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Abstract

A Hamiltonian path of a graph G with respect to a subset T of vertices, |T | ≤ 2, is a

Hamiltonian path P of G such that vertices in T are end vertices of P . Given a graph G

and a subset T of vertices, the constrained Hamiltonian path problem involves testing whether

a Hamiltonian path of G with respect to T exists. Hamiltonian path problem is the special

constrained Hamiltonian path problem where T is empty.

A connected graph G = (V, E) is distance-hereditary if every two vertices in V have the same

distance in every connected induced subgraph of G containing them. This paper presents linear

time algorithms for the constrained Hamiltonian path problems on distance-hereditary graphs

whereas the best previous known algorithm for Hamiltonian path problem on distance-hereditary

graphs runs in O(|V |5) time.
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1 Introduction

All graphs considered in this paper are finite, undirected, without loops or multiple edges. Let
G = (V,E) be a graph. Throughout this paper, let m and n denote the numbers of edges and vertices
of graph G, respectively. A Hamiltonian path (resp. cycle) is a simple path (resp. cycle) that passes
through each vertex of a graph G exactly once. The Hamiltonian path (resp. cycle) problem involves
testing whether a Hamiltonian path (resp. cycle) exists in a graph. It is well known that these two
problems are NP-complete for general graphs [18], and NP-complete even for special classes of graphs
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such as bipartite graphs [29], split graphs [19], circle graphs [15], and grid graphs [27], etc. We refer
to the first and last vertices visited by a path P as end vertices of P . A Hamiltonian path of a graph
G with respect to a subset T of vertices, |T | ≤ 2, is a Hamiltonian path P of G such that all vertices
in T are end vertices of P . Given a graph G and a subset T of vertices, the constrained Hamiltonian
path problem involves testing whether a Hamiltonian path of G with respect to T exists. Hamiltonian
path problem is the special constrained Hamiltonian path problem where T is empty. Nicolai referred
to the special constrained Hamiltonian path problem with |T | = 1 or |T | = 2 as 1HP problem or 2HP
problem, respectively [31].

A connected graph is distance-hereditary if the distance between every two vertices in any connected
induced subgraph is the same as in the original graph. Distance-hereditary graphs were introduced
by Howorka [22], who gave the first characterization of these graphs. Bandelt and Mulder gave a
constructive characterization which shows that a distance-hereditary graph can be constructed from
an isolated vertex by adding vertices one by one through those operations called one vertex extensions
[1]. Furthermore, Hammer and Maffray proposed a linear time recognition algorithm, which constructs
a sequence of one vertex extensions for a distance-hereditary graph [21]. Chang et al. gave a recursive
definition for distance-hereditary graphs [8]. Further properties and optimization problems in these
graphs have been studied in [1, 3, 4, 6, 7, 16, 25, 32, 33, 34]. Distance-hereditary graphs are a subclass
of parity graphs [9] and a superclass of cographs [10, 11] and Ptolemaic graphs [23].

Nicolai presented first polynomial time algorithms for the constrained Hamiltonian path problems
on distance-hereditary graphs [31]. Nicolai showed that Hamiltonian cycle and 2HP problems on
distance-hereditary graphs can be solved inO(n3) time. This leads toO(n4) andO(n5) time algorithms
for 1HP and Hamiltonian path problems on distance-hereditary graphs, respectively. An algorithm
for 2HP problem can be used to solve 1HP and Hamiltonian path problems on distance-hereditary
graphs in O(n4) and O(n5) time, respectively, by a trivial reduction technique that reduces both 1HP
and Hamiltonian path problems to 2HP problem. In [26], we proposed an O(n2) time algorithm for
Hamiltonian cycle problem on distance-hereditary graphs. Recently, Hsieh et al. solved Hamiltonian
cycle problem on distance-hereditary graphs in O(n +m) time [24]. But, it does not imply that the
constrained Hamiltonian path problems on distance-hereditary graphs can be solved in O(n + m)
time. By the reduction of Nicolai, it seems that the constrained Hamiltonian path problems are more
difficult than Hamiltonian cycle problem on distance-hereditary graphs. Whether the constrained
Hamiltonian path problems on distance-hereditary graphs can be solved in linear time is still open. In
this paper, we shall present linear time algorithms to solve the constrained Hamiltonian path problems
on distance-hereditary graphs.

