Faster combinatorial approximation algorithms for multi-

O

commodity flow problems and its application’

Suh-Wen Chiou

Department of Information Management, National Dong Hwa University

1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 974, Taiwan

Abstract

A multi-commodity flow problem is to find a feasible flow that satisfies the
demand of each source to the sink in a directed network while the flow on each edge is
within its capacity. In this paper we implement polynomial-time combinatorial
approximation algorithms for e -optimal multi-commodity flow problems. A new
algorithm Optima is proposed and good test results are obtained. Application of Optima
to a system-optimized multi-user network flow problem is given where substantially
good test results have shown the capacity of Optima in dealing with problems of

multi-commodity flow associated.

Keywords : combinatorial optimization algorithms, minimum-cost flows, multi-

commodity flow.

! Paper submitted to 2002 International Computer Symposium (ICS 2002) Workshop on Algorithms and
Computational Molecular Biology

1. Introduction

A multi-commodity flow problem is to find a feasible flow that satisfies the
demand of each source to the corresponding sink in a directed network while the flow
on each edge is within its capacity. The concurrent flow problem is an optimized
version of the multi-commodity flow problem, where the objective is to find the
maximal value of the fraction z such that the least z percent of each demand can be
assigned while for every edge the capacity constraint is satisfied. Throughout this paper,

we use n,m and k to denote the number of nodes, edges and commodities.

Leighton, Makedon, Plotkin, Stein, Tardos and Tragoudas [3] prpposed a
polynomial-time combinatorial approximation algorithm for the concurrent flow

problem. In Leighton’s paper, given the precision value €, the running time of the

deterministic version is in O(k’e*log(—)+k’lognlogk) minimum-cost flow
£

computations and the running time of the randomized version 1is in

O(ke™ 10g(£)+k10gnlogk) minimum-cost flow computations. Goldberg [2] gave a
€

natural randomization strategy and simplified in O(ke™’ log(£)+k10gn10gk)
£

1

minimum-cost flow computations by a fraction of € . Radzik [7] proposed a fast

deterministic approximation algorithm and revised the deterministic version of
. _ n .. .
Leighton by O(ke*log(—) + klognlogk) minimum-cost flow computations, where a
£

tighter bound for the multi-commodity flow approximation can be computed

deterministically.

Leong, Shor and Stein [4] implemented Leighton’s algorithm on a medium sized

network to solve the multi-commodity flow problem. Comparisons of the effectiveness
for Leighton’s method over the other two conventional algorithms: linear programming
and interior point are reported. In this paper, following the work of Leighton and
Radzik, we implement the two best known polynomial-time combinatorial
approximation methods on a large scale test networks. An optimization based method
for searching the optimal fraction of each commodity demand is proposed and good test
results are also given. Application of the optimized method to the problem of transport
studies (Chiou, [1]) is presented. The remaining of this paper is organized as follows. In
Section 2, the preliminaries and the definitions for multi-commodity flow problem are
given. Algorithms of Leighton’s (Decongest) and of Radzik (Improve) are respectively
described in Section 3. In Section 4, an optimization based search method (Optima) in
determining the optimal fraction of each commodity demand is proposed. In Section 5,
implementations of the best two known combinatorial approximation algorithms for
multi-commodity flow problems are made. Also test results for our optimized search
method-Optima are given. A system-optimized multi-user network flow is illustrated
when Optima applies to the problem of transport studies. In Section 6, conclusion and
discussions for solving the multi-commodity flow problem and its application are

made.

