
(1) Name of the workshop: Computer Networks

(2) Title of the paper: A Mobile Service Environment for Handheld Devices

Using XML-RPC
(3) A short abstract:

In this paper, we design an integrated mobile service environment
(MSE) for the handheld devices (e.g., PDAs). The integral MSE is a
coherent and intact service architecture built on the front-end (handheld
devices), which allows the mobile users to choose and subscribe their
request services provided by the service provider. A real-time stock
transaction system is implemented to experiment the feasibility and
applicability of this MSE architecture.

(4) Name: Tsung-Chuan Huang

Current affiliation: Dept. of Electrical Engineering, National Sun Yat-Sen Univ.,
Kaohsiung.

Postal address: 70 Lien-Hai Rd., Dept. of Electrical Engineering, National Sun
Yat-Sen Univ., Kaohsiung.

E-mail address: tch@mail.nsysu.edu.tw
Telephone number: (07) 5254140
Fax number: (07) 5254199 (Tsung-Chuan Huang)

 Name of the contact author: Tsung-Chuan Huang

(5) A list of keywords indicating the content areas related to the paper:

Mobile service, XML-RPC, Service Agent, Cache mechanism.

 1

A Mobile Service Environment for Handheld Devices

Using XML-RPC

Tsung-Chuan Huang*, Chu-Sing Yang**, Sheng-Wen Bai**, and Kuo-Chang Lin*

* Department of Electrical Engineering
** Department of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung 804, Taiwan

* tch@mail.nsysu.edu.tw, c8931313@ee.nsysu.edu.tw
** csyang, swbai@cse.nsysu.edu.tw

Abstract. In this paper, we design an integrated mobile service environment (MSE)

for the handheld devices (e.g., PDAs). The integral MSE is a coherent and intact

service architecture built on the front-end (handheld devices), which allows the

mobile users to choose and subscribe their request services provided by the Service

Provider.

The architectures of MSE consist of desktop agents (DA) and service agents

(SA) at the top layer, a communication layer at the bottom and a virtual machine

(VM) layer between them. The desktop agent is used as user interface and is

responsible for managing local process; the service agent is downloaded from the

back-end server when certain service is requested. The communication layer adopts

XML-RPC as the communication protocol between the client and back-end server. In

order to shorten the transmission time the data size of XML-RPC is reduced using

our compression mechanism. The virtual machine supports cross-platform operation

for the top layer. Besides, we devise a cache mechanism to retain recently used and

frequently reused SAs in the limited memory space of handheld devices. This cache

mechanism permits the mobile users to achieve the SA they want more efficiently.

Finally, we implement a real-time stock transaction system to experiment the

feasibility and applicability of this MSE architecture.

Keywords: Mobile service, XML-RPC, Service Agent, Cache mechanism.

1. Introduction

Now-a-days, mobile devices in the form of laptop and personal digital assistant (PDA) have become

widespread tools to provide data access for users on the move. With current trend, the number of wireless

 2

device subscribers will continue to grow. Mobile users, like the wireless device subscribers, hope to

obtain the mobile services provided by the service providers according to their demand. But at present,

most of the services are developed on standalone or are closed applications, which lack integrated service

mechanism. In this paper, we develop a coherent and intact service environment to allow the mobile users

to subscribe infinite services provided by the service providers. Mobile users can subscribe the services

based on their need, download and install the service agents (SAs) on their handheld devices directly. On

the other hand, due to the limited resource of the handheld devices, some issues must be considered when

the services are executed:

• Cross-platform - Problems may arise when a service is to run on several different platforms (e.g.,

Win32TM, Palm OS TM, Windows CE TM, etc.).

• Computing power - The processor of handheld devices is not as powerful as desktop PC. It can

not perform complex arithmetic operations or large amount of computations.

• Storage space - Handheld devices can not store infinite services provided by the service providers

due to limited storage space.

