
 1

Prioritized Traffic-Dependent Task Scheduling Approach in

Embedded Operation System

Jin-Chang Wang, Yau-Hwang Kuo, Shu-Mei Guo and Jar-Shone Ker*

Department of Computer Science and Information Engineering

National Cheng Kung University

and

Department of Electronic Engineering*

Kun Shan University of Technology

Abstract

This paper proposes a PRIoritized trafFIC-dependent (PRIFIC) task scheduling

scheme based on the traffic prediction approach. The PRIFIC manages network tasks

by dynamically allocating system resources, so that it can not only prevent the

network tasks from starvation state but also improve the utilization of system

resources. The PRIFIC is constructed by employing an eigentraffic feature extraction

model, a traffic prediction model, and an adaptive task scheduling model. Besides, an

additional reference algorithm which is called principal component analysis (PCA) is

adopted to reduce the dimensions of traffic features. It can efficiently reduce the

computation complexity of the proposed PRIFIC algorithm.

In summary, PRIFIC has the advantages of traffic prediction and QoS-enabling.

According to the simulation results, the proposed PRIFIC exhibits excellent task

scheduling performance in both constant traffic and random traffic applications.

 2

1. Introduction

In a network embedded device, the embedded operation system usually has more

than two kinds of tasks; one kind of tasks is the tasks for network communication jobs,

and the second kind of tasks is the tasks for other jobs, such as the system jobs and

user application jobs.

A task can be characterized by the following attributes,

 1. Priority: A task’s priority defines the scheduling preference of the task

relative to other jobs in the OS.

 2. Start time: The start time defines when a task can be executed. No task can

be executed before its start time.

 3. Finish time: The finish time of a task is its deadline. At a task’s finish time,

even if the task has not finished, it must be stopped.

These attributes must be properly assigned by a task scheduler. Besides, a task

scheduler is responsible to allocate system resources to each task according to the task

scheduling policy. So the task scheduling policy is very important in an operation

system.

Task scheduling policy is the task scheduling method of the embedded OS that

allows the scheduler adaptively manages the task service time according to different

policy, priority or reasonable system resource allocation such as system memory,

processing capability. Presently, the available task scheduling algorithms can’t

efficiently allocate the system resource for individual tasks, because they are not good

approaches for network embedded systems.

Round-Rabin scheduling [3] and priority scheduling [4] are well-known task

scheduling policies, they are ordinary and simple methods. When we apply these

scheduling policies in network systems, it is very possible to result in some serious

 3

problems, such as the data loss, because they don’t consider the effect of network

environment, for example, the burst and un-balanced heavy traffic. Hence, the task

scheduling algorithm must be extended to let the scheduling policy more suitable in

the multimedia network environment.

In general, the embedded network device usually has limited system memory and

limited processing capability that might cause undesirable problems for the

transmission and receive tasks, such as the transmission or receive buffer full, and the

packet loss. Because the characteristic of network traffic is unpredictable, and the OS

usually allocates few memory to the transmission or receive task, the scheduler must

has adaptive scheduling capability and policy to avoid task buffer full.

To guarantee the quality of service [2], all of the task scheduling algorithms

should not only devote to enhance the utilization of buffer but also to reduce the data

loss probability. When the buffer overflows, the incoming data will be discarded. On

the contrary, when the buffer underflows, no data is available in the receiver’s buffer.

When there is no available data in sender’s buffer to transmit, the receiver will starve.

As results of buffer overflow and underflow, some artifacts at the receiver end will be

easy to observe. To efficiently manage the task service time, we need to develop a

robust task scheduling mechanism to conquer all the problems mentioned above.

2. Prioritized Traffic-Dependent Task Scheduling

 In the PRIoritized trafFIC-dependent task scheduling (PRIFIC) structure, there

are three main models in the structure, including the Traffic Feature Extractor, Traffic

Predictor and Traffic-Dependent Task Scheduler. The structure of the Prioritized

Traffic-Dependent Task Scheduling is shown in Fig. 1.