Courcelle et al. [12] first introduced the notion of the clique-width of graphs. The clique-width of
a graph G is defined as the minimum number of labels needed to construct G, using the four graph
operations: creation of a new vertex with label i, disjoint union, connecting vertices with specified
labels and renaming labels. For more background on clique-width, we refer the reader to [12], [14].
Clique-width bounded graphs are especially interesting from algorithmic point of view. A lot of
NP-hard graph problems can be solved in polynomial time for graphs of bounded clique-width if an
expression for the graph is explicitly given. A graph problem P on bounded clique-width graphs is
said to be an MS1 problem if it can be defined by a monadic second order logic (MS-logic) formula,
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using quantifiers on vertices but not on edges. And, P is called an MS2 problem if it is definable
in MS-logic formula with quantifiers on vertices and edges. In [13], Courcelle et al. proved that all
MS1 problems on clique-width bounded graphs can be solved in linear time. But, this result can
not be applied to MS2 problems. Note that Hamiltonian path problem is not one MS1 problem.
Recently, Espelage et al. proposed polynomial algorithms to solve some problems which are not MS1

problems on clique-width bounded graphs [17]. They solved Hamiltonian path problem for graphs
with bounded clique-width k in O(nk2

) time. Furthermore, Golumbic et al. have shown that every
distance-hereditary graph has clique-width at most 3 [20]. Hence, the algorithm in [17] for Hamiltonian
path problem on distance-hereditary graphs runs in O(n9) time.

Following the above introduction, we know that the best previous algorithm for Hamiltonian path
problem on distance-hereditary graphs runs in O(n5) time. In this paper, we demonstrate that the
reduction technique used in [5, 26, 31] can be extended to solve the constrained Hamiltonian path
problems on distance-hereditary graphs. We show how to reduce an instance of the constrained
Hamiltonian path problem on distance-hereditary graphs to a smaller instance of the same problem.
Our algorithm runs in O(n+m) time. Using the reduction technique in [26] that reduces Hamiltonian
cycle problem on distance-hereditary graphs to the same problem on distance-hereditary graphs,
we have an O(n +m) time algorithm for Hamiltonian cycle problem on distance-hereditary graphs.
Moreover, we can construct a Hamiltonian cycle and a constrained Hamiltonian path in the same time
bound if they exist.

2 Preliminaries

Graph terminology and notation used in this paper are standard, see Bondy and Murty [2]. Suppose
A is a set of vertices in a graph G = (V,E). Let G[A] denote the subgraph of G induced by A. Let v

be a vertex of G. We denote the (open) neighborhood of v, consisting of all vertices adjacent to v in
G, by N(v), and the closed neighborhood of v, the set N(v) ∪ {v}, by N [v]. The (open) neighborhood
of A, denoted by N(A), is the set of vertices in G that are adjacent to some vertex in A. The closed
neighborhood of A in G, denoted by N [A], is N(A) ∪ A. Two disjoint vertex subsets A and B of a
graph G are joint if every vertex of A is adjacent to each vertex of B.

