

Cover page

Name of the workshop: Computer Network

Title of the paper: A QoS Buffer Mangement for Multiple Class: GREEN

Abstract-QoS is eager for the future networking, especially for the multimedia networks. The QoS control

algorithm can be implemented in a node of multimedia networks to achieve the QoS. This paper

proposes a QoS buffer management algorithm, named as GREEN (Global Random Early Estimation

for Nipping) to efficiently control the resource to meet the QoS requirement. Different from other

buffer management algorithm, GREEN includes the consideration of QoS parameter. In the numerical,

extensive numerical cases are used to show the outperformance and characteristics.

Names: Lain-Chyr Hwang1, Cheng-Yuan Ku2, Huan-Ying Lo3, Choun-Shin Jie4

Affiliations: 1,4Department of Electrical Engineering, I-Shou University, Taiwan,

 2 Department of Information Management, National Chung Cheng University, Taiwan

3Department of Information Engineering, I-Shou University, Taiwan

Contacting author's address:

Dep. of Electrical Eng., I-Shou Univ.

Ta-Hsu Hsinag, Kaohsiung County,

Taiwan, 84008

Phone number: 07-6577711-6631

fax and Email: (fax) 07-6577205, (email) lain@isu.edu.tw

Keywords: QoS, DiffServ, GREEN, RED, Bufferent Management, Multiple Classes

A QoS Buffer Mangement for Multiple Class: GREEN

Lain-Chyr Hwang1, Cheng-Yuan Ku2, Huan-Ying Lo3, Choun-Shin Jie4

1,4Department of Electrical Engineering, I-Shou University, Taiwan,
Email: {lain , m9001022}@isu.edu.tw

2 Department of Information Management, National Chung Cheng University, Taiwan
Email: coopercy@ms16.hinet.net

3Department of Information Engineering, I-Shou University, Taiwan
Email: m883301m@isu.edu.tw

Abstract-QoS is eager for the future networking, especially for the multimedia networks. The QoS

control algorithm can be implemented in a node of multimedia networks to achieve the QoS. This

paper proposes a QoS buffer management algorithm, named as GREEN (Global Random Early

Estimation for Nipping) to efficiently control the resource to meet the QoS requirement. Different

from other buffer management algorithm, GREEN includes the consideration of QoS parameter.

In the numerical, extensive numerical cases are used to show the outperformance and

characteristics.

I. INTRODUCTION

QoS is the necessary trend in the future networks. For example, in the Internet, IntServ [1] and

DiffServ [2] have been proposed. Owing the granularity and complexity, IntServ is suit to the intranet

and DiffServ to the Internet at current state. Not only in the Internet but also in the other multimedia

distribution networks, it is necessary to implement the QoS control mechanism to meet the different QoS

requirements of different media sources.

This paper studied a QoS buffer management scheme considering multiple QoS requirements. This

GREEN [3] algorithm has two special features: one is the consideration of QoS requirement and the

other is the multiple QoS consideration. The most innovation over the most popular RED algorithm is

the inclusion of QoS requirement [3]. Many researchers have used buffer management schemes to

improve the QoS, e.g. Drop tail [4-6], Random Drop [4,5], Early Random Drop (ERD) [4,5], Random

Early Detection (RED) [4,7], and so on. For “Early”, ERD used queue length and a threshold, but RED

utilized mean queue size and two thresholds. Actually, ERD and RED are quite similar. The different

points had been detailedly descried in [4]. The pro and con are not absolute between the usage of queue

length and the usage of average queue length. The detailed comparison can be found in [3] and [4].

The buffer management algorithms are roughly classified along the following two dimensions [7]:

when the packet discard decisions are made and what information is used. On the other hand, the authors

think the design issues of buffer management algorithms can be widely and detailedly considered as

follows: The principles to execute the buffer management; The judging criteria; The choice of packet;

The punishment; and The reaction of end systems. In general cases, the above issues may be considered

by integrating some of them. For example, ERD and RED integrated issues 1 and 2, and did not discuss

issue 5. According to the popular algorithms in the past and combining our points of view discussed

above with the dimensions mentioned in [7], the design issues of a buffer management can be divided

into two major classes. One is the consideration of “Early or not.” The other is the consideration of

“Random or not” [3].

Combination of “Early” and “Random” is the main stream of buffer management schemes. It

started from ERD and was enhanced in RED. In fact, ERD had pointed out the key of the main stream.

But, RED enhanced ERD by two new ideas, i.e. non-fixed random probability and marking packets

instead of discarding them. GREEN cannot stray off this main stream.

II. GREEN ALGORITHM

GREEN use Global Random and Early Estimation for Nipping packets. That is, GREEN still uses

the combination of "Early" and "Random", but elaborates them to a most complete realm. GREEN

extends the random feature to a global random that considers not only the network statuses but also the

QoS requirements. The Global Random probability of GREEN is named Nipping probability
nP .