 4

Fig. 1. Structure of Prioritized Traffic-Dependent Task Scheduling

2.1 Prioritized Network Tasks
Based on the requirement of Quality-of-Service networking on the multimedia

Internet, a prioritized characteristic is defined in IEEE 802.1P standard [1]. The IEEE

802.1P standard realizes the Quality of Service protocol on the MAC level. Today, the

Internet only provides best effort service. Since rise of multimedia communication

application, the importance of providing a quality of service mechanism ought not to

be neglected.

Today, the network devices supporting IEEE 802.1P standard [1] are more and

more numerous, so we propose a prioritized traffic-dependent task scheduling

algorithm where the priority is based on IEEE 802.1P standard. Our algorithm can

process not only prioritized packets but also normal packets. The normal packets will

be distributed to the lowest priority buffer that will let our algorithm adapt network

environment. According to the user application requirement, the user can define

proper priority for the different application.

Thus, our task scheduling algorithm is very elasticity, the priority of task depends

on the buffer size of each task, the meaning is that when the task buffer size is smaller

 5

than other tasks, the task has larger priority. Each task has different priority, and the

task scheduler will adaptively schedule all tasks according to the prioritized

traffic-dependent algorithm.

 If user defines k priorities, we must maintain k network tasks. The k network

tasks process different priority packets respectively, when the packets arrived different

network interface, the packet distributor must distribute the packets to appropriate

network task according to its priority.

2.2 Traffic-Dependent Task Scheduling

Presently, most frequently used task scheduling algorithms don’t suit the

multimedia communication network, such as round-robin task scheduling algorithm,

and priority task scheduling algorithm. The reason is that those algorithms don’t

consider the variation characteristic of traffic and the concept of Quality of Service.

In this paper, a traffic-dependent scheduling algorithm is developed to model the

relationship between the traffic states and the task scheduling policies. The traffic

states will be a compound statement that involves the number of bytes, the number of

packets, the average byte count of four latest sampled points, the byte count

differences of two adjacent samples among four latest sampling points. The traffic

predictor will use such traffic information to predict traffic flow, and the

traffic-dependent task scheduler will use the prediction result to adaptively schedule

the tasks.

2.3 Traffic Prediction Algorithm

In this section, we will discuss the proposed traffic prediction scheme. The

proposed traffic prediction scheme is called TPEE because it is based on the

eigenfeature extraction scheme [6].

The TPEE comprises three models. They are the Traffic Feature Extractor,

Traffic Predictor, and the Traffic-Dependent Task Scheduler.

 6

2.3.1 Traffic Feature Extractor

This model will extract traffic features in a sampling time, and it also provides

feature set to the traffic predictor. With sufficient traffic features and adopting robust

control scheme, the system resource will be utilized more efficiently. Fig. 2 shows the

block diagram of the traffic feature extractor.

Packet Distributor
(802.1p)

Packet Distributor
(802.1p)

Traffic M onitorTraffic M onitor

lI

)(1 tF

1I
2I

)(2 tF
)(tFk

1T
2T

kT

Time Sample

Fig. 2. Block diagram of traffic feature extractor.

As liiustrated in Fig. 2, the Packet Distributor can distribute all packets to

different priority tasks according to the priority information of each received packet

from network interfaces, 1I , 2I …., lI , and can provide traffic information to the

traffic monitor.

The traffic monitor is responsible to calculates the features)1(kF ,)2(kF …

)(mFk , where)(mFk represents the m-th traffic feature set, for each sampling period.

In our design, the traffic feature set, F, is represented in a six-tuple vector,

[1P 2P 3P 4P 5P 6P], so that we can perform some vector operations on F.

