, every object is

associated with a 2-bit reference count. Note that the colors and the reference counts are encoded into a single

byte. Thirdly, there are five lists: finalise_list, sweeper_list, marker_list, mutator_list, makrer_live_list and

garbage_list. Each of them is a doubly circular linked list and used to keep objects in different garbage collec-

tion phases. The finalise_list keeps objects that need to be finalized where the garbage_list is used by the

marker to collect garbage in an epoch. Furthermore, the mutator_list, marker_list and sweeper_list contain

objects whose color is the same as its name, respectively. Fourthly, every page contains a header which is used

to store all the information for the block such as the object size, the number of the free objects, the address for

the first free object, colors, reference counters, etc. It is worth noting that every page is divided into equal-size

objects, i.e., a segregated list mechanism is adopted. 

An object is allocated as mutator color and appended to the mutator_list (Line 6 in Figure 2). To avoid

Table 1 Descriptions of the SPECjvm98 Benchmarks

Program Description

Check Test various features of the JVM to ensure a suitable environment for Java programs

Compress Compress/decompress program based on modified Lempel-Ziv method.

jess A Java expert shell system based on NASAs CLIPS expert shell system

db Performs multiple database functions on memory resident database

javac The JDK 1.0.2 Java compiler compiling 225,000 lines of code

Mpegaudio An ISO MPEG Layer-3 audio decoder

mtrt A dual-threaded raytracer that works on a scene depicting a dinosaur
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concurrent appending of objects to the mutator_list, each mutator is associated with a separated mutator_list.

However, objects in the mutator_list may be removed by the marker if they become garbage. The synchroniza-

tion can be reduced by applying a lock on removing the head object in the list. Removing objects is safe

because the mutator always inserts objects right after the head object. On the other hand, the mutator also logs

the reference count update information and rescanning objects into its own RS_set. These RS_set's are then

handled by the marker.

The marker starts marking the root set (Line 7 in Figure 2), removes live objects from the marker_list

and appends live objects to the marker_live_list. The marker_list and the marker_live_list are operated only by

the marker and their operations require no synchronization. At the same time, the sweeper is sweeping objects

back to the system lists (Line 8 in Figure 2). The sweeper traverses objects in the sweeper_list and polls the

locks associated with the bins to cooperate with the mutator. Since the sweeper_list is only seen by the

sweeper, it involves no synchronization. Moreover, the sweeping time would not be too long because the gar-

bage objects are in the sweeper_list that avoids scanning the whole heap.

When the marker and the sweeper finish (Line 9 in Figure 2), the mutators are suspended one by one

and their RS_set's are examined that including reference count update and rescanning live objects or garbage.

The RS_set is passed to a local structure of the marker (Line 13 and 14 in Figure 2) while a mutator is sus-

pended. Before resuming the mutator, the RS_set is nullified (Line 14 in Figure 2). The marker then marks

objects on the RS_set and puts live ones into the mark_live_list and garbage ones into the garbage_list where

the local RS_set, the mark_live_list and the garbage_list are used only by the marker and require no synchroni-

zation. Eventually, this mutator is suspended until its RS_set is empty and the epoch ends when all the RS_set's

are empty. It is worth noting that the RS_set can be simply implemented as single word structure where the 2

least significant bits are used to store the reference count update information due to the 4-byte memory align-

ment.

During the examination of the RS_set's (Line 10 - 18 in Figure 2), a garbage object in the garbage_list

may be resurrected because of the asynchronous updating of the reference count. However, this is not a prob-

lem because the marker can remove the garbage from the garbage_list and append it back to the

marker_live_list without any synchronization. Once the whole process finishes, the garbage_list is appended

to the sweeper and the garbage_list is nullified (Line 19 and 20 in Figure 2). Remark that all the mutators are

suspended now. Finally, the root sets are copied in preparation for the next epoch.

A write barrier routine is implemented to record the new and old references if the mutator updates the

object reference graph. The write barrier is called by the Java bytecode instructions: PUTFIELD, PUTSTATIC

and AASTORE. The PUTFIELD instruction is used to set a field in an object. When the field is reference type,

the write barrier is called. The case of the PUTSTATIC is similar to the PUTFIELD but a static field in a class
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is written. The AASTORE instruction stores into a reference array and thus the write barrier is invoked. 

5.3 Results 

The results shown in the section are collected by running the SPECjvm98 benchmark on an Intel Pen-

tium-III 650 MHz with the RedHat Linux 6.2 and the Kaffe JVM with the MCGC or the stop-the-world mark-

sweep garbage collector. Table 2 shows the maximal number of floating garbage objects found by examining

the RS_set among all epochs and sticky reference count statistics. The result shows that up to 7251 floating

garbage objects (mtrt) can be detected in an epoch. In other words, these floating garbage objects cannot be

collected in a timely manner if the VCGC algorithm is applied. Therefore, the memory footprint may increase.

This shows the high efficiency of the MCGC algorithm over the VCGC algorithm. On the other hand, the rate

of the sticky reference count is less 16.09% (mtrt); most of the sticky rates are less than 6.63% which show that

2-bit reference count is sufficient. 

Due to its usage of reference count mechanism, the MCGC may have a time penalty in the total execu-

tion time. To our surprise, the penalty of most of the benchmarks are shorter than 7.78% as shown in Table 3.

Moreover, for the mtrt benchmark, the MCGC improves 99.36% in total execution cycles. The outcome con-

firms the fact that the multithreaded program is better than the non-multithreaded program even in a single pro-

cessor system. 