Furthermore, GREEN extends Early Detection to Early Estimation, which uses the variation of network

statuses to estimate the future status. In this way, GREEN can get the information of network status

earlier than just detection and can speed up the decision-making. Finally, in order to avoid the

misunderstand and to make the acronym elegant, for detailed reasons see [3], GREEN uses "Nipping"

replacing the term "Marking" in RED.

The system consists of a common buffer with size k and an output link with bandwidth B . There

are M QoS classes in the input traffic, described by the loss requirement l[i] and delay requirement d[i],

and specified at call setup or by the user/ISP. Assume the maximum packet length of all the input

packets is maxL . The GREEN algorithm used queue length as judging criterion, like ERD, but unlike

RED. The nipping threshold is the queue length beyond which the arrival packet may be nipped

according to the nipping probability nP .

[4] takes the count of unmarked packets into the marking probability. GREEN modified it to make

the nipping intensity stronger when the queue length over the threshold and the packets continuously

entering the buffer. Consequently, there is a similar term, modified as)21/(_
c

_
p

preepree PP − , in

GREEN as that in RED, where
pc is the count of un-nipped packets after the last nip, preeP _ is a

pre-calculated entropy probability, which comes from the property of Early Estimation and like the bp

in RED.

The Global Random property of GREEN is exhibited at the components of nipping probability,

which consists of not only network statuses but also QoS requirements. The former resulted in the term

)21/(_
c

_
p

preepree PP − . The latter becomes more important in the future networks. It is natural to nip a

packet, if some of its QoS requirement cannot meet. In this way, the resource will not be wasted for

those invalid packets, and the system goodput, i.e. the valid throughput seen by a higher layer, can be

increased.

Here, GREEN considered two QoS parameters, delay requirement and loss requirement. The delay

is estimated by Bq / , where q is the queue length. If the estimated delay is greater than the delay

requirement, the arrival packet will be nipped. Similarly, the estimated loss probability for class-i][iPl

∧
,

obtained by a weighted moving average and by assuming the arrival packet nipped, is expressed by

][])[1(])}[/(]{[][iPiwicLLiwiP llbll −++=
∧

,

where][iwl
 is the weight of class-i to estimate the loss probability, L is the size of the arrival packet,

][icb
 is the count of accumulated amount (in length unit, e.g. byte) of un-nipped class-i packets, and

][iPl
 is the actual loss probability of class-i at current time. If the loss requirement is greater than or

equal to the estimated loss probability, i.e., the loss requirement is still satisfied, then the arrival packet

can be nipped if necessary. On the contrary, when the loss requirement can not be satisfied, the arrival

packet should not be nipped if possible. Consequently, the nipping probability can be expressed by







 −−−=

∧

])[][()]21/([(]),[/(max __ iPilUPPidBqUP lpree
c

preen
p , (1)

where)(xU is the unit step function defined as





≥
<

=
.0if1
,0if0

)(
x
x

xU

The two unit step functions are arranged to make the nipping probability equal to 1 when the delay

requirement is not satisfied or, as far as possible, equal to 0 when the loss requirement is not satisfied.

The Early Estimation property of GREEN makes up the entropy probability
eP , which is used to

represent the normalized entropy to which the strength of nipping a packet is correspond ing and is in

terms of the buffer occupancy and the link bandwidth occupancy. If queue length variation is denoted by

q∆ and calculated by moving average with a weight
qw , then it is expressed by

.)1()(qwqqwq qpreq ∆−+−←∆

where preq is the queue length seen by the previous arrival packet. By using)(qqks ∆+−= to

estimate the left space, a component)0,min(2 s− contributes to eP to make the nipping probability of

next arrival packet larger, if the left space is smaller. The increasing rate of this component is

exponential, not linear as RED. It performs the urgency better than the linear rate when space is critical,

and the exponent of 2 has the easiness of implementation. Furthermore, a component Bu / is included to

make the entropy probability larger, if the available bandwidth is smaller, where u is the used link

bandwidth averaged during a time window T. If the packet arrives at during a busy period, the u can be

found by

T

u
B
L

LL
u

T)(−+
← ,

where TL is the total packet length of the last time window. On the other hand, when the packet arrives

at during an idle period, the u is given by

T

uIA
B
L

LL
u

T)(−+−+
← ,

where A is the inter-arrival between this packet and the previous entering packet, and I is the time of

the idle period. Finally, the entropy probability can be expressed by)/(2)0,min(BuP s
e

−= .

One more thing to mention about is the term)21/(_
c

_
p

preepree PP − in (1). It is possible for

some large pc2 to make the term greater than 1 or negative. Similar to [3], if

preepree
c PPp

__ /)1(2 −> ,)21/(_
c

_
p

preepree PP − is assigned to be 1.

