
 1

ADAPTING LINUX VFAT FILESYSTEM TO EMBEDDED 
OPERATING SYSTEMS  

Hung-Kai Tingξξξξ, Ching-Ru Lo+, Mei-Ling Chiang+, and Ruei-Chuan Changξξξξ 

Department of Information Management+ 
National Chi-Nan University, Puli, Taiwan, R.O.C. 

Email: s0213523@ncnu.edu.tw, joanna@ncnu.edu.tw 

Department of Computer and Information Scienceξ 
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C. 

Email: rc@cc.nctu.edu.tw 

ABSTRACT 

Nowadays, embedded systems play an 
important role in the new living fashion. Many 
embedded systems need storage capability to offer 
advanced application features. However, to 
implement file system for a target operating system 
from the scratch is a time-consuming and 
error-prone task. Linux under the spirit of GNU 
GPL and open source codes gains its stability, 
reliability, and high performance. Therefore, 
making use of the existing Linux vfat FileSystem 
source codes to adapt to embedded systems 
becomes a feasible and cost-effective way. 

This paper describes how to adapt Linux vfat 
FileSystem to LyraOS, a component-based 
operating system for embedded systems. Under 
different system design principles and kernel 
architectures, this work includes remodeling and 
modifying Linux vfat FileSystem to be a separate 
and self-contained C++ component, replacing 
Linux kernel support functions invocation with 
equivalent LyraOS kernel components invocation, 
adding data path to RAM-based device, and 
implementing compatible file system interfaces 
(POSIX) for LyraOS vfat filesystem.  

Performance evaluation under modified 
Andrew BenchMark shows that our LyraOS vfat 
FileSystem operates at low cost. The experience of 
this study can be of practical value to serve as the 
reference for embedding Linux file system into a 
target system that needs storage capability. 

 
 

KEYWORDS 

File System, Linux vfat FileSystem, Embedded 
System, Component-based 
 
 

1. INTRODUCTION 

Embedded applications are versatile and the 
hardware devices range from simple controllers to 
more complex systems. For the versatile hardware 
devices and different application requirements, a 
reconfigurable embedded operating system is 
needed. Thus, various operating systems design 
dedicated for embedded systems are thus created, 
such as PalmOS [22], EPOC [12], Windows CE 
[25], GEOS [16], QNX [23], Pebble [2,17], 
MicroC/OS [21], eCos [11], LyraOS [3-7,18,19,26], 
etc. 

Many embedded systems, such as Digital 
Cameras, PDAs, and MP3 players need storage 
capability to take advantage of the many advanced 
application features. File System is the key 
component for storing data in embedded systems, 
which organizes, manages and maintains the file 
hierarchy into mass-storage device. 

Because of the spirit of GNU General Public 
License (GPL) [15] and open source codes, Linux 
[1] gains its popularity and has the advantages of 
stability, reliability, high performance, and well 
documentation. These advantages let making use of 
the existing open source codes and adapting Linux 
File System for target operating system becomes a 
feasible and cost-effective way. Although Linux 
supports lots of file systems, Linux vfat FileSystem 
which is compatible with the popular Microsoft 
FAT File System and supports long file name is 
preferable, in this paper, to adapt to embedded 
systems. 