2. Preliminaries and Definitions

Let G =(V,E) denote a directed network, where v and E respectively represent
the set of nodes and edges. An input instance is the capacity function for each edge
u:V — R". For the specification of each commodity 7,1 <i <k, it contains the source

s;, the destination ¢ and the nonnegative demand d,. For each commodity flow f;,

where f,:E — R", the flow conservation on each edge must be satisfied. For each

node vinV,

d v=t

1 1

D filwv)= Y fivu)=1-d, v=s @)
(u,v)eE (viu)eE 0 Othe]’WiS@

Let f(e)= Z fi,(e),Vee E, the -capacity constraint must be satisfied:

1<i<k
Vee E, f(e) <u(e). Since the concurrent flow problem is an optimized version of the
multi-commodity flow problem for which the fraction z is maximized such that the

flow with zd,, is feasible, in other words, the dual problem for the concurrent flow

problem is to find the minimum congestion A such that the flow with d,, is feasible

Vee E

when the capacity is Au(e),Vee E . Let Ae) = %,l = MaxA(e). A" is the optimal
u(e

value of A, in this paper, we focus on the € -optimal solution to the concurrent flow

problem, where a multi-commodity flow is € -optimal if A< (1+¢&)A". Given a

parameter o, a length function /: £ — R" can be defined as an exponential function

form of congestion (Shahrokhi and Matula [9])
I(e) = exp(of (e)),Vee E ()
An objective function therefore can be defined as

@ =Y l(e)u(e) €)

ecE

With respect to Leighton et al. and Rdazik, the following mathematical conditions are

given straightforward without proof.

Lemma 1. Let C, be the cost of concurrent flow for commodity i, where

C = Z f.(e)l(e) and C; (A)be the value of minimum-cost flow with congestion A,
VeeE

then

Y C(A)< D C <D 4)

1<i<k 1<i<k

Lemma 2. For any length function /, there exists a multi-commodity flow satisfying

capacity Au(e),Vee E such that

YC(M<AD (5)

1<i<k
Theorem 3. (relaxed optimality conditions, Radzik) For A > A" given a precision
e< %, for a multi-commodity flow f satisfying capacity Au(e),Vee E such that for

every edge e

Ae) < (1 + g)z (6)

and

(1—% o< ¥ CR) 7

1<i<k

then multi-commodity flow f is € -optimal.

3. Polynomial-time combinatorial algorithms

Two best known polynomial-time combinatorial algorithms for & -optimal
concurrent flow problem are given. Decongest was proposed by Leighton et al. and

Improve was presented by Radzik after modified by Goldberg.

3.1 Decongest

For a given multi-commodity flow f with congestion A, and a precision value &,

let parameter o = 20+e) ln(ﬁ} At each iteration a ‘bad’ commodity flow f, was
o€ €
chosen such that
N A
q-qmpwq+%¢)

Build an auxiliary minimum-cost flow problem and find a minimum-cost flow f;’

which minimizes C;(A)in the auxiliary network. Use a given fraction value

0,0 =—— compute the updated flow for each edge e Dby

. : : : A
f.(e) « of, (e)+(1-0) f,(e) . Repeat the forgoing step until the congestion A < 70 or
(1+9e =X
3.2 Improve

Given an initial current flow and a precision value ¢, the purpose of this algorithm
is to improve the concurrent ‘bad’ commodity flows and reduce the gap between the
commodity flow cost and the one in the minimum-cost flows. Radzik presented similar

steps as Decongest, which is stated below. Let f = (f,, f,,..., f,) be the concurrent flow

with congestion A, at the beginning of one iteration of the outer loop. For iteration j,
e .. & . .
within capacities lou(l + E) and with respect to current length function, we compute a

minimum-cost flow £, of commodity flow f,. If commodity flow f; is a ‘bad’ flow,

1

that is,

C,—C (1) =eC, (€))

A strategy to improve current ‘bad flow’ of commodity i can be given as

;= f+olf =) (10)

where o =& and o = 3(H_g)ln m .
4ol A€ €

Thus at iteration j the current flow becomes) = (fl U S S J Update

the new length function [=/(f"’) and the corresponding objective values

oV :(I)(f“)), then compute the next ‘bad’ commodity flow. Continue such

computation for each commodity for iterations until the congestion value is not greater

2
than (1 - %)ﬂo or the objective value @ fails to decrease by a factor of (1 - %J Then

an € optimal flow can be computed by O(ke™ log(ﬁ) + klognlogk) minimum-cost
£

flow computations.