III. NUMERICAL EXAMPLES

Assume there are two traffic types. One type is an on-off process and the other is a Bernoulli

process. The load of total traffic is 1, and the ratios of loads of the on-off process to the Bernoulli

process are 2:8 and 8:2 that are used to simulate different degree of burstiness. The packet length is

modeled as uniform between 1 and maxL . The time unit, denoted by tick, is normalized as the

transmission time of one length unit by the link. The k is 100, except Cases 1 and 3. The nT is 50,

except Case 2. The maxL is 19, except Case 3. The parameters in the counterpart RED are the same,

except the maximum threshold, the minimum threshold, the maxp and the weight for calculating the

average queue length are nT , 2/nT , 0.02, and 0.002 respectively. The weights for calculating the

queue length variation and the estimated loss ratio in every class are both equal to 0.6 [3]. The goodput

ratios shown in figures are the total packet size ratios of valid accepted packets to all generated packets.

A. Case 1: Buffer size

In this case, the delay requirement equals k-10 and loss requirement is 1. From figures 2-3, it is

obvious that the GREEN outperforms RED and the goodput ratio increases when the buffer size

increases. Furthermore, it can be seen the burstiness destroys the performance, so the results of figure 3

is worse than those of figure 2 and the results of on-off is worse than those of Bernoulli.

B. Case 2: Threshold

The delay requirements for both types are 10 and loss requirements are 1. Figures 4-5 also show the

outperformance of GREEN. Besides, GREEN has a good characteristic to keep the goodput ratio when

the nipping threshold changes, but RED does not. With this characteristic, the system designer will not

worry about how to assign the threshold. This result comes from the exponential increasing rate which

makes nipping at critical point, not just by the threshold. As regards the burstiness effect, it is the same

as Case 1.

C. Case 3: Maximum packet length

In this case, the buffer size is 200, the delay requirement for on-off is 150 and for Bernoulli is 180,

and loss requirement is 1. From figures 6-7, obviously, GREEN outperforms RED and the performance

decays for larger packet size because it enters the buffer with more difficulty. The burstiness effect is the

same as that in Case 1.

D. Case 4: loss requirement

This case is used to demostrate a good characterisc of GREEN which can keep the overall goodput.

In this case, the delay requirement for both type are 100 and the loss requirement for on-off is 1. In figure

8, the goodput ratio of Bernoulli decreases as loss requirement becomes looser, but the goodput ratio of

on-off increases and that of overall traffic keeps the same level. That is owing to GREEN will

differentially treat the traffics with different QoS requirement so as to nip the packets of looser

requirement to accomadate the packets of stricter requirement and keeps the buffer utilization.

E. Case 5: Delay requirement

In this case, the loss requirements for two types are both 1. The delay requirement for on-off

changes and that for Bernoulli is fixed at 90. Again, from figure 9-10, GREEN is better than RED. It

also can be seen there is growth and decline of goodput ratios in GREEN, but not in RED, because the

GREEN filters out the invalid packets of on-off to leave the buffer for the Bernoulli traffic. Of course,

the influence of burstiness is still the same as Case 1. However, the phenomenon of RED is much worse.

This phenomenon illustrates that it is sure to have worse performance at more bursty traffic and the

GREEN can alleviate the aggravation.

IV. CONCLUSIONS AMD FUTURE WORKS

Owing to the concern of QoS parameter, the GREEN algorithm outperforms over the RED

algorithm. Also owing to the concern of the multiple QoS classes, the input type with stricter

requirement may have lower goodput ratio and the damage can be made up from the increase of the

goodput ratio of the input type with looser requirement. Consequently, the GREEN algorithm for

multiple QoS classes can really make full use of the network resources including the buffer and the

bandwidth capacity.

However, there is something in GREEN needed further study. First, the GREEN algorithm may be

improved to make the system performance better and to be more efficient for implementation. Secondly,

there still needs more numerical examples to probe the characteristics of the system using GREEN

algorithm.

REFERENCES

[1] R. Braden, D. Clark, and S. Shenker, "Integrated services in the Internet architecture: an overview,"

Internet RFC 1633, June 1994.

[2] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An architecture for

differentiated services," Internet RFC 2475, Dec. 1998.

[3] Lain-Chyr Hwang, Cheng-Yuan Ku, Steen J. Hsu, and Huan-Ying Lo, "QoS Buffer Management of

Multimedia Networking with GREEN algorithm," JCN., vol. 3, no. 4, pp. 334-341, Dec. 2001.

[4] S. Floyd and V. Jacobson, ”Random Early Detection Gateways for Congestion Avoidance,”

IEEE/ACM trans. networking, vol.1, no.4, pp.397-413, 1993.