With the falling cost of SDRAM and its 
growing storage capacity, a transition from disk 
storages to RAM-based storage devices is 
happening in embedded systems [9]. Besides, due 
to data transfer delay of disk operations and the 
requirements of light weight, small size, low power 
consumption, or mobility, RAM-based storage 
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devices are deployed in most of embedded systems. 
 This paper describes how to adapt Linux vfat 
FileSystem to LyraOS [3-7,18,19,26]. LyraOS is a 
component-based operating system designed for 
embedded systems. Under the component design 
principle [2,14,17,20], the Linux vfat FileSystem 
should also be implemented as a separate 
component, such that the advantages of modularity, 
reconfigureability, component replacement and 
reuse can be maintained. However, there are many 
difficulties should be dealt with for this adaptation. 
For example, being a monolithic kernel, Linux vfat 
FileSystem is not a separate component that has 
closely relationship and interaction with the other 
kernel functions such as Virtual File System (VFS), 
buffer cache, device driver, and kernel core.  
 Therefore, this adaptation work should solve 
the difficulties from different system design 
principles and different kernel architectures. Our 
work focuses on three parts. First, implementing 
file system as a self-contained component which 
requires modifying the Linux vfat FileSystem codes 
to separate them from the other kernel functions.  
Second, replacing Linux kernel supported functions 
invocation with equivalent LyraOS kernel 
components invocation for providing kernel 
services for vfat FileSystem. Third, adding data 
paths to RAM-based storage devices. 

The rest of this paper is organized as follows. 
Section 2 gives an overview the Linux vfat 
FileSystem, including how it cooperates with VFS 
(Virtual File System). Section 3 briefly introduces 
LyraOS. The difficulties for this adaptation are also 
discussed. Section 4 presents the adaptation work 
including remodeling and modifying Linux vfat 
FileSystem codes. Section 5 shows primitive 
performance evaluation results, and Section 6 
concludes this paper. 
 
2. LINUX VFAT FILESYSTEM 

This section briefly introduces Linux File 
System architecture [27,28], Linux Virtual File 
System [29], and VFAT FileSystem. 

2.1 Linux File System Architecture 

Linux supports many types of file systems. In 
order to provide applications with a uniform 
programming interface (API), as shown in Table 1, 
Linux provides a common interface between user 
applications and those file systems. The Virtual File 
System (VFS) [27,28] is implemented in the kernel 
as the interface, which maintains those file systems 
to have a uniform programming interface for user 
applications. File systems follow VFS’s exported 
common interface can be implemented as modules 

and be mounted for use when needed. The Linux 
File System Architecture is illustrated in Figure 1. 

 
 

Table 1: Linux File System API 
 

int open(const char *pathname, int flags); 
int open(const char *pathname, int flags, mode_t mode); 
int creat(const char *pathname, mode_t mode); 
ssize_t read(int fd, void *buf, size_t count); 
ssize_t write(int fd, const void *buf, size_t count); 
int close(int fd); 
int link(const char *oldpath, const char *newpath); 
int unlink(const char *pathname); 
int chdir(const char *path); 
int stat(const char *file_name, struct stat *buf); 
off_t lseek(int fildes, off_t offset, int whence); 
int rename(const char *oldpath, const char *newpath); 
int mkdir(const char *pathname, mode_t mode); 
int rmdir(const char *pathname); 
int ioctl(int d, int request, ...) 
int truncate(const char *path, off_t length); 
int chmod(const char *path, mode_t mode); 
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Figure 1: Linux File System Architecture 
 
 

When file system system calls are invoked, VFS 
passes the requested services to the target mounted 
file system (i.e., Ext2, FAT,…). The target file 
system maps the logical data blocks to the physical 
data blocks, and then the Device Driver performs 
the I/O operations between file system and storage 
device. To speed up accesses, recently used device 
blocks are cached in the Buffer Cache. Inode Cache 
and Directory Cache are used to cache the recently 
opened file entries and directory entries 
information. 

2.2 Linux vfat FileSystem Overview 

The VFAT file system is the FAT file system 
with long file name support. The FAT (File 
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Allocation Table) is used much like a linked list. 
Table entry indexed by cluster number contains the 
cluster number of the next cluster in the file. Figure 
2 shows an overview of the VFAT file system. 
When the open(“pathname”) system call is invoked, 
the lookup() function parses the pathname, from 
root to each entry name, and the find() function 
compares it with all entries under the parent entry to 
find if the file or directory entry is existent to be 
opened.  