4. Optimal search for € -Optima

Following the algorithms of Decongest and Improve, we can find an
approximation concurrent flow. Given a precision value €, the polynomial-time
computations are guaranteed by O(k log(k) log(n)) when the number of commodities
increase. However, in relation to the way in deciding the optimal fraction of the convex
combination for minimum-cost flow and the ‘bad’ commodity flow, a given formula
without ant optimal analysis was used for both of the two algorithms. In this section, a
new algorithm Optima is proposed below by employing the bisection method to find

7

the optimal value of the fraction o of each commodity flow f, without increasing

current computations. The pseudo code for Optima is given in Table 1.
For a given concurrent flow f and a precision value €, compute the initial

congestion A,. Let o = T ln(—), compute the initial value of the objective function
£
0

® . For each commodity flow f;, find the minimum-cost flow f, and check if this

commodity flow is a ‘bad commodity flow’, e.g. C,—C; (1) = eC,. If so, do Optima-

o, and the commodity flow can be updated as
fie fito(fi = 1) (11)
Termination conditions are used as the same as given in Improve.
The Optima-o search procedure is conducted as follows.

Let [al,bl] be the initial interval of uncertainty, and let 7 be the allowable final

interval of uncertainty. Let » be the smallest positive integer such that

1Y 7
(2) Sbl_al (12)

At iteration j:

a +b, . dd(o)
Step 1. Let 0, = 5 . and evaluate the first derivative, y I~ of ®. If
O .
J
dd(o) dP(0))
d—j =0, stop and o ; is optimal. Otherwise, go to step 2 if ——=>0,
o, _
J J
_.dd(o))
and go to step 3 if ——2=<0 .

de

Step 2. Let a,,, =a, and b,,, =0, go to step 4.
Step 3. Let a,,, =0, and b,,, =b,, go to step 4.

Step 5. If j =w, stop. The optimal value of ¢ for the minimum objective function ®

with respect to commodity flow f is within the interval [a,,,,b,,, |. Otherwise,

w+l1

increase j by 1 and repeat step 1.

5. Implementations and application

In this section, algorithms of Decongest, Improve, Improve-variant and Optima
were tested for theoretical bound examination and implementation efficiency.
Application of Optima to a problem of system-optimized multi-user network flow in
transport studies was illustrated. Implementations conducted below were made on Sun
SPARC ultra 30 with the operating system Unix SunOS 5.5.1. Computer programs

were coded in C++ language and complied with GNU g++ 2.8.1.
5.1 Implementations

Algorithms of Decongest, Improve and the Improve-variant were implemented on
the test networks which were produced by ‘NetworkGen’. ‘NettworkGen’ [6] is a
network generator which has been developed under the environment provided by
LEDA (Mehlhorn, Naher and Uhrig [5]) and written in ¢c++ computer language. In this
subsection, we firstly examined the polynomial-time bound for the increase in the

number of commodities and the & value. We extended the algorithm Improve to

2

Improve-variant by giving the value of o as as proposed by Radzik [8]. In

logn

figures 1-3, we tested algorithms of Decongest, Improve and Improve-variant at the

size of networks denoted by n/m/k, which is short for n =50,m = 250, and for the
variety of number of commodities £ =10,40,50,70,90,100,120,150,180,200 . As it seen
from figures 1-3, the computation times for the increase in the number of commodities
were clearly below the polynomial-time bound, which agreed with theoretical
prediction of the polynomial-time bound in the number of commodities. Given a

variant of the precision value, e.g. € € [0.01,0.1], results shown in figures 4-6 have been

strongly confirmed to the theoretical bound of O(g7).

Furthermore, following earlier discussions for Optima, we tested the four
algorithms of Decongest, Improve, Improve-variant and Optima on large scale
networks of 100/1000/200 and 200/600/500, for computing the efficiency in decreasing
the value of congestion and the objective function in terms of the number of
computations achieved. As it seen in figures 7-10, algorithm Optima gave substantially
good results as compared to Decogest, Improve and Improve-variant for € -optimal

convergence.
5.2 Application

A problem of system-optimized multi-user network flow is to find an optimal

network flow where a given objective function in terms of the sum of total users’

travel costs is minimized. Following the work of Chiou, we applied the algorithm of
Optima to solve the system-optimized network flow problem. Good results have been
shown in figures11-12 for the values of congestion and the objective functions in a
variety of networks 100/200/100, 100/200/120, 100/200/140 and 100/200/160. As
found in figures 11-12, the number of computations for each run are less than 50 and the

average of each running time is less than 0.1 second cpu time.