On the other hand, Table 3 also compares the memory footprint. Although memory is presently inex-

pensive, the MCGC with its ability to collect floating garbage does improve the memory footprint in most of

the cases ranging from 0.72% to 4.97%. However, some cases such as db and mtrt may have negative effects.

Different execution rates for the mutators and the garbage collector are the major reason. We believe that the

memory footprint can be controlled by carefully prioritizing the mutator and the collector threads. 

Table 2 Maximal Number of Garbage Objects Found and Sticky RC in the MCGC

Benchmark Garbage Objects Sticky Reference Count Total Allocated Objects Sticky Rate (%)

check 112 1,017 41,952 2.42

compress 113 928 37,658 2.46

jess 1,498 4,358 110,595 3.94

db 159 11,171 168,562 6.63

javac 1,447 5,132 139,677 3.67

mpegaudio 113 968 45,674 2.12

mtrt 7,251 157,162 976,511 16.09

Table 3 Memory Footprint and Total Execution Time

Benchmark
Memory Footprint (Bytes) Total Execution Time (Cycles)

MCGC
Stop-the-World 

GC
% Improvement MCGC

Stop-the-World 
GC

% Improve-
ment

check 1,564,680 1,642,504 4.97 455,758,284 449,763,031 -1.33

compress 9,129,992 9,195,528 0.72 104,049,298,977 102,117,023,959 -1.89

jess 4,969,384 5,043,112 1.48 2,488,729,893 2,309,055,573 -7.78

db 10,968,000 8,391,616 -23.49 10,604,173,496 10,188,447,970 -4.08

javac 3,665,928 3,678,216 0.34 2,080,763,023 2,054,940,275 -1.26

mpegaudio 1,974,280 2,060,528 4.37 93,125,493,303 92,337,776,597 -0.85

mtrt 21,056,464 16,785,360 -20.28 302,244,851 47,419,200,739 99.36
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Although the MCGC runs its marker and sweeper threads with mutators concurrently, there are situa-

tions that must be synchronized. For example, the mutators are suspended when their contexts are examined at

the end of an epoch. These transient garbage collection pauses are recorded and summarized in Table 4. The

performance of the MCGC is compared with the stop-the-world mark-sweep GC through the maximal and

average garbage collection pause. The results shows that the MCGC performs much better than the stop-the-

world mark-sweep GC. The maximal garbage collection pause ranges from 527,611 machine cycles to

43,870,810 machine cycles. In all the benchmarks, the maximal garbage collection pause for the MCGC is

improved by 79.45% - 96.75% and its average garbage collection pause is improved by 88.32% - 95.66%.

6. Conclusions

Currently, much effort has been spent on concurrent garbage collection such as concurrent genera-

tional garbage collector, very concurrent mark-sweep garbage collection (VCGC) and hardware assisted gar-

bage collectors. The ultimate goal is to reduce the pause time while the garbage collector is collecting garbage.

In this paper, a multithreaded concurrent generational garbage collection (MCGC) algorithm has been pro-

posed. The MCGC algorithm can take advantage of multiple CPUs in a SMP system or the merits of light-

weight processes. Moreover, it can be incorporated into hardware garbage collection systems such as the mod-

ified buddy system [ChG 96, CSL 99] and other garbage collectors that require identifying live objects such as

the hardware-assisted real-time garbage collector [Nis 94]. 

The MCGC algorithm has been implemented into the Kaffe JVM version 1.0.6. The SPECjvm98

benchmark suite is used to measure the performance of the MCGC algorithm. Performance evaluation is con-

ducted on a Pentium-III 650 MHz with 128 MB memory running RedHat Linux 6.2. Results show that the

MCGC outperforms the VCGC where up to 2806 garbage objects (javac) can be detected in an epoch by exam-

ining the RS_set. This shows the high efficiency of the MCGC over the VCGC. Additionally, the MCGC per-

forms much better than the traditional stop-the-world mark-sweep garbage collector. The results show that the

maximal garbage collection pause for the MCGC is improved up to 96.75% and its average garbage collection

pause is improved up to 95.66%.

The contributions of this work are fivefold. Firstly, the proposed MCGC algorithm enhances the merits

Table 4 Garbage Collection Pause Comparison

Benchmark
Maximal Garbage Pause Performance (Cycles) Average Garbage Pause Performance (Cycles)

MCGC
Stop-the-World 

GC
% Improvement MCGC

Stop-the-World 
GC

% Improvement

check 527,611 3,618,717 85.42 285,884 2,535,443 88.72

compress 611,365 3,469,500 82.38 328,090 2,809,855 88.32

jess 674,494 20,727,866 96.75 317,980 7,322,160 95.66

db 15,507,740 75,473,024 79.45 3,269,434 34,671,346 90.57

javac 1,125,079 17,108,962 93.42 470,283 7,739,970 93.92

mpegaudio 619,202 5,114,325 87.89 295,993 3,315,065 91.07

mtrt 43,870,810 238,256,339 81.59 8,843,814 96,835,940 90.87
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of the mark-sweep algorithm, the reference counting approach and the generational collection. Secondly, it

requires no explicit synchronization between the mutators and the marker, between the mutators and the

sweeper or between the marker and the sweeper. Thirdly, the new instruction can be called by several mutators

concurrently. Fourthly, it has been implemented into the Kaffe JVM which improves the maximal garbage col-

lection pause up to 96.75% and up to 95.66% in average. Finally, the MCGC receives minimal time and space

penalties in terms of the the total execution time, the memory footprint and the sticky reference count rate.
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