For a graphG, we use V (G) and E(G) to denote the vertex set and edge set of graphG, respectively.
A path cover P of a graph G with respect to a subset T of V (G) is a set of pairwise vertex disjoint
paths of G such that all vertices are visited by a path in P and all vertices in T are end vertices
of paths in P . A minimum path cover of G with respect to T is a path cover of G with respect to
T of minimum cardinality. Let π(G, T ) denote the cardinality of a minimum path cover of G with
respect to T . For simplicity, we will use π(G) to denote π(G, T ) if T is empty. Given a graph G and
a subset T of vertices, the constrained path cover problem involves finding a minimum path cover of
G with respect to T . The path cover problem is a special case of the constrained path cover problem
where T is empty. And the constrained Hamiltonian path problem is a special case of the constrained
path cover problem. Given a minimum path cover P of G with respect to T , and a number d where
π(G, T ) ≤ d ≤ |V (G)|, we can obtain a path cover P ′ of G with respect to T where |P ′| = d easily by
splitting paths of P . Thus the following lemma is obvious.
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Lemma 2.1. For a graph G and a subset T of vertices, there exists a path cover P ′ of G with respect
to T such that |π(G, T )| ≤ |P ′| ≤ |V (G)|.

Chang et al. have shown that distance-hereditary graphs have a graceful characterization [8]. The
characterization makes use of the concept of twin sets. Every distance-hereditary graph has a twin
set that is a subset of vertices. We use TS(G) to denote a twin set of a distance-hereditary graph G

in the following.

Definition 1. [8] The class of distance-hereditary graphs can be defined by the following recursive
definition:
(1) A graph K1 is a distance-hereditary graph and the twin set of K1 is the vertex of K1.
(2) If G1 and G2 are distance-hereditary graphs, then the union G of G1 and G2 is also a distance-
hereditary graph and TS(G) = TS(G1) ∪ TS(G2). In this case, we say that graph G is formed from
G1 and G2 by false twin operation.
(3) If G1 and G2 are distance-hereditary graphs, then the graph G obtained from G1 and G2 by
connecting every vertex of TS(G1) to all vertices of TS(G2) is also a distance-hereditary graph and
TS(G) = TS(G1) ∪ TS(G2). In this case, we say that graph G is formed from G1 and G2 by true
twin operation.
(4) If G1 and G2 are distance-hereditary graphs, then the graph G obtained from G1 and G2 by
connecting every vertex of TS(G1) to all vertices of TS(G2) is also a distance-hereditary graph and
TS(G) = TS(G1). In this case, we say that graph G is formed from G1 and G2 by attaching graph
G2 to graph G1 (called pendant vertex operation). �

By the definition above, a binary ordered decomposition tree of a distance-hereditary graph G can
be constructed in linear time. In the decomposition tree, each leaf is a single vertex of G and each
internal node represents one of the tree operation, pendant vertex operation P , true twin operation
T , and false twin operation F . The decomposition tree is called a PTF-tree PT (G) of the distance-
hereditary graph G. Let H , H1, and H2 be subgraphs of G. If H is formed from H1 and H2 by a
P (resp. T , F ) operation, then the root of PT (H) is a node labeled as P (resp. T , F ) and the left
and right subtrees of the root are PT (H1) and PT (H2), respectively. Note that PT (G) is a binary
ordered tree. For instance, Figure 1(b) depicts the corresponding PTF-tree of a distance-hereditary
graph shown in Figure 1(a). Clearly, a PTF-tree of a distance-hereditary graph can be constructed in
O(n +m) time. In the following, we assume that the PTF-tree PT (G) has been constructed.

We will refer to the internal node labeled by u as u-node in PT (G) where u is either P , T , or F .
The subtree of PT (G) rooted at node u is denoted by PT [u]. For each internal node u of PT (G), we
denote by G(u) the representative graph of PT [u], and denote by ul and ur the left and right child
nodes of u, respectively.

Definition 2. Let PT (G) be a PTF-tree of a distance-hereditary graphG. Let S = {u0, u1, · · · , un−2}
be the ordered set of internal nodes by a breadth-first search on PT (G). Define an internal node ui,
0 ≤ i ≤ n − 2, of PT (G) to be a final pendant node if and only if ui is a P -node and each uj , j > i,
is either a T -node or a F -node. �

For a distance-hereditary graph G, we partition V (G) into four disjoint subsets X , Y , Z, and T

as follows. Let u be the final pendant node of PT (G). Initially, Z = ∅, T = ∅, X = V (G(ul)),
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Figure 1: (a)A distance-hereditary graph G, and (b)The corresponding PTF-tree of G.