10

6. Conclusion and discussions

In this paper, we implemented Leighton’s Decongest, Radzik’s Improve and the
extension of Improve-variant on a large scale of test networks. As expected, the
examined results are in agreement with theoretical prediction in polynomial-time
bound for the number of commodities and the precision values. In order to decide the
optimal value of ¢, we proposed algorithm Optima and tested its computing efficiency

by comparing the two best known combinatorial algorithms.

Good results have been obtained. Also application of algorithm Optima to a
problem of system-optimized multi-user network flows has been done. Again,
encouraging results have been shown the capacity of algorithm Optima in solving the
application problems of multi-commodities in transport studies. Further work needs to
be taken for exploring the computation complexity when apply to different problem by

Optima.

7. Acknowledgements

We are grateful to Dr. Radzik for his discussions on the earlier version of this work
when the author conducted her post-doctorships at Department of Computer Science,

King" s College London, which granted by U.K. EPSRC. This work reported has been

sponsored by Taiwan National Science Council via grant NSC 90-2416-H-036-001.

8. References

(11 S-W. Chiou, “Optimization of area traffic control for equilibrium network flows”,

Transportation Science, 33, pp. 279-289, 1999.

21 A.V. Goldberg, “A natural randomization strategy for multicommodity flow and
related algorithms”, Information Processing Letters, 42, pp. 249-256, 1992.

11

(3]

T. Leighton, F. Makedon, S. Plotkin, C. Tardos and S. Tragoudas,” Fast
approximation algorithms for multicommodity flow problems”, Journal of

Computer and System Sciences, 50, pp. 228-243, 1995.

T. Leong, P. Shor and C. Stein, “Implementation of a combinatorial
multicommodity flow algorithm” in DIMACS series in Discrete Mathematics and
Theoretical Computer Science, Vol 12, (American Mathematical Society,

Providence, RI, 1993), pp. 387-405.

K. Melhorn, S. Naher and C. Uhrig, The LEDA User Manual, version 3.8. Max-

Planc-Institut fur Informatik, 66213 Saarbrucken, Germany, 1999

NetworkGen, software developed by Supply Chain Management Lab, Department

of Information Management, Tatung University. 2000

T. Radzik, “Fast deterministic approximation for the multicommodity flow

problem”, Mathematical Programming, 78, pp. 43-58, 1997.

T. Radzik, Private communication, 1999.

F. Shahrokhi and D.W. Matula, “ The maximum concurrent flow problem”, Journal

of the Association for Computer Machinery, 37, pp. 318-334, 1990.

12

Table 1: Algorithm Optima

Given current flow f=(#,..7,) and £>0
=23
repeat outer iteration, e.g. for iteration ; ;
fO=r0"=0;
for each commodity i do
find minimum-cost flow f";
check ‘bad commodity flow’, if so,
do Optima-o ;
then f, « f+o(f - 1)
update 7,0V ;
fepur

©) _) 2
until 2<[1-£p, or & -2~ £
3 ®© 8

<Optima- ¢ >

given the initial interval [4,,5] and let the threshold y :

begin find » such that [%Jw < T .