In this paper, the traffic feature set involves six features to represent. The first

feature is the number of packets between two sampled points, t can reveal the number

of packet variation state. The second feature is the number of packet bytes, it is the

traffic flow efor last sampling period, and it can reveal the traffic load variation state.

to task buffers

to traffic predictor

 7

The third feature is the average byte count of four latest sampled points, it can also

capture the variation of traffic flow. The remainder three features are the byte count

differences of two adjacent samples among four latest sampling points. The intention

of these differences is the traffic variation among four latest sampling points; it can

reveal the traffic variation. Once the defined traffic features are extracted, we can use

the traffic feature vectors to derive the Eigentraffics Feature vectors, with some vector

operations.

2.3.2 Calculating Eigentraffics and Traffic Prediction

The idea of using Eigentraffics features was motivated by a technique developed

by Sirovich and Kirby [6] for efficiently representing pictures of faces using

eigenfaces analysis. They argued that a collection of face image can be approximately

reconstructed by storing a small collection of weights for each face and a small set of

standard pictures.

 It occurred to us that if a multitude of traffic feature can be reconstructed by

weighted sums of a small collection of characteristic features, then an efficient way to

learn and predict the traffic can be used to build the characteristics-specific traffic by

comparing the feature weights with the weights of known individuals.

The following steps summarize the prediction process:

1. Initialization: Acquire the history set of traffic feature and calculate the

Eigen-traffics, which define the Eigentraffic space.

2. When a new traffic feature is encountered, a set of weights based on the

input traffic feature and the M traffic feature set must be calculated by

projecting the input traffic onto each of the Eigentraffics.

3. Determine the most similar feature by checking the shortest distance between

the feature and other features in the feature space, and use the most similar

feature to determine the next feature in feature space.

 8

4. If the prediction error, i.e., the difference between prediction result and real

traffic flow, is seen several times over the tolerable bound, the Eigentraffics

must be re-calculated to ion scheme.

The Eigentraffics are a set of orthonormal basis vectors computed from a

collection of history traffic features. Let the traffic feature F be a two–dimensional

N by N array of intensity values, or a vector of dimension 2N .A traffic feature of

size 1 by 6 describes a vector of dimension 6, or, equivalently, a point in

6-dimensional space. We can find the vectors which account for the distribution of

traffic feature within the entire traffic feature and vector is of length 2N , describes an

N by N traffic feature, and is a linear combination of the original traffic feature.

Because these vectors are the eigenvectors of the covariance matrix

corresponding to the original traffic features, and because they are traffic features

similar in appearance, we refer them as “Eigentraffics”.

Let the history set of traffic features be mjjjj FFFF ,3,2,1, ,....,,, and the average

feature of the set is defined by ∑
=

=
m

i
ij F

m
F

1

1 , Each feature differs from the

average by the vector jijj FF −= ,φ , and PCA [7] is applied to the set of

history traffic features to find the N eigenvalues of the covariance matrix

∑
=

−−
m

i

T
jiji FFFF

m 1
))((1

 (1)

where ∑
=

=
m

i
ij F

m
F

1

1 is the average of the ensemble. The eigenvalues of the

covariance matrix are calculated. Let kj ,Φ be the eigenvector corresponding to the

kth largest eigenvalue. Each history traffic feature jF is projected on the eigentraffic

space as a point

 9

)(, jij
T

ji FFx −Φ= (2)

where],,,[,2,1, njjjj ΦΦΦ=Φ L , and is used as a prototype feature point.

Given a query traffic feature cF , which will be used to predict the next traffic

feature. At first, its projection on the eigentraffic space is calculated as

)(jc
T

jc FFx −Φ=

Let 1x , 2x ,…, mx be M distinct prototype feature points belonging. The feature

Euclidean distances between cx of the query and each prototype feature point ix are

calculated for each query point. The distances are sorted in ascending order, each

being associated with a similar identifier. The feature distance is the first rank distance

),(),(
1* iMji xxdMinxxd

≤≤
= (3)

The first rank gives the traffic prediction composed of the best matched feature

point *i
x . The best matched feature point *i

x has the most similar feature to the

query point x , then we select
1*+i

x to be the final prediction result.