Concerning these issues, we propose an operating environment, called MSE (Mobile Service

Environment), for the handheld devices. MSE supports cross-platform, powerful computation, and fast

communication with the back-end server. To achieve cross-platform, we build a virtual machine (VM)

under the application layer (the virtual machine will be explained later). To overcome the problem of poor

computing power, we forward advanced arithmetic or large amount of computations to the back-end

server and the results are returned using a fast communication interface. To deal with the problem of

limited storage space, all the services provided by the service providers are stored in the back-end server.

The corresponding service agent is downloaded from the server only on demand. To increase the access

efficiency, we devise a cache mechanism in the handheld device to maintain the recently used and

frequently reused services. Besides, in order to communicate with the back-end server efficiently, we use

standard protocol XML-RPC (Extensible Markup Language [15]- Remote Procedure Call) [20] as the

communication mechanism. In order to reduce the traffic between the client and server, we design a

 3

compression scheme, which encode the data format of XML-RPC to decrease the data size and speed up

the communication as well.

The remainder of this paper is organized as follows: Section 2 introduces the related work. Section 3

describes the architecture of our mobile service environment. Section 4 explains our implementation.

Section 5 demonstrates sample presentations. Finally, Section 6 concludes this paper.

2. Related Work

Currently, a variety of mobile information services have been developed for the mobile users. Most

of these information services are browser oriented [2]; that is, they download the information pages for

browsing on the handheld devices. In addition to browsing the web pages, some information services can

download standalone programs on the handheld devices and execute them. Table 1 lists a number of such

products in the current market.

Table 1: A list of service programs in the market.
NO Applications Specifications

1 WAPman 1.8[19] WAP Browser.

2 YesPalm 1.1[21] WAP Browser.

3 AvantGo.com 4.0 [3] HTML&WAP Browser.

4 Blazer 2.0 [9] HTML&WAP Browser, Compress Web Pages.

5 Palmscape 3.1.3[13] HTML&WAP Browser, Cache saves pages.

6 Xiino 1.0.5[13] HTML&WAP Browser, Download Program.

7 4thpass Kbrowser [1] WAP Browser, Download Program.

8 Wapaka 2.0 [18] HTML&WAP Browser, Download Program.

9 CAC 1.0[4] HTML & WAP Browser, Compress Web Pages, Download Program,
Cache saves pages.

Besides the commercial products, there are several systems which are developed using WAP

interface in the literatures. InfoParco system developed by Colafigli et al. [6] supports handheld devices

to access the information of public use, accommodations, and weather forecast from a sophisticated web

for touristic purposes. Maclean and Dailey [11] reported a real-time transit vehicle information system,

which delivers content to Internet-enabled mobile devices by WAP interface. The content is in the form of

 4

Fig. 1. The mobile communication system.

predicted arrival/departure times for buses at user-selectable geographic locations within a transit region.

The wireless mobile monitoring (WMM) method proposed by Shan and Li [14] provides an effective

round-the-clock network monitoring and failure warning to the wireless network users. Besides, Garmash

[8] designed a mobile location-based application by using an XML-based description in a mobile

environment. And in [10], Lan et al. proposed a mobile e-Commerce solution to do mobile banking,

mobile shopping and even access data on the web via their mobile devices. They also use XML-based

data model language for information retrieval.

The works mentioned above are all through the WAP interfaces to access information. They simply

employed WAP interface to develop a variety of applications. In this paper, we aim at developing an

integrated mobile service environment to access infinite subscription services from the service providers

on the handheld devices. This environment uses the POST method of WAP as the communication

protocol to attach XML-RPC message, so as to access mass information services quickly from the service

providers on the handheld devices and have the advantages of cross-platform and thin-client.

3. Architecture of our Mobile Service Environment

Fig. 1 shows a simple architecture of mobile communication system. Clients are the front-end mobile

devices. Servers, including gateway and service provider, are in the back-end for providing services to the

clients. Clients can execute the procedure call and link to the server for data query, web pages browsing,

file downloading, etc.