 
 

 
Figure 2: VFAT File System Overview 

 
 

The bottom block of Figure 2 illustrates the 
on-disk format of a FAT32 Partition [30]. There are 
Boot sector, Information sector, FAT, File and 
Directory Data Region in the FAT32 partition. 
Especially, the root cluster number and cluster size 
are defined in the boot sector. 

 

2.3 Virtual File System Data Structures 

There are multiple data structures and their 
common operations of VFS, including superblock, 
file, dentry, inode. File systems should support 
these data structures and provide their related 
operations to VFS, such that a modular file system 
can be maintained under Linux. Figure 3 illustrates 
the cooperation of vfat FileSystem and VFS. Figure 
3(a) shows the data structures of VFS when 
mounting a vfat FileSystem and Figure 3(b) shows 
the data structures of VFS when opening a file via 
Linux vfat FileSystem. 

(a) Mounting Linux vfat FileSystem 

Linux file systems are implemented as loadable 
modules. They must be mounted for use and 
registered at boot time. When mounting, VFS uses a 
link-list, vfsmntlist, to link those mounted file 

systems, and uses vfsmount to describe those 
mounted file systems. Each mount point has a 
super_block to hold the whole file system’s 
information and status. This super_block is filled 
out by copying the physical partition information, 
which calls read_super() routine defined in 
file_system_type. Finally, the root inode is allocated 
and subsequent manipulation of the whole file 
system status should refer to the super_block 
operation methods defined in super_operations. 

(b) Opening a file via Linux vfat FileSystem 

Inode is the abstraction for a file. When opening 
a file, file system looks up its inode via lookup 
method defined in inode_operations, which should 
be vfat_lookup() in vfat file system. If lookup 
succeeds, the pathname and inode structure are then 
translated to dentry structure. Finally, the file 
structure is created and the kernel returns a 
non-negative integer indexed in the file descriptor 
table. This non-negative integer can be used for 
subsequent I/O operations on this file, and its 
operation methods are defined in file_operations. 
When a file is successfully opend, the non-native 
integer indexed in the file descriptor table points to 
the struct file. Each file structure points to a dentry 
via file->f_dentry, in turn, each dentry points to an 
inode via dentry->d_inode. 

 
To sum up, VFS holds the whole file system’s 

information in super_block, and uses file for users 
to maintain file system data. In addition, VFS uses 
inode to store a file’s information in file system and 
uses dentry translated from inode to cache 
frequently used directory entries. Each type of file 
system has its specific operation methods for 
superblock, file, inode, and dentry, which are 
defined in super_operations, file_operations, 
inode_operation, and dentry_operation data 
structures. 
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(a) Mounting a vfat FileSystem 
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(b) Opening a file via Linux vfat FileSystem 

Figure 3: Virtual File System Data Structures 

 
 

3. ADAPTATION ISSUES 

In this section, we first briefly describe the 
LyraOS architecture. Then the difficulties in this 
adaptation work are discussed. 

3.1 LyraOS 

LyraOS [3-7,18,19,25,26] is a component- 
based operating system which aims at serving as a 
research vehicle for operating systems and 
providing a set of well-designed and clear-interface 
system software components that are ready for 
Internet PC, hand-held PC, embedded systems, etc. 

It was implemented mostly in C++ and some 
assembly codes. It is designed to abstract the 
hardware resources of computer systems, such that 
low-level machine dependent layer is clear cut from 
higher-level system semantics. Therefore, it can be 
easily ported to different hardware architectures 
[4,6]. Each system component is complete separate, 
self-contained, and highly modular. So the system 
is also designed to be scalable and reconfigurable.  

Besides being light weight system software, it 
is a time-sharing multi-threading kernel. Threads 
can be dynamically created and deleted, and thread 
priorities can be dynamically changed. It provides a 
preemptive prioritized scheduling and supports 
various mechanisms for passing signals, 
semaphores, and messages between threads. On top 
of the kernel core component, a micro window 
component with Windows OS look and feel is 
provided [18]. Figure 4 shows the system 
architecture. 
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Figure 4: LyraOS System Architecture. 
 