and Y = V (G(ur)). Then, we visit the ancestor of u in PT (G) bottom up. Let w be the node
currently visited. Note that we assume that TS(G(w)) has computed if we visit node w. If w is
a F -node, we do nothing. If PT [u] is a subtree of PT [wl], then Z = Z ∪ TS(G(wr)); otherwise,
Z = Z ∪ TS(G(wl)). Repeat the above process until w is the root of PT (G) or X � TS(G(w)).
Finally, we set T = V (G) − {X ∪ Y ∪ Z}. For example, X = {v4, v9}, Y = {v8, v10}, Z = {v1, v5},
and T = {v0, v2, v3, v6, v7} for the PTF-tree shown in Figure 1(b).

The following lemma gives some characterizations of vertex subsets obtained by the above pro-
cedure and can be easily verified by Definition 1. In the following lemma, X,Y, Z, and T are four
disjoint subsets of vertices obtained by the previous paragraph.

Lemma 2.2. Let X,Y, Z and T be the four disjoint subsets of vertex set V of a distance-hereditary
graph G. Then the following three statements hold.
(1) X and Y are joint, and X and Z are joint;
(2) None of Y is adjacent to any vertex of V \ (X ∪ Y );
(3) None of X ∪ Y is adjacent to any vertex of T .

It is clear that either X or Y induces a cograph. Furthermore, X ∪Y induces a cograph, too. Note
that G is disconnected if Z = ∅ and T �= ∅, and G is a cograph if Z = ∅ and T = ∅.

In the rest of the paper, assume G = (V,E) is distance-hereditary graph, X,Y, Z, and T form a
partition of V satisfying Lemma 2.2 and Z is not empty. To simplify notation, denote X ∪ Y by S

and Z ∪ T by W , respectively. By Lemma 2.2, we have N [Y ] ⊆ S, N [X ] ⊆ (S ∪ Z), X and Y are
joint, X and Z are joint, X induces a cograph, and Y induces a cograph.

For a subset U of vertices of G, we say that a path P of G is a U -path if P has all its vertices in
U . A subpath P ′ of path P is U -maximal if P ′ is a U -path and is not a proper subpath of any U -path
of P . Denote the set of all U -maximal subpaths of P by Um(P ). For example, Xm(P ) is the set of
all maximal X-paths of P , Wm(P ) is the set of all maximal W -paths of P , and Ym(P ) is the set of
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all maximal Y -paths of P . We call the first and last vertices visited by P the path-start and path-end
of P , denoted by PathStart(P ) and PathEnd(P ), respectively. Both of them are end vertices of P .

We call a W -path a zWz-path if its two end vertices are in Z. We call a path cover P of G[W ] a
zWz-path-cover with respect to T if
(a) all vertices in T ∩W are end vertices of paths in P , and
(b) all end vertices of paths in P are in either Z or T .

Similarly, we define a path cover P of G[X ] (resp. G[Y ]) with respect to T to be a path cover of G[X ]
(resp. G[Y ]) if
(a) all vertices in T ∩X (resp. T ∩ Y ) are end vertices of paths in P , and
(b) all end vertices of paths in P are in either X (resp. Y ) or T .

Lemma 2.3. Assume |T | ≤ 2 and P is a Hamiltonian path of G with respect to T . Then, Xm(P )
and Ym(P ) are path covers of G[X ] and G[Y ], respectively, with respect to T .

Lemma 2.4. Assume P is a Hamiltonian path of G with respect to T . Then, Wm(P ) is a zWz-path-
cover of G[W ] with respect to T .

Proof. By definitions. Q.E.D.

Lemma 2.5. Assume |T | ≤ 2, t1 = |T ∩X |, t2 = |T ∩ (V \X)|, and P is an Hamiltonian path of G

with respect to T . Then, |Xm(P )|+ 1− t1 ≥ |Wm(P )|+ |Ym(P )| ≥ |Xm(P )|+ t2 − 1.