Base Station Servers Mobile Devices

 5

Fig. 2 illustrates the architecture of MSE in mobile clients and shows the framework of each layer

in the environment. There are two main components in the top layer: desktop agent (DA) and service

agent (SA). DA is loaded by the virtual machine (VM) from server to handheld device once the handheld

device is booted up. It is used as the user interface and is responsible for local process management. SA

is provided by the service provider. When service provider releases a new service, the associated SA

must be provided simultaneously. When a user subscribes a service, the corresponding SA is downloaded

to the handheld device. In order to reduce the network traffic and the loading time of SA, we develop a

cache mechanism to keep the most recently used and frequently reused SA in the mobile handheld device

so as to reduce the downloading time and enhance the operation efficiency. The synchronization problem

of cache between the client and server is also taken into account in our MSE. The cache mechanism will

be described later.

Fig. 2. Architecture of MSE.

DA : Desktop Agent
SA︰Service Agent
SA︰Service Agent

in cache

Communication Layer

Serialization / Parsing

Encoding / Decoding

POST

. . . SA SA DA

Communication API

SA

Virtual Machine

Service API

 6

Fig. 4. Data structures of communication API.

Between DA/SA and virtual machine (VM) there is a service application interface (API). Virtual

machine (VM) layer contains a service API responsible for the communication to DA/SA, whose data

structures are shown in Fig. 3. An important task of virtual machine is to load DA from server in the

boot-up sequence. VM supports cross-platform, allowing SAs to execute on different operation systems

(e.g., Win32 TM, Palm OS TM, Windows CE TM, etc.).

Communication layer is the communication mechanism in the lowest layer. Within it, there is a

communication API responsible for communicating with VM, whose data structures are shown in Fig. 4.

The communication layer receives procedure calls from upper layers and POST message to the server.

POST uses standard remote procedure call, XML-RPC, as the communication mechanism to provide

information services between the client and server. There are three major components in the

communication layer: Serialization/Parsing, Encoding/Decoding, and POST. Serialization packs the

information into XML-RPC format; parsing extracts the information from XML-RPC format. Encoding

compresses the XML-RPC packet; decoding decompresses the XML-RPC packet. The methods of

compression and decompression will be introduced in Section 3.2. The POST component is responsible

for sending the XML-RPC packet to the server and receiving the result from it.

Fig. 3. Data structures of service API.

Struct Rpcaddr
{
char *url;
char *gateway;

};
UInt32 xmlrpc_client_post
(UInt16 refNum,char *result[],
Rpcaddr.url,Rpcaddr.gateway,
char *method name,char *format, ...)

public class Rpcaddr
{
private String url;
private String gateway;

}
Rpcaddr rpca= new Rpcaddr();
public String xmlrpc_client_post
(rpca.url,rpca.gateway,String method_name,
String format, ...)

 7

Fig. 5. Communication procedure between the client and server.

1

Fig. 5 illustrates the communication procedure between the client and server. The architecture of

client is as shown in Fig. 2. The server consists of XML-RPC Encoder/Decoder, XML-RPC Server and

Service Agent Library. The seven steps of communication procedure are explained as follows:

Step 1: Client chooses URL and issues a request to download DA from the server.

Step 2: Client issues the request of search service; the server returns the service list.

Step 3: Client subscribes a service; the server returns the result (succeed or fail).

Step 4: Client requests to list the services that have been subscribed; the server returns the service list.

Step 5: User chooses a service. If the corresponding service agent is not in cache, the client will send a

request to downloaded the SA from the server. Otherwise, the client launches the SA directly from

cache.

Step 6: SA sends XML-RPC procedure call to the server.

Step 7: Server responds the result.

1

Client

2

3

Server

XML-RPC

Encoder /

Decoder

Service Agent
Library

Communication
Layer

Virtual Machine
4

5

Serialization / Parsing

Encoding / Decoding

Post

Cache

XML-RPC

Server

Search Service

Subscribe Service

Get Service List

6

7

Response Post

D
ASA SA SA

Service API

Communication API

Download DA

Download SA

Post Data Request

 8

Fig. 6. XML-RPC Communication Architecture.