After we get the prediction result, we will compare the result with the real traffic

flow. When the prediction error exceeds the tolerable bound, we will perform the

Eigentraffics re-calculation algorithm.

2.3.3 The Eigentraffics Calculation Scheme

In our algorithm, we define three parameters: the threshold of tolerable

prediction error (maxE), threshold of successive times of bad prediction (ε), and

tolerable recalculation rate (β). The first one, maxE , is a maximum tolerable

threshold parameter; the second one, ε , is tolerable successive times of prediction

error over threshold parameter. When the prediction error exceeds maxE and the

successive times of prediction error is greater than β , we must add ε feature sets

into the history set and then we must re-calculate the eigentraffic space.

 10

In our design, the algorithm has three stages to adjust the size of history set, m.

In the fist stage, the size of m will increase with ε sets per one re-calculation until

the re-calculation count is less than β . After the first stage finished, the second stage

will start. In the second stage, the size of m will be fixed. When ε sets are added to

the history set per each re-calculation, the algorithm will also omit the forefront ε

sets in the history set, but if the algorithm finds that the status doesn’t have satisfied

β condition, the second stage will stop and the algorithm stage will reenter first stage,

if the status has satisfied β condition yet, the algorithm stage will enter the third

stage, the third stage is that when algorithm status has satisfied once β condition, the

m will decrease of forefront ε history sets, and if the algorithm finds that the status

doesn’t have satisfied β condition, the third stage will stop and the algorithm stage

will reenter first stage.

2.4 Adaptive Task Scheduling

 The Task Scheduler unit of the proposed PRIFIC model is governed by an

adaptive scheduling algorithm. In the algorithm, we do adaptive scheduling according

to different priorities and variations in the traffic flow.

We use the eigentraffic prediction to predict next possible arriving traffic load,

we consider that the next arriving traffic that can have large influence on tasks, so we

will predict next arriving traffic feature according to recently arrived traffic load. That

is, a set of traffic features)(),.....,2(),1(),(miFiFiFiF jjjj −−− , extracted during the

past sampling time periods),(),......,2(),1(),(miTiTiTiT jjjj −−− will be used to

predict the number of traffic load)1(+iFj which will arrive in the next time period

)1(+iTj .

Since the traffic load is just an element of network traffic feature, once we get the

 11

feature)1(+iFj , we can know the traffic load,)1(+
∧

iAj . In addition, we have to find

the possible queue length at the end of)1(+iTj with the following expression:

))]()1()(,0max(,min[)1(iCiAiQBiQ jjjjj −++=+
∧∧

 (4)

where jB is the total queue size of task j ,)(iQ j is the measured queue length of

task j at end of time period)(iTj ,)1(+
∧

iAj is the predicted traffic load of task j

in the next time period)1(+iTj and)(iC j is the number of bytes of task j to be

served in one sampling time period.

Equ. 5 is then used to find the regulation parameter)1(+
∧

ir j , which represents

the estimation of the proportion of service time to serve the task j in time

period)1(+iTj .

)1()1()1(+×+=+
∧∧∧

iqiwir jjj (5)

where)1(+iw j is a weighting function,

)1(1

1)1(
+−+

=+ ∧

∧

iQB
iw

jj

j (6)

and)1(+
∧

iq j is the queue state,

j

j
j B

iQiq)1()1(+
=+

∧
∧

 (7)

In our design, we define a buffer size base, BSB, and the buffer size of priority

level 1 is BSBk *1 , the buffer size of priority level 2 is BSBk *2 , the buffer size of

priority level 3 is BSBk *3 , the buffer size of priority level 4 is BSBk *4 , the buffer

size of priority level 5 is BSBk *5 , the buffer size of priority level 6 is BSBk *6 , and

11 =k , 22 =k , 33 =k , 44 =k , 55 =k , 66 =k .