Proof. By definitions. Q.E.D.

Lemma 2.6. Suppose |T | ≤ 2, t1 = |T ∩X |, t2 = |T ∩ (V \X)|, G[W ] has a zWz-path-cover B with
respect to T , G[X ] has a path cover D with respect to T , G[Y ] has a path cover F with respect to T ,
and |D|+ 1− t1 ≥ |B|+ |F | ≥ |D|+ t2 − 1. Then G has a Hamiltonian path with respect T .

Proof. We can prove this lemma by showing how to obtain a Hamiltonian path of G with respect to
T from B,F and D. Due to the space limitation, the proof is omitted. Q.E.D.

Based upon the above two lemmas, the basic ideas of our algorithm to find a Hamiltonian path
of G with respect to T is to find a zWz-path-cover B of G[W ] with respect to T , a path cover D of
G[X ] with respect to T , and a path cover F of G[Y ] with respect to T , satisfying the condition that
|D|+ 1− t1 ≥ |B|+ |F | ≥ |D|+ t2 − 1 where t1 = |T ∩X | and t2 = |T ∩ (V \X)|. Since both G[X ]
and G[Y ] are cographs, we can find path covers of them with respect to T easily. But it takes us some
efforts to find a zWz-path-cover of G[W ] with respect to T .

Definition 3. Assume κ1 ≥ κ2 and κ1 ≥ 1. Let H be the graph that V (H) = I ∪K and E(H) =
{(u, v)|u, v ∈ K} where κ1 = |K|+ |I| and |I| = κ2− 1. Graph G∗(κ1, κ2) is obtained from G[W ] and
H by making Z and V (H) joint. In other words, G∗(κ1, κ2) is the graph G∗ where V (G∗) =W ∪X ′,
X ′ = I ∪ K, |X ′| = κ1, |I| = κ2 − 1, E(G∗) = E(G[W ]) ∪ EG∗(Z,X ′) ∪ E(H), and EG∗(Z,X ′) =
{(u, v)|u ∈ Z, v ∈ X ′}. �

We will refer to G∗(κ1, κ2) as G∗ in the rest of the paper if κ1 and κ2 are understood without ambi-
guity. By definition, we have the following observations: G∗[X ′] consists of κ2 connected components.
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I is a set of κ2−1 isolated vertices in G∗[X ′] and G∗[K] is complete. Furthermore, π(G∗[X ′], T ) = κ2

if |T ∩X ′| ≤ 2. Notice that I = ∅ if κ2 = 1.

Lemma 2.7. Assume |T | ≤ 2, k = |T ∩X ′|, and P ′ is a Hamiltonian path of G∗ with respect to T .
Then there exists a zWz-path-cover B of G[W ] with respect to T such that κ1+1−k ≥ |B| ≥ κ2+1−k.

Proof. By definition, X ′
m(P

′) is a path cover of G∗[X ′], Wm(P ′) is a zWz-path-cover of G∗[W ].
If k = 2, then |X ′

m(P
′)| = |Wm(P ′)| + 1. If k = 1, then |X ′

m(P
′)| = |Wm(P ′)|. If k = 0, then

|X ′
m(P

′)| = |Wm(P ′)| − 1. Hence, we have that |X ′
m(P

′)| = |Wm(P ′)| − 1 + k for 2 ≥ k ≥ 0. Let
B = Wm(P ′). It is easy to see that B is also a zWz-path-cover of G[W ]. Since κ1 = |X ′| and
π(G∗[X ′], T ) = κ2, we have that κ1 ≥ |X ′

m(P
′)| = |B| − 1 + k ≥ κ2 by Lemma 2.1. Therefore,

κ1 + 1− k ≥ |B| = |Wm(P ′)| ≥ κ2 + 1− k. Q.E.D.

For simplicity, we use p, y and h to denote π(G[X ]), |Y |, and π(G[Y ]), respectively, in the rest of
the paper.