3.1 XML-RPC POST

XML-RPC is a mechanism of standard remote procedure call, which uses XML, a common readable

language with infinite number of formats, to exchange message between the client and server by HTTP

[15]. By standardized cross-platform approach, XML-RPC can make procedure call in many different

operating platforms over the Internet like Fig. 6. The data format is shown in Fig. 7.

Palm Client

Win32 Client

WinCE Client

XML-RPC
Request

XML-RPC
Response

XML-RPC Server

Request
Handler

Service Agent

Service Agent

Service Agent

Service Agent

 …

Fig. 7. XML-RPC Format.

Communication Protocol (WAP,HTTP,...)

MIME multipart/related

XML-RPC : Envelope

/XML-RPC : Envelope

XML-RPC : Header

 .
 .
 .

/XML-RPC : Header

XML-RPC : Body

 .
 .
 .

/XML-RPC : Body

 9

Table 2: Value list.

The follows is a simple example of XML-RPC request / response :

If the procedure call has parameters, the <methodCall> must contain a <params> sub-item. The

<params> sub-item can contain any number of <param>s, each of which has a <value>. <value>s can be

scalars whose type is indicated by nesting the value inside one of the tags listed in Table 2. A value can

also be of type <struct> or <array> (the interested readers please refer to [20]).

3.2 Data Encoding and Decoding

In order to reduce the traffic between the client and server, we propose a scheme of data encoding

and decoding (Fig. 8). Encoding is employed before sending a message and decoding is performed after a

message is received. In encoding phase, each tag of XML-RPC is converted into a binary code according

Tag Type Example
<i4> or <int> four-byte signed integer -12
<boolean> 0 (false) or 1 (true) 1
<string> ASCII string hello world
<double> double-precision signed

floating point number
-12.214

<dateTime.iso8601> date/time 19980717T14:08:55
<base64> base64-encoded binary eW91IGNhbid0IHJlYWQgdGhpcyE=

2. Response
HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT
<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>

<string>South Dakota</string>
</value>

</param>
</params>
</methodResponse>

1. Request
POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181
<?xml version="1.0"?>
<methodCall>
<methodName>
examples.getStateName

</methodName>
<params>
<param>
<value><i4>41</i4></value>

</param>
</params>

</methodCall>

 10

Fig. 8. Data encoding and decoding.

Table 3: Transformation table of tags in XML-RPC.

to the transformation table shown in Table 3. In addition, the SA to be downloaded will be encoded into

Base64 format. In the decoding phase, the above procedure is reversed.

Fig. 9 shows an example of XML-RPC, in which the original message in Base64 format is “my

password” (the encoding details is omitted due to limited space). After our encoding scheme, the result is

shown in Fig. 10. Note that the initial tag <?xml version=”1.0”?> has been encoded into 0x10. The

original number of bytes in Fig. 9 is 209, which has been reduced to 48 bytes in total in Fig. 10. Large

amount of transmission data was saved.

Tag
Encoding
Code

Tag
Encoding
Code

Tag
Encoding
Code

Tag
Encoding
Code

methodCall 0x3F int 0x2E faultString 0x1E /i4 0x01

methodName 0x3E boolean 0x2D /methodCall 0x01 /int 0x01

params 0x3D string 0x2C /methodName 0x01 /boolean 0x01

param 0x3C double 0x2B /params 0x01 /string 0x01

value 0x3B
dateTime.
iso8601

0x2A /param 0x01 /double 0x01

struct 0x3A base64 0x29 /value 0x01
/dateTime.
iso8601

0x01

array 0x39 member 0x28 /struct 0x01 /base64 0x01

fault 0x38 name 0x27 /array 0x01 /member 0x01

method
Response

0x37 data 0x26 /fault 0x01 /name 0x01

i4 0x2F faultCode 0x1F
/method
Response

0x01 /data 0x01

Encoder

/

Decoder

<?xml version="1.0"?>
<methodCall>

<methodName>
.
.
.

</methodCall>

0x10
0x3F
0x3E

.

.

.
0x01

 11

Fig. 9. An example of XML-RPC (209 bytes in total).

Fig. 10. The result of Fig. 9 after encoding (48 bytes in total).