 12

Suppose there are k network tasks, so we have k transmission buffers, and

therefore, we can get)1(and),...,1(),1(21 +++
∧∧∧

iririr k from equation (5). Finally, we

can use equation (8) to allocate the available processing capability, APC, to each task

)1(and),....,1(),1(21 +++ iCiCiC k respectively.

∑
=

∧

∧

×=+ k

j
j

k
k

r
rCAiC

1

 P)1((8)

3 Analysis of Dynamic Prediction Algorithm

In the real network environment, the random traffic is a common used traffic

model. Regarding to random traffic, the number of bytes and number of packets

between two samples are characterized by two random variables

We consider that each task buffer has random arrival rate, the observation of

traffic rate at time t is represented as)(tλ , where)(tλ is the random variable of

traffic rate. To run the simulation, we set the parameters as the values shown in Table

1 and simulate with the testing data in Fig. 3. Table 2 summarizes the corresponding

simulation results. In our experiments, the testing data has 2000 sampling points and

after the 1100th sampling points, the testing data within 0 and 900 are duplicated, so

after the 1100th sampling points, we can explore the inside testing performance of the

prediction algorithm.

 Fig.3. Testing data for simulation.

 13

Table 1. Simulation parameters

Table 2. Summary of simulation results of reduction degree

After analyzed the simulation results, we find some exciting results. The inside

testing has smaller prediction error than that of outside testing. When an unknown

traffic flow is fed to our prediction algorithm, the traffic information will be extracted,

and stored in the history set. The reduction degree doesn’t have obvious influence in

the mean prediction error, but it has obvious influence in the simulation run time, size

of the history set, and number of re-calculation times. It saves about thirty percents of

simulation run time under the maximum reduction degree, with slightly increasing in

the size of the history set and the number of re-calculation times.

If we reduce the feature degree, we know that the traffic feature information

must have some loss. When the algorithm performs prediction, the larger reduction

degree is, the approximate result may be led to larger error. However, according to the

simulation results, the prediction error doesn’t directly proportion to reduction degree;

it mainly depends on the actual traffic flows. In the following paragraphs, we do

further experiments to get the relations among the important parameters maxE , ε and

the mean prediction error. For such an experiment, β equals 3, the reduction degree

Parameter Value
The initial size of history data set (m) 0
Tolerable recalculation rate (β) 3
Threshold of tolerable prediction error (maxE) %5±

Threshold of successive times of bad prediction(ε) 2

Reduction Degree 0 1 2 3 4 5

 Size of history set 425 425 421 473 471 479

Run time (second) 31.3 27.8 25.1 26.1 24.4 20

Mean prediction error (%) 5.2 5.3 5.4 5.8 5.9 5.9

Re-calculation times 211 211 209 235 234 238

 14

is 5, and the testing data is shown in Fig 3. The simulation result is summarized in

Table 3.

Table 3. Relations among the mean prediction error, maxE and ε .

According to Table 3, if we want to get more precise prediction result, the

parameters maxE and ε must be set to smaller number. However, such a setting will

lead to larger size of the history set and higher re-calculation possibility.

In our design, the maxE is %5± and in the following, we do further

experiments to get the relations among the important parameter ε , the mean

prediction error, run time and re-calculation. For such an experiment, β equals 3,

the reduction degree is 5, and the %5max ±=E and the testing data is shown in Fig. 3.

The simulation result is summarized in Table 4

Table 4. Simulation results for various ε (with %5max ±=E)

According to Table 4, if we want to get least prediction speed, the parameters ε

must be set to larger number. However, such a setting will lead to larger mean

prediction error. In our design, we consider the prediction algorithm must be finished

 %2max ±E %5max ±=E %8max ±=E

1=ε 3% 4.9% 7.4%

3=ε 4.7% 6.5% 26%

5=ε 6% 26% 27%

8=ε 7% 40.2% 42%

 ε

1 2 3 4 5 6

Size of history set 668 479 316 115 28 15

Run time (second) 54.5 20 6.2 4.5 2.5 1.6

Mean prediction error (%) 4.9 5.9 6.5 7.9 26 39

Re-calculation times 665 198 87 40 48 53

 15

in a short time and the prediction error must be restricted in the smaller value, the

value of ε is set to 2.