 

3.2 Adaptation Issues and Difficulties 

Since LyraOS and Linux are different in system 
architecture, Linux vfat FileSystem must be 
modified for being adapted to LyraOS. LyraOS 
should also provide some kernel support functions 
for this adaptation. 
 Currently, LyraOS supports single address 
space [4,10] with static binding of applications and 
kernel. No system call invocation is needed for 
applications to use the kernel’s exported services. 
To provide the compatible system call interface 
with other operating systems, LyraOS should 
provide the same file system interfaces for 
applications’ use as Linux C library functions, as 
shown in Table 1. 
 Aside from the different OS architecture, 
under the component design principle, each LyraOS 
system component is complete separate, 
self-contained, and highly modular. Each 
component has clean exported and imported 
interfaces for components to communicate with. So, 
the File System should also be implemented as a 
separate component such that the advantages of 
modularity, reconfigurability, component 
replacement and reuse can be maintained. However, 
Linux is a monolithic kernel, its File Systems codes 
have closely relationship with the other kernel 
function such as device drivers, buffer cache, and 
kernel core. Further more, although Linux File 
Systems codes have been modulated under the 
common interface of VFS, Linux File Systems still 
closely integrated with VFS. However, LyraOS is a 
resource limited embedded operating system, 
integrating Linux VFS into LyraOS File System 
would involve a lot of data structures and some of 
them are combined with Linux kernel and can be 
eliminated at resource limited embedded systems.  
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So, in order to have a clear cut File System 
component for LyraOS, we remodel Linux vfat 
FileSystem and modify some VFS codes as C++ 
objects, and replace Linux kernel supported 
functions invocation with equivalent LyraOS kernel 
components invocation. LyraOS vfat FileSystem’s 
object relation model is shown in Figure 5. The 
detailed description of these objects and their 
correlation is presented in Section 4. 
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Figure 5: Object Relation 
 
 
 

Because Linux vfat FileSystem is a disk-based 
file system, there is no data path to a RAM-based 
storage device. To support a RAM-based file 
system in LyraOS, the driver performs I/O 
operations between LyraOS File System and RAM 
should be added. The buffer cache which is used to 
gain better performance of disk-based file systems 
should be eliminated at a RAM-based file system to 
get rid of extra data copy between storage area and 
buffer cache [8]. 

To sum up, this adaptation work focused on 
three parts. First, to implement the vfat FileSystem 
as a self-contained component, we should clarify its 
import and export interfaces clearly. Second, we 
should replace Linux kernel support functions 
invocation with equivalent LyraOS kernel 
components invocation. Third, to support 
RAM-based file systems, data path to RAM should 
be implemented and their interaction with the buffer 
cache should be removed from RAM-based file 
systems. 
 
 
4 DESIGN AND IMPLEMENTATION 

This section presents our adaptation works, 
including remodeling and modifying Linux vfat 
FileSystem codes, replacing kernel support 
functions invocation, and adding data path to 
RAM-based devices. 

4.1 LyraOS vfat FileSystem – Object Relation 
Model Overview 

Figure 5 shows the six sub-components in 
LyraOS file system. They are File, FileManager, 
FAT, NLS, Buffer, and Device.  

� User programs can request file system 
services via the POSIX interface or 
FileManager that is the file system interface 
of LyraOS vfat FileSystem.  

� File is a friend object of FileManager. An 
user’s request of file operations will be past 
to FileManager. 

� FAT inherits FileManager to actually carry 
out file system services. 

� NLS (National Language Support) supports 
FAT to store long name in Unicode. 

� Buffer is an intermediary facility between 
FAT and Device, which caches recently 
accessed device blocks based on LRU policy. 

� Device provides data paths to disks and RAM, 
however, devices should be formatted in 
FAT partition type. 

Besides, the POSIX wrapper provides the POSIX 
interface for file system operations. 
 