3.3 Cache mechanism

As mentioned before, when we want to execute a service, whose SA will be downloaded from the

server. It is not efficient and time-consuming if the SA is highly reused. To deal with this problem, we

devise a cache mechanism in the client. Recently used and frequently reused SAs are kept in cache

memory, so that the users can obtain the services they want quickly.

To achieve this, two integer values: RU (recently used) and FR (frequently reused), are associated

with each SA in the cache. The RU of the first SA in cache is set to 1, and whose FR is set to 0. Hereafter,

the RU of newly coming SA will be set to one plus the largest RU in the cache. In other words, the RU of

currently used SA always is the largest among all the SAs in cache. When a new SA is loaded into cache,

its FR is initialized to 0. The value of FR will increase one if the SA in the cache is reused once. If the SA

of current service is not in cache and the cache has no enough space to accommodate this SA, the SA in

cache with the smallest sum of RU and FR will be swapped out. Besides, if the SA in cache is an old

version we must download the new version from server to replace its old copy in the cache. The detailed

algorithm of this mechanism is presented in Fig. 11.

10 37 3D 3C 3B 3A 28 27 53 65 72 76 69 63 65 2E 41 67 65 6E 74 01 3B 29 62 58 6C 77 59 58 4E 7A 64 32 39

79 5A 41 3D 3D 01 01 01 01 01 01 01 01

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>
<struct>
<member>
<name>Service.Agent</name>
<value><base64>bXlwYXNzd29yZA==</base64></value>

</member>
</struct>

</value>
</param>

</params>
</methodResponse>

 12

Fig. 11. The algorithm of our cache mechanism in loading a service agent.

Fig. 12 is an example of our cache mechanism. Assume that four service agents S1, S2, S3, S4

resided in the cache in sequence and that none of them has been reused. Hence their RUs and FRs are as

those shown in Fig. 12(a): S4 has the largest RU because it is the latest used service; all initial values of

FR are set to zero. Some situations should be discussed:

Case (1): If S5 (25k memory space assumed) is to be loaded into cache but the cache has no enough space

Step 1. If cache is empty, download the required SA from server. Set its RU to 1, FR to 0

and exit.

Step 2. If the required SA is not found in cache, go to Step 6.

Step 3. If the required SA in cache is not an old version, set its RU to the largest RU in

cache plus 1 and increase its FR by 1. Exit.

Step 4. Remove the SA of old version from cache. If the free space of cache can not

accommodate the SA of new version, remove the SA (may be more than one) in

cache that has the smallest sum of RU and FR until the free space can

accommodate the new version. If the RU of removed SA is the smallest one in

cache, subtract it from each RU of SA.

Step 5. Download the SA of new version from server. Set its RU to the largest RU in

cache plus 1. Set its FR to that of old version plus 1. Exit.

Step 6. Remove the SA (may be more than one) in cache that has the smallest sum of RU

and FR until the free space of cache can accommodate the required SA. If the

RU of removed SA is the smallest one in cache, subtract it from each RU of SA.

Step 7. Download the required SA from server. Set its RU to the largest RU in cache plus

1. Set its FR to 0. Exit.

 13

to accommodate it. In this situation, the SA with the smallest sum of RU and FR will be

swapped out until the free space of cache is sufficient to accommodate S5. In this example,

only S1 will be swapped out (if S5 is 35k, S2 must be removed also). Since S1 is the one

whose RU is the smallest, its RU value will be subtracted from each RU of SA in the cache.

The purpose is to avoid the RU value growing infinite. The result is shown in Fig. 12(b). After

S5 is loaded into cache, the result becomes Fig. 12(c). Notice that S5 has the largest RU.

Case (2): If S3 in Fig. 12(a) is reused. The RU of S3 will become the largest one in cache, and its FR is

increased. The result is shown in Fig. 12(d). If S3 is an old version, the new version will be

downloaded from server.