3 The 2HP problem

Given a distance-hereditary graph G = (V,E) and a subset T = {s, t} of V , the 2HP problem is to
determine whether G has a Hamiltonian path such that both of its end vertices are in T or not. The
2HP problem can be classified into the following six cases: (1) {s, t} ⊆ Y , (2) s ∈ Y and t ∈ W , (3)
s ∈ Y and t ∈ X , (4) {s, t} ⊆ X , (5) s ∈ X and t ∈W , and (6) {s, t} ⊆W .

We will prove the necessary and sufficient condition for reducing G to G∗ according to the above
six cases below.

Lemma 3.1. Assume T = {s, t} and T ⊆ Y . Then, G has a Hamiltonian path with respect to T
if and only if |X | ≥ max{2, π(G[Y ], T )}, and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′

where κ1 = |X | −max{0, π(G[Y ], T )− 2}, κ2 = max{2, p− y + 2}, s′ ∈ I, t′ ∈ K, and T ′ = {s′, t′}.

Proof. Only if part:
Suppose P is a Hamiltonian path of G with respect to T . For clarity, let xm = |Xm(P )|, ym =

|Ym(P )|, wm = |Wm(P )|, and h2 = π(G[Y ], T ). By Lemma 2.5, we have xm = ym + wm − 1. Since
|X | ≥ xm ≥ p and y ≥ ym ≥ max{2, h2}, we have |X | ≥ max{2, h2} and |X | − max{2, h2} ≥
xm − ym ≥ p− y. Hence, |X | −max{0, h2 − 2} ≥ wm + 1 ≥ max{2, p− y + 2}. Next we show that
G∗ has a Hamiltonian path with respect to T ′. By definition of G∗, π(G∗[X ′]) = κ2. By Lemma 2.1,
there exists a path cover D of G∗[X ′] of size wm + 1 since κ1 ≥ wm + 1 ≥ κ2. Furthermore, |I| ≥ 1
and |K| ≥ 1 since κ2 − 1 ≥ 1 and κ1 ≥ 2. Therefore, there exist two vertices s′, t′ in X ′ such that
s′ ∈ I, t′ ∈ K, and T ′ = {s′, t′}. Then we can construct a Hamiltonian path with respect to T ′ of G∗

from Wm(P ) and D easily.
If part:

Suppose P ′ is a Hamiltonian path of G∗ with respect to T ′. Wm(P ) is a zWz-path-cover of G[W ].
By Lemma 2.7, G[W ] has a zWz-path-cover B where κ1 − 1 ≥ |B| ≥ κ2 − 1. There are two cases:
Case 1: p ≥ |B|+ h2− 1. Let f = p− |B|+1. It is easy to see that f ≥ h2. In case of p− y+2 ≤ 2,
clearly y ≥ p ≥ p−(|B|−1) = f . In case of p−y+2 > 2, |B|+1 ≥ κ2 = p−y+2. Hence y ≥ p−|B|+1.
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By Lemma 2.1, there exists a path cover F of G[Y ] such that |F | = f since y ≥ f ≥ h2. By definition,
G[X ] has a path cover D of size d = p. By Lemma 2.6, G has a Hamiltonian path with respect to T
since |B|+ |F | = |D|+ 1.
Case 2: p < |B| + h2 − 1. Since |X ′| = κ1 ≥ |B| + 1, we have that |X | = |X ′| +max{0, h2 − 2} ≥
(|B| + 1) +max{0, h2 − 2} = |B| + max{1, h2 − 1} > p. By Lemma 2.1, there exists a path cover
D of G[X ] such that |D| = |B|+max{1, h2 − 1}. By definition, there exists a path cover F of G[Y ]
such that |F | = max{2, h2}. By Lemma 2.6, G has a Hamiltonian path with respect to T since
|B|+ |F | = |D|+ 1. Q.E.D.

Lemma 3.2. Assume T = {s, t}, s ∈ Y and t ∈W . Then, G has a Hamiltonian path with respect to
T if and only if |X | ≥ π(G[Y ], {s}), and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where
κ1 = |X | − π(G[Y ], {s}) + 1, κ2 = max{1, p− y + 1}, s′ is any vertex in X ′, and T ′ = {s′, t}.