 

4.2 Remodeling and modification 

Since LyraOS is designed for resource limited 
embedded systems, to have a modular and 
self-contained component for LyraOS file system, 
we remodel and modify Linux vfat Filesystem 
codes as C++ objects. The remodeling and 
modification work is presented below: 

(a) Eliminating parts of Linux FileSystem 

We eliminate some unnecessary mechanisms 
of Linux file system, such as 
register/unregister file systems, 
mount/unmount file systems, lock/unlock 
objects, permission policy, and others that are 
combined with Linux kernel, etc. In this way, 
the total code size of file system can be largely 
reduced.  

(b) FAT 

The inode data structure is replaced with 
fat_node, as shown in Table 2. The 
super_block, operation methods defined in 
super_operations, and inode_operations are 
integrated into “class FAT”, as shown in 
Table 3. The read_super() operation is 
replaced with FAT::FAT() constructor. The 
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fat_node data structure is dedicated to VFAT 
file system, and fat_node cache is 
implemented as a link-list with no hash table 
applied. The dentry is not implemented, and 
directory cache is eliminated. The usage of 
cache is the tradeoff between memory 
consumption and performance. 
 
 
 

Table 2: fat_node 
 

struct fat_node
{

ino_t ino;           // unique number 
int cluster; // start cluster
int nlink;
unsigned int count; // used count
unsigned int attr; // entry attribute
unsigned int state; // (dirty, lock ... )
size_tsize;
time_t atime; // access time
time_t mtime;      // modified time
time_t ctime; // creation time
time_t ctime_ms;
struct fat_node *next; // point to next node

};
 

 
 
 
 

Table 3: class FAT:public FileManager 
 

• File operation
- file_read()
- file_write()
- fat_truncate()
- do_truncate()
- truncate()
- close()

• Dir operation
- fat_ino()
- fat_readdirx()
- dir_read()

• File Allocation Table
- fat_access()
- fat_free()
- fat_add_cluster()
- fat_get_cluster()
- fat_smap()
- fat_get_entry()
- fat_subdirs()

• Date
- date_dos2unix()  
- fat_date_unix2dos()

Operations
• Super operation
- FAT()
- ~FAT()
- fat_dir_size()
- read_node()
- write_node()
- get_node()
- get_node()
- put_node()

• Long name 
- vfat_valid_shortname()
- vfat_valid_longname()
- vfat_find_form()
- vfat_format_name()
- vfat_create_shortname()
- vfat_find_free_slots()
- vfat_fill_long_slots()
- vfat_build_slots()

• misc
- is_fat32() 
- is_fat16()
- is_fat12()

• Basic operation 
- vfat_find()
- vfat_lookup()
- lookup()
- vfat_create_entry()
- vfat_create()
- vfat_create_a_dotdir()
- vfat_create_dotdirs()
- vfat_empty()
- vfat_free_ino()
- vfat_remove_entry()
- open_namei()
- open(2)
- open(3)
- cp_stat()
- stat()
- do_unlink()
- unlink()
- do_mkdir()
- mkdir()

Data
- cluster_size
- fats
- fat_bits
- fat_start
- fat_length
- dir_start
- dir_entries
- data_start
- clusters
- root_cluster
- fsinfo_offset
- free_clusters
- fat_lock
- prev_free
- fat_wait
- node_list

• Reference
interface
- *nls

 
 
 

 (c) File 

Some data of struct File and methods of 
file_operations are integrated into “class File”, 
as shown in Table 4. However, its actual 
operations should refer to FileManager 
presented at next paragraph. 
 
 
 

Table 4: class File 
 

Operations
• Exported interface for user
- read()
- write()
- truncate()
- close()
- readdir()

• Constructor
- File()

• Access control function
- can_read()
- can_write()
- is_dirty()
- mark_dirty()

Data
- *node 
- mode 
- pos

• Reference Interface
- FileManager *fm

 
 

 

(d) Virtual File System  

Linux Virtual File System likely-hood 
abstraction layer is implemented via virtual 
functions at “class FileManager”. Table 5 
shows some virtual functions of FileManager, 
and Table 6 shows the “class FileManager”. 
FAT is a derived class of FileManager, it 
inherits FileManager’s interface and overrides 
necessary virtual functions to carry out 
actually file system services. 
 