Case (3): Suppose that the cache configuration is now shown in Fig. 12(e) but not Fig. 12(a) and case (1)

happens. S2 will be swapped out because it has the smallest sum of RU and FR. But since the

RU of S2 is not the smallest one in cache, it is not subtracted from the RUs of other SAs. The

result becomes Fig. 12(f) after S5 is loaded.

SA RU FR Size
S1 1 0 10k
S2 2 0 35k
S3 3 0 15k
S4 4 0 20k

SA RU FR Size
S2 1 0 35k
S3 2 0 15k
S4 3 0 20k

SA RU FR Size
S2 1 0 35k
S3 2 0 15k
S4 3 0 20k
S5 4 0 25k

SA RU FR Size
S1 1 0 10k
S2 2 0 35k
S3 5 1 15k
S4 4 0 20k

SA RU FR Size
S1 14 11 10k
S2 15 2 35k
S3 16 2 15k
S4 17 2 20k

SA RU FR Size
S1 14 11 10k
S3 16 2 15k
S4 17 2 20k
S5 18 0 25k

(b)

(e)

(c)

Fig. 12. An example of our cache mechanism.

(d)

(a)

Remaining space of cache: 20k Remaining space of cache: 30k Remaining space of cache: 5k

Remaining space of cache: 20k Remaining space of cache: 20k Remaining space of cache: 30k

(f)

 14

Fig. 13. The Waba procedure call.

4. Implementation

We implement our mobile service environment (MSE) by the following development toolkits:

a. Waba SDK 1.12 and WabaVM 1.0 [16]

b. Code WarriorTM 7.0 [5]

c. Falch.net DeveloperStudio 2.6 for Palm OS [7]

d. Palm OSTM Emulator 3.3 and SDK 4 [12]

Waba SDK 1.12 and its class files are used to implement the desktop agent and service agent. The

virtual machine in our MSE is revised from WabaVM 1.0 using Code WarriorTM 7.0. Falch.net

DeveloperStudio 2.6 is employed to build the communication mechanism of XML-RPC in the lowest

layer. All the MSE applications are executed on the Palm OS emulator in this experiment.

The reason of using Waba as our implementation language is that Waba is a free open source

programming platform for small and mobile devices. With Waba, you can write one program that can run

on a Palm TM Pilot device, Windows CE TM device and on any machine that supports Java TM (either the

JDK 1.02, 1.1, 1.2 or 2.0). Waba virtual machines are available that are under 64K in size (including

foundation classes) and that run programs in less than 10K of memory. With a native Waba virtual

machine, the same program could run on a small device, such as the PalmPilot. Fig. 13 illustrates the

entire architecture of Waba procedure call. A series of procedure calls using native method of classes can

be built between Waba program and WabaVM to access the functions we defined. WabaVM invokes

procedure call to the communication layer and then returns the response message to the Waba program.

Native Method of Classes

Communication Layer

Waba Classes

Waba VM

Waba Program

 15

Fig. 14. System presentation.

5. Presentation

The purpose of this section is to demonstrate our implementation results. Fig. 14 shows samples of

our system operation. Fig. 14(a) presents the main menu of MSE, which includes four functions:

subscribing service, unsubscribing service, showing service list and changing password. “Subscribe” and

“Unsubscribe” allow mobile users to subscribe or unsubscribe a service. When the mobile user wishes to

subscribe a service, he can inquire the related services by entering a keyword. Fig. 14(b) shows this case.

“Service list” lists all of the services that the mobile user has subscribed as Fig. 14(c) shows. Then, the

mobile user can perform the service he chose. Fig. 14(d) shows the picture when “Stock” is the selected

service. The functions of stock transaction include “Query” and “Trade”. Both of them are real time. The

user can use “Query” to inquire the current transaction information of corporations in the stock market

(Fig. 14(e)). If he wishes to make a trade, “Trade” allows him to buy or sell a stock (Fig. 14(f)).