4 Simulation Results and Performance Evaluation

The following simulations will evaluate the performance of PRIFIC comparing

with priority task scheduling (PTS) [4] and fairness task scheduling (FTS) [3]. We

will compare the mean loss rate, mean buffer length, and mean turnaround time under

the limited memory size and limited processing capability for PREFIC, PTS, and

FTS.

The simulation environment has six independent network interfaces and the

packet distributor distributes the arriving packet to different task, according to IEEE

802.1P priority [1].

The required information of different network task generated by the Poisson

process are the packet size and number of packets. Let a traffic load arrival, {TL(t), t

≥ 0}, be a Poisson process with rate rλ and let a packet arrival, {PA(t), t ≥ 0}, be a

Poisson process with rate pλ . Let 0< 1x < 2x <….. be the successive packet arrivals.

From above definition, we first have the distribution of received traffic load rate

of a class buffer given by

 t
n

rettP λ−−=≤ 1)(for t ≥ 0 (9)

and the distribution of received packet rate of a class buffer given by

t
n

pettP λ−−=≤ 1)(for t ≥ 0 (10)

In the definition of packet arrivals and traffic load arrivals, the traffic flow is

defined as a sequence of number of bytes, and number of packets between the two

adjacent sampling times is regarded as a random variable with an exponential

distribution.

 16

We use equ. 9 and 10 to generate 6 testing traffic flows, each testing traffic flows

have 100 sampling points. We have 6 history traffic flows and those history traffic

flows are extracted in past history time, each history traffic flow has 100 traffic

features.

In this simulation, we use the largest reduction degree of traffic feature, because

we consider the algorithm must be finished in the shortest time, so the reduction

degree is 5. The simulation parameters are shown in Table 5.

 Table 5. Simulation parameters

In this simulation, when the available memory size is 63K bytes, we get the

results shown in Fig. 4. The figure indicates that our algorithm has smaller processing

capability requirement than the other two algorithms, and according to Fig. 4(c), we

know that if available processing capability is greater than 7500 bytes/ms, the mean

loss rate approximates zero, so we select the value of 7500 bytes/ms as the available

processing capability value for the rest simulations in this section.

When the available processing capability is fixed to 7500 bytes/ms, the

simulation results for the required memory are shown in Fig. 5. Fig.5(c) indicates that

when we allocate about 7000 bytes memory to buffer 5, there is no any data loss on

each buffer. Under our buffer allocation scheme, we need (7000/2) x 21 = 73500 bytes

for the overall available memory. Fig. 5(c) indicates that when we allocate over 20K

bytes to buffer 1, the data loss still exists for the PTS algorithm. Fig. 5(a) indicates

Parameter Value

Size of initial history data set (m) 100

Reduction degree (RD) 5

Tolerable recalculation rate (β) 3

Threshold of tolerable prediction error (maxE) %5±

Threshold of successive times of bad prediction (ε) 2

 17

that when we allocate over 10K bytes to buffer 5, the data loss still exists for the FTS

algorithm. Comparing Fig. 5(a), Fig. 5(b) and Fig. 5(c), we know that our algorithm

has the smallest available memory requirement than the other two algorithms.

Fig. 4. Mean loss rates for the FTS, PTS and PRIFIC algorithms under different

processing capabilities.

 Fig. 5. Mean loss rates for the FTS, PTS and PRIFIC algorithms under different

available buffer size conditions.