 
 

Table 5: FileManager’s Virtual Functions 
 

virtual File *creat(const char *pathname, mode_t mode);
virtual File *open(const char *pathname, int flags); 
virtual int close(File *file);
virtual int unlink(const char *pathname);
virtual int mkdir(const char *pathname);
virtual int stat(const char *filename, struct stat *buf);

 
 

 
 

Table 6: class FileManager 
 

Operations
• Exported interface for user
- creat()
- open()
- stat()
- unlink()
- mkdir()

• Exported interface for File
- file_read()
- file_write()
- dir_read()
- truncate()
- close()

Data
- *root
- *pwd

- s_blocksize
- s_blocksize_bits
- s_flags

- friend class File

• Reference interface
- Device * const  dev
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(e) National Language Support 

  To support storing long name entries in 
Unicode, the National Language Support 
(NLS) codes are integrated into “class NLS”, 
as shown in Table 7. 

 
 

Table 7: class NLS 
 

Operations
- NLS()
- ~NLS()
- utf8_mbtowc()
- utf8_mbstowcs()
- utf8_wctomb()
- utf8_wcstombs()
- to_unicode()
- to_charset()
- class CodePage437 : public NLS

- CodePage437()
- class ISO8859_1 : public NLS

- ISO8859_1()
- ~ISO8859_1()

Data
- utf8_table utf8_table[]
- page_uni2charset
- charset2uni

 
 
 

 (f) Buffer Cache 

Buffer cache’s operations are integrated in 
“class Buffer”, and struct buffer_head of 
Linux kernel is reduced to struct buffer for 
LyraOS, as shown in Table 8. Buffer cache 
uses device and block number to index the 
cache entries. However, the hash table used to 
provide cache entries is removed here. Again, 
the usage of cache is the tradeoff between 
memory consumption and performance. 

 
 

Table 8: class Buffer and struct buffer 
 

Operations
- Buffer()
- ~Buffer()
- getblk()
- fill()
- bread()
- brelse()
- flush()

Data
- buffers[NR_BUFFERS]
- *firstbuf

struct buffer
{

struct buffer *b_next;
Device *b_dev;
char *b_data;
unsigned int b_flag;
unsigned int b_count;
unsigned long b_blkno;
unsigned long b_size;

};  
 
 

 (g) POSIX 

The POSIX wrapper of LyraOS vfat File 
System provides the following functions: creat, 
open, close, unlink, ftruncate, fstat, read, write, 
opendir, readdir, and closedir. The file 
manipulation functions, such as open, 
read/write, and close, need a non-negative 
integer returned value for file operations. In 
Linux File System, the file descriptor table, 

files_struct, used to hold the file descriptors is 
reduced to a File array in LyraOS vfat 
FileSystem. It is declared as “static File 
*files[OPEN_MAX];”. File descriptors 
indexed in the file array point to each opened 
file. 

 
 

4.3 Implementing data path to Disk and RAM 

(a) Disk 

The LyraOS disk-based vfat FileSystem 
should interact with the disk driver for 
transferring data. LyraOS provides the Linux 
device driver emulation environment [26]. 
Under this environment, Linux device driver 
codes can be integrated into LyraOS without 
modification. In LyraOS, a thread is created 
for running this disk device driver emulation 
environment. Detailed implementation of this 
emulation environment is out of the scope of 
this paper and can be referred to the paper 
[26]. 