 (a) (b) (c)

 (d) (e) (f)

 16

6. Conclusion

In this paper, we propose an integrated mobile service environment (MSE) for the handheld devices

and implement a prototype of the framework. The system supports cross-platform, is equipped with

efficient cache mechanism and employs XML-RPC as communication mechanism to provide mobile

users infinitive services from the service provider. By using the encoding/decoding scheme on XML-RPC

between the client and server, the amount of data transmission is effectively reduced and the

communication time is shorten accordingly. Through the cache mechanism, the most recently used and

frequently reused SA are properly maintained to enhance the performance.

 We successfully realized a real-time stock transaction system. Users can access real-time

information in the stock market and make transaction (buy or sell) on the handheld device. In the future,

we intend to enhance the capability of MSE. Especially, in data transmission between the client and server

we hope to achieve the security supported by WTLS (Wireless Transport Layer Security [17]) which is

widely use in WAP (Wireless Application Protocol). It is foreseeable that the bandwidth of wireless

network will be getting larger and larger and makes the multimedia (i.e., text, picture, voice, animation,

movie, etc.) information appear on the mobile devices possible. This urges us to develop this service

environment toward more friendly, more powerful and more secure in the wireless circumstances.

References

[1] “4thpass Kbrowser,” 4thpass Inc., http://www.4thpass.com, 2000.

[2] M.J. Albers and L. Kim, “User web browsing characteristics using Palm handhelds for information

retrieval,” In Proc. of IPCC/SIGDOC 2000 on Technology & Teamwork, pp.125–135, Sept. 24-27,

Cambridge, MA, USA, 2000.

[3] “AvantGo.com 4.0,” AvantGo Inc., http://www.avantgo.com, 2001.

[4] “CAC 1.0,” CAMEO Accelerated Cyberspace Inc., http://www.mycameo.com, 2001.

[5] “Code Warrior 7.0,” Metrowerks Inc., http://www.metrowerks.com, 2001.

 17

[6] C. Colafigli, P. Inverardi and R. Matricciani, “ InfoParco: an experience in designing an information

system accessible through web and WAP interfaces,” Proc. of the 34th Annual Hawaii International

Conference on System Sciences, pp.3510–3515, Jan. 3-6, 2001.

[7] “Falch.net DeveloperStudio 2.6,” Falch.net Inc., http://www.falch.net, 2002.

[8] A. Garmash, “A geographic XML-based format for the mobile environment,” Proc. of the 34th Hawaii

International Conference on System Sciences, pp.3492–3500, Jan. 3-6, 2001.

[9] “Handspring Blazer 2.0,” Handspring Inc., http://www.handspring.com, 2001.

[10] C.W. Lan, C.C. Chien, M.Y. Hsieh and I. Chen, “A mobile e-commerce solution,” Proc. of

International Symposium on Multimedia Software Engineering, pp.215–222, Dec. 11-13, Taipei,

Taiwan, 2000.

[11] S.D. Maclean and D.J. Dailey, “Real-time bus information on mobile devices,” Proc. of 2001 IEEE

International Conference on Intelligent Transportation Systems, pp.988–993, Aug. 25-29, Oakland,

CA, USA, 2001.

[12] Palm OS SDK Reference, Palm Inc., http://www.palmos.com, 2001.

[13] “Palmscape English 3.1.3,” “Xiino 1.0.5,” ILINX Inc., http://www.ilinx.co.jp, 2001.

[14] X. Shan and J.J. Li, “A case study of IP network monitoring using wireless mobile devices,” Proc. of

Tenth International Conference on Computer Communications and Networks, pp.590–593, Oct.

15-17, Scottsdale, AZ, USA, 2001.

[15] W3C Consortium, http://www.w3.org, 2001.

[16] Waba Specification, http://www.wabasoft.com, 2001.

[17] WAP 2.0 Specification, http://www.wapforum.org, 2001.

[18] “Wapaka 2.0,” Digital Airways Inc., http://www.digitalairways.com, 2001.

[19] “WAPman (Palm) Classic 1.8,” EdgeMatrix Pte Inc., http://www.edgematrix.com, 2000.

[20] XML-RPC Standard Reference, http://www.XML-RPC.com, 2001.

[21] “YesPalm 1.1,” Yesmobile Inc., http://www.yesmobile.com.tw, 2001.