Fig. 6 shows the simulation results of the mean buffer length. It indicates that our

algorithm usually has the longer mean buffer length than the other two algorithms, but

when the buffer size is greater than a certain value, our mean buffer length will

 18

approximate to constant length, the other two algorithms don’t have this feature and

we can use the feature to guarantee the turnaround time.

Fig. 6. Mean buffer length for the FTS, PTS and PRIFIC algorithms under different

available buffer size condition.

Fig. 7. Mean turnaround time for the FTS, PTS and PRIFIC algorithms under

different available buffer size condition.

Fig. 7 illustrates the simulation results of the mean turnaround time. It indicates

that our algorithm usually has larger mean turnaround time than the other two

algorithms, but when the buffer size increase over a certain value, our mean

 19

turnaround time will approximate to constant time, the other two algorithms don’t

have this feature and we can use the feature to guarantee the turnaround time.

5. Conclusions

In this paper, we have presented a prioritized traffic-dependent task scheduling

algorithm called PRIFIC. PRIFIC adaptively adjusts the available resource to respond

with respect to the variance of the incoming packet rate. According to the buffer state

and the traffic features from a traffic feature extractor, PRIFIC can adaptively adjust

the service rate for each task. A reference algorithm called the principal component

analysis (PCA) [7] is adopted to reduce the degree of traffic feature; it can efficiently

reduce the computation complexity of the PRIFIC algorithm.

For the viewpoint of operating systems, in order to support the QoS feature,

IEEE 802.1P standard can be adopted. So that higher level applications do not need to

care about the QoS issue.

According to the simulation results about average data loss rate, average buffer

length and average turnaround time, PRIFIC indeed has the following advantages,

1. more efficient utilization of available memory space,

2. more efficient utilization of available processing capability,

3. lower data loss rate, and

4. guaranteed turnaround time.

To improve the performance of PRIFIC, we may need a mechanism to adjust the

algorithm parameters maxE , ε andβ . Furthermore, if we can dynamically determine

the buffer size of each task according to different delay requirement, the QoS

functionality of PRIFIC will be improved.

 20

References

[1] Lidinsky, W., IEEE Standard P802.1D Information technology

Telecommunications and information exchange between systems - Common

specifications - Part 3: Media Access Control (MAC) Bridges: Revision,

24.11.1997 [defered 14.3.1999]

[2] Shenker S. et. al., Specification of Guaranteed Quality of Service. RFC 2212,

September 1997.

[3] Yu-Chung Wang, Kwei-Jay Lin, “Implementing a General Real-Time Scheduling

Framework in the RED-Linux Real-Time Kernel,” IEEE Real-Time Systems

Symposium 1999, 246-255.

[4] C.L. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment,” Journal of the ACM, 20(1), 46-61, 1973.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair

Queueing Algorithm,” Journal of Internetworking Research and Experience, 3-26,

October 1990.

[6] M. A. Turk and A. P. Pentland, “Eigenfaces for recognition,” J. Cognitive

Networks, vol. 3, no. 1, 71-86, Mar. 1991.

[7] K. Fukunaga, Introduction to statistical Pattern Recognition , 2nd ed. Boston, MA:

Academic, 1990.

[8] L. Sirovich and M. Kirby, “Low-dimensional procedure for the charactization of

human faces,” J.Opt. Soc. Amer. A, vol. 4, no 3, 529-524, Mar. 1987.

[9] John Wiley and Sons, Queueing Systems, WILEY, 1997.

[10] M. Barabanov and V. Yodaiken, “Introducing Real-Time Unix,” Linux Journal,

No. 34, Feb 1997.

[11] Y.C. Wang and K.J. Lin, “Enhancing the real-time capability of the Linux

kernel,” Proc. of 5th RTCSA’98, Hiroshima, Japan, Oct 1998.

[12] J. Hyman, A Lazar, and G. Pacitici, “Real-Time Scheduling with quality of

Service Constraints,” IEEE JSAC, vol. 9, no. 9, 1052-63, September 1991.