(b) RAM 

Like a FAT32 disk-partition, a single large 
block is “malloced” in memory as the storage 
area of the RAM-based vfat FileSystem. 
Based on this malloced area, the read/write 
pointer will offset to the requested physical 
data address according to the file system’s 
determined block size and block number. The 
data path to RAM-based storage is 
implemented at “class RamDrv” shown in 
Table 9. 

 
 

Table 9: class RamDrv 
 

O perations
Device()
~Device
bread()

Data
TOTAL_SECTO RS
SECTO R_SIZE
M em oryBlk
size

 
  
 

4.4 LyrsOS Kernel support Modules 

To integrate Linux vfat FileSystem into LyraOS, 
the corresponding Linux kernel support functions 
invocation should be replaced with the equivalent 
LyraOS kernel components invocation. Therefore, 
for this integration, the following functions should 
be supported in LyraOS kernel: 
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� Memory Management Component 
- malloc(), free(). 

� Console I/O Component 
- printf(). 

� Kernel Core Component: String 
- strcpy(), strlen(), strcmp(), 
memcpy(), …etc.  

� Timer Management Component 
- jiffies. 

� Device Driver Component: IDE driver 
- ide_hd_read(), ide_hd_write(). 

 

4.5 Interacting with LyraOS vfat FileSystem  

Table 10 illustrates an example of using LyraOS 
vfat FileSystem, which performs the following 
operations: 

1. Constructing an instance of Device class 
2. Constructing an instance of Buffer class 
3. Constructing an instance of file system 

class in application.  
4. Using the instance of file system as a 

FileManager* and requesting system 
services via its exported interface. 

5. Performing File operations or directory 
operations. 

 
 
 

Table 10: Example of Using LyraOS vfat 
FileSystem 

 

Device dev("hda1");
BufferManager *bufmgr = new BufferManager();
FileManager *fs = new FAT(&dev);
File *fp = fs->open(src, O_RDONLY);
if (fp) {

while ((len = fp->read(buf, sizeof(buf)))) {
// output content to screen

}
fp->close();

}
delete fs;
delete bufmgr;

 
 
 
 

  When a file is opened via LyraOS vfat 
FileSystem, the involved data structure and data 
flow are illustrated in Figure 6(a), and its operation 
flow chart is illustrated in Figure 6(b). As shown in 
the illustration, the data structures and operation 
functions of Linux vfat FileSystem are largely 
simplified after being adapted to LyraOS. 
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(a) Data Structures and Data Flow 
 
 

open()

open_namei()

lookup()

vfat_lookup()

vfat_find()

fat_readdirx()

fat_get_entry()
fat_readdir_cb()

Filename v.s. de.name
Match or not ?

sinfo.ino

get_node(sinfo.ino)

yes no If new_filename

open filename fail !

vfat_build_slots()
vfat_find_free_slots()

lookup directory

return base
vfat_create()

return dentry

no

no

File *fp yes no

Flag=O_CREAT

  
(b) Operation Flow Chart 

 
Figure 6: Opening a File in LyraOS vfat FileSystem 

 
 

5 PERFORMANCE EVALUATIONS 

This section presents the LyraOS RAM-based 
vfat FileSystem performance evaluation. Under 
Andrew File System BenchMark files [32], the 
performance of pre-creation files, mkdir, read, copy, 
and unlink operations are measured.  

Andrew BenchMark provides various size data, 
ranging from 23 bytes to 37 KB. We use these data 
to perform this measurement, including: 
pre-creating files (BenchMark data will be 
precreated in memory), making directories (mkdir), 
reading files (read), copying file (copy), and 
deleting files (unlink). However, in order to apply 
this measurement to LyraOS vfat FileSystem, which 
is a static binding embedded system without system 
call invocation, the Andrew BenchMark is modified 
to adapt to our measurement by running LyraOS 
vfat FileSystem to perform the above four phases as 
separate programs. The data files should be 
pre-created in memory for experiments.  
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The Experimental platform is a PC with 
Pentium-III 1GHz processor and 128MB RAM. 
This evaluation is performed at LyaOS RAM-based 
vfat FileSystem under two circumstances. One is 
the file system with buffer cache, and the other 
without buffer cache. 