[5] E. Hashem, “Analysis of random drop for gateway congestion control”, Rep. LCS TR-465, Lab. for

Comput. Sci., M.I.T., p.103, 1989.

[6] L. Zhang, “A new architecture for packet switching network protocols”, MIT/LCS/TR-455, Lab. for

Comput. Sci., M.I.T., 1998.

[7] R. Guerin and V. Peris, ”Quality-of-service in packet network: basic mechanisms and direction”,

Computer Networks, vol. 31, 1999, pp.169-189.

Figure1. The GREEN algorithm

Initialization:
do while (system up)

if (system idle and I_flag=1)
 I=system time
 I_flag=0
 System++
For each packet arrival
i=the class of the arrival
A=system time

qwqqwq qpreq ∆−+−←∆)1()(

)/(2)0,min(BuP kqq
e

−∆+=
qqpre =

][])[1(]))[][/(][]([][iPiwiLiciLiwiP llbll −++=
∧

if (Buffer full)

Drop the packet For all i

][][iPiP ll

∧
=

0=pc
0][=icb

else if)(nTq >





−−−=
∧

)][][()]1),21/([min(]),[/(max __ iPilUPPidBqUP lpree
C

preean
p

epree PP =_

 if (a random value < nP)

 Nip the packet
 For all i

][][iPiP ll

∧
=

0=pc
0][=icb

 else
 accept the packet

 TBLuLLu t /))/((−+=
][][iLic b =+

++][ic p

else
if queue empty

 TIABLuLLu t /))/((−+−+=
 I_flag=1;

else
Accept the packet

TBLuLLu t /))/((−+=

0=pc
0][=icb

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

60 70 80 90 100

Buffer size

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.2)

GREEN Bernoulli(0.8)

RED On_Off(0.2)

RED Bernoulli(0.8)

GREEN (On_Off(0.2)+Bernoulli(0.8))

RED (On_Off(0.2)+Bernoulli(0.8))

Fig. 2 Results as buffer size changes (low-bursty)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

60 70 80 90 100

Buffer size

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.8)

GREEN Bernoulli(0.2)

RED On_Off(0.8)

RED Bernoulli(0.2)

GREEN (On_Off(0.8)+Bernoulli(0.2))

RED (On_Off(0.8)+Bernoulli(0.2))

Fig. 3 Results as buffer size changes (high- bursty)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

40 50 60 70 80

Threshold

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.2)

GREEN Bernulli(0.8)

RED On_Off(0.2)

RED Bernulli(0.8)

GREEN (On_Off(0.2)+Bernulli(0.8))

RED (On_Off(0.2)+Bernulli(0.8))

Fig. 4 Results as threshold changes (low-bursty)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

40 50 60 70 80

Threshild

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.8)

GREEN Bernulli(0.2)

RED On_Off(0.8)

RED Bernulli(0.2)

GREEN (On_Off(0.8)+Bernulli(0.2))

RED (On_Off(0.8)+Bernulli(0.2))

Fig. 5 Results as threshold changes (high-bursty)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

9 19 29

Packet length

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.2)

GREEN Bernoulli(0.8)

RED On_Off(0.2)

RED Bernoulli(0.8)

GREEN (On_Off(0.2)+Bernoulli(0.8))

RED (On_Off(0.2)+Bernoulli(0.8))

Fig. 6 Results as packet length changes (low-bursty)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

9 19 29

Packet length

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.8)

GREEN Bernoulli(0.2)

RED On_Off(0.8)

RED Bernoulli(0.2)

GREEN (On_Off(0.8)+Bernoulli(0.2))

RED (On_Off(0.8)+Bernoulli(0.2))

Fig. 7 Results as packet length changes (high-bursty)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Loss requirement

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.8)

GREEN Bernoulli(0.2)

GREEN (On_Off(0.8)+Bernoulli(0.2))

Fig. 8 Results as loss requirement changes

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

90 80 70 60 50

Delay requirement

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.2)

GREEN Bernoulli(0.8)

RED On_Off(0.2)

RED Bernoulli(0.8)

GREEN (On_Off(0.2)+Bernoulli(0.8))

RED (On_Off(0.2)+Bernoulli(0.8))

Fig. 9 Results as delay requirement changes (low-burst)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

90 80 70 60 50

Delay requirement

G
o
o
d
p
u
t

r
a
t
i
o

GREEN On_Off(0.5)

GREEN Bernoulli(0.5)

RED On_Off(0.5)

RED Bernoulli(0.5)

GREEN (On_Off(0.5)+Bernoulli(0.5))

RED (On_Off(0.5)+Bernoulli(0.5))

Fig. 10 Results as delay requirement changes (high-bursty)