4

a.+b.
#0, where o, = "2)

while (j<w or @

J
, , , ()
do update search interval according to the sign of d—f :
J
d®(o ;)
do;

J

if

>0.[a;..001=[a;.0,];

.~ dO(0))
else if T/ < Oa[aj+1’bj+1] = [O-j’bj];

J

repeat ; ;

13

running time in cpu seconds

running time in cpu seconds

300

250

200

150

50

300

250

200

150

100

50

—— DecongestBound
- Decongest

20 40 60 80 100 120 140 160 180

number of commodities

Figure 2. Polynomial-time bound for Improve in n=50, m=250

14

200
number of commodities
Figure 1. Polynomial-time bound for Decongest in n=50, m=250
—— ImproveBound
- Improve
20 40 60 80 100 120 140 160 180 200

running time in cpu seconds

300

250

N
o
o

—_—
an
o

N
o
o

50

running time in cpu seconds

—— Improve-variantBound
- Improve-variant
20 40 60 80 100 120 140 160 180 200
number of commodities
Figure 3. Polynomial-time bound for Improve-variant in n=50, m=250
x 10*
—— DecongestBound

6 - - - Decongest
5r i
41 i
3r i
2r i
1r i

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
¢ values

Figure 4. € polynomial-time bound for Decongest, n=50, m=250, k=70

15

55 — ImproveBound | |
- - - Improwe

running time in cpu seconds

0.01 0.02 0.03 0.04 0.05 0.06 0.07 70:08 0.09 0.1
¢ values

Figure 5. € polynomial-time bound for Improve, n=50, m=250, k=70

45 —— Improve-variantBound | |
' - - - Improve-variant

running time in cpu seconds

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0:08 0.09 0.1
¢ values

Figure 6. € polynomial-time bound for Improve-variant, n=50, m=250, k=70

16

congestion value

AN —— Decongest
VN — - Improve
09r ' N\ — - Improve-variant |
\‘ N - Optima
\ AN
0.8} N 1
\ AN
2 \ h
= AN
g 07 n \ \ 1
S | , h
7 | \ A
qg’, 0.6 . N .
S ‘ AN
| N N
0.5 N .
‘ AN AN
N AN
‘ . AN
0.4+ N N .
: N N
- AN | | LT ! - I !
100 200 300 400 500 600 700 800 900 1000
number of iterations
Figure 7. Congestion analysis for € =0.1, n=100, m=1000, k=200
T T
— D t
0,94 econges |
\ — - Improve
A — - Improve-variant
0.92 1 - Optima 1
0.9+ .
0.88 .
0.86 + .
0.84 + .
0.82+- i
0.8F i
0.78}]
0.76 - 1

100 200 300 400 500
number of iterations

600

700 800

Figure 8. Congestion analysis for € =0.1, n=200, m=600, k=500

17

objective function value in logscale

objective function value in logscale

28

26

24

22

18

16

14

255

25

24.5

24

23.5

20

26

N —— Decongest
AN — - Improve 4
N — - Improve-variant
i \\ N -~ - Optima |

\ AN
‘ N
L \\ \\ |
AN
I A \]
\ N
AN
L \ \ |
\\
| \ \ -
\ N
| N
L N\ \ .
) N N
i N\ N il
. : . ~\
12;777\\"7—L; | | \\’ﬁl \\X\i | | 1
100 200 300 400 500 600 700 800 900 1000 1100
number of iterations
Figure 9. Objective values analysis for € =0.1, n=100, m=1000, k=200
—— Decongest
AR — - Improve i
AN — - Improve-variant
i \\ - - - Optima J
N

100 200 300 400 500 600 700 800
number of iterations

Figure 10. Objective values analysis for € =0.1, n=200, m=600, k=500

18

N —— 100/2000/100

\\ — - 100/2000/120
0.9 — - 100/2000/140
2 k\ - 100/2000/160 ||
‘l\
0.8 .
@
= |
g \
C \
2 07+ \
7]
o}
(@]
C
o
(&)
0.6+ i
B
0.5 \“\wx
e an \ M~ S
o ~ . ~ — e ~ — . —
5 10 15 20 25 30 35 40
number of iterations
Figure 11. Congestion values analysis for transportation networks conducted by Optima
8000 | —— 100/2000/100
“ — - 100/2000/120
\ — - 100/2000/140
7000} - 100/2000/160
6000 |
5 5000 ‘
T x
c
Ke} |
» 4000 H,
®
(®)]
c
o
© 3000
2000
1000

15 20 25 30 35 40
number of iterations

Figure 12. Congestion values analysis for transportation networks conducted by Optima

19