Figure 7 shows that LyraOS vfat FileSystem on 
RAM-based storage without buffer cache would 
perform 25% better than the same file system with 
buffer cache applying. This result also shows that 
our modified vfat FileSystem occupies only 75% of 
the total cost of file system operations. This 
performance gain results from eliminating extra 
data copy overhead between storage area and buffer 
cache. This means that buffer cache is unnecessary 
for RAM-based file systems and should be removed 
in RAM-based file systems. 

 
 
 

 
 

Figure 7: Performance Comparison of Various 
RAM-based File Systems 

 
 
 

 For the performance comparison of LyraOS 
RAM-based vfat FileSystem without buffer cache 
with Linux ramfs [29], the evaluation program ran 
in LyraOS is unmodified to Linux ramfs’s 
evaluation except that mkdir is replaced with a 
script program to do the mkdir system calls. It can 
be seen from Figure 7 that Linux ramfs incurs more 
elapsed time than LyraOS RAM-based vfat without 
buffer cache at the pre-creation and mkdir phases. 
Although under Linux VFS’s Cache mechanisms, 
ramfs performs better than LyraOS at read and copy 
phases. However, if referring to pre-creation phase, 
the create operation is almost the write operation, 
and the Cache mechanisms are not involved in 
ramfs at this phase. This implicates that when Linux 
VFS’s Cache mechanisms are not applied, our write 
performance is better than ramfs. However, this is a 

tradeoff between memory consumption and system 
performance.  

Aside from the usage of various caches such as 
directory cache, inode cache for performance 
improvement, Linux ramfs uses mmap mechanism 
and page cache to optimize its operation [29]. As a 
result, ramfs is tightly correlated with Linux 
kernel’s memory management mechanism, which is 
against the component design principle and ramfs is 
not able to be a separate component for adapting 
into a target system.   
 
 

6 CONCLUDSIONS 

To add data storage capability to LyraOS, we 
have successfully adapted Linux vfat FileSystem to 
LyraOS. Aside from disk-based vfat FileSystem, 
the RAM-based vfat FileSystem is also 
implemented. In this paper, we have described how 
to solve the adaptation difficulties from different 
system design principles and different kernel 
architectures. The adaptation work focuses on three 
parts as follows. To implement the vfat filesystem 
as a self-contained component, we clarify its import 
and export interfaces and modify Linux vfat file 
system codes to separate them from the other Linux 
kernel functions. Some kernel support modules 
invocations are replaced with specific LyraOS 
kernel components invocation. Data path to 
RAM-based device is added, and compatible file 
system interfaces (POSIX) of LyraOS vfat 
filesystem is implemented. 

In addition to implement file system as a 
self-contained component, this adaptation work 
eliminates extra data copy of buffer cache, and 
simplifies or removes lots of Linux file system data 
structures.  

 Performance evaluation under modified 
Andrew BenchMark shows that LyraOS 
RAM-based vfat FileSystem without buffer cache 
occupies only 75% of the total file system 
operations, and the remainder is the cost for data 
copy to and from buffer cache. While comparing 
our modified vfat FileSystem based on RAM 
without buffer cache with Linux ramfs, it shows 
that our modified vfat FileSystem is efficient and 
can adapt to embedded systems. 

For disk-based LyraOS vfat FlieSystem 
performance evaluation, Linux driver emulation 
environment is well implemented in LyraOS for 
reusing Linux device drivers [26]. We are currently 
under the work to replace the IDE (Integrated 
Device Electronics) driver with the current version 
of Linux drivers and conduct the performance 
comparison of LyraOS vfat FlieSystem with Linux 
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vfat FlieSystem. 
To sum up, the success of this porting and the 

experience of this integration study can be of 
practical value to serve as the reference for 
embedding Linux file system into target systems 
that need storage capability. 
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