Proof. Only if part:
Suppose P is a Hamiltonian path of G with respect to T . For clarity, let xm = |Xm(P )|, ym =

|Ym(P )|, wm = |Wm(P )|, and h1 = π(G[Y ], {s}). By Lemma 2.5, we have xm = ym + wm − 1. Since
|X | ≥ xm ≥ p and y ≥ ym ≥ h1, we have |X | − h1 ≥ xm − ym ≥ p − y, i.e., |X | − h1 + 1 ≥ wm ≥
max{1, p−y+1}. Hence, |X |−h1+1 ≥ 1, that is, |X | ≥ h1. Next we show that G∗ has a Hamiltonian
path with respect to T ′. By definition of G∗, π(G∗[X ′]) = κ2. By Lemma 2.1, there exists a path
cover D of G∗[X ′] of size wm since κ1 ≥ wm ≥ κ2. We can construct a Hamiltonian path of G∗ with
respect to T ′ from Wm(P ) and D easily.
If part:

Suppose P ′ is a Hamiltonian path of G∗ with respect to T ′. Wm(P ′) is a zWz-path-cover of G[W ].
By Lemma 2.7, G[W ] has a zWz-path-cover B such that κ1 ≥ |B| ≥ κ2. There are two cases:
Case 1: p ≥ |B|+ h1− 1. Let f = p− |B|+1. It is easy to see that f ≥ h1. In case of p− y+1 ≤ 1,
clearly y ≥ p ≥ p−(|B|−1) = f . In case of p−y+1 > 1, |B| ≥ κ2 = p−y+1. Hence y ≥ p−|B|+1 = f .
By Lemma 2.1, there exists a path cover F of G[Y ] such that |F | = f since y ≥ f ≥ h1. By definition,
G[X ] has a path cover D of size d = p. By Lemma 2.6, G has a Hamiltonian path with respect to T
since |D| = |B|+ |F | − 1.
Case 2: p < |B|+h1− 1. Since |X ′| = κ1 ≥ |B|, we have that |X | = |X ′|+h1− 1 ≥ |B|+h1− 1 > p.
By Lemma 2.1, there exists a path cover D of G[X ] such that |D| = |B|+ h1− 1. By definition, there
exists a path cover F of G[Y ] such that |F | = h1. By Lemma 2.6, G has a Hamiltonian path with
respect to T since |D| = |B|+ |F | − 1. Q.E.D.

We can prove the following lemmas by arguments similar to those for proving Lemma 3.1 or 3.2.
Due to the space limitation, the proofs are omitted.

Lemma 3.3. Assume T = {s, t}, s ∈ Y and t ∈ X. Then, G has a Hamiltonian path with respect
to T if and only if |X | ≥ π(G[Y ], {s}) + 1, and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′

where κ1 = |X |−π(G[Y ], {s})+1, κ2 = max{2, π(G[X ], {t})−y+1}, s′ ∈ I, t′ ∈ K, and T ′ = {s′, t′}.

Lemma 3.4. Assume T = {s, t} and T ⊆ X. Then, G has a Hamiltonian path with respect to T if
and only if |X | ≥ h+2, and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where κ1 = |X |−h,
κ2 = max{2, π(G[X ], T )− y}, s′ ∈ I, t′ ∈ K, and T ′ = {s′, t′}.
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Lemma 3.5. Assume T = {s, t}, s ∈ X and t ∈ W . Then, G has a Hamiltonian path with respect
to T if and only if |X | ≥ h + 1, and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where
κ1 = |X | − h, κ2 = max{1, π(G[X ], {s})− y}, s′ is any vertex in X ′, and T ′ = {s′, t}.

Lemma 3.6. Assume T = {s, t} and T ⊆ W . Then, G has a Hamiltonian path with respect to T if
and only if |X | ≥ h+1, and G∗(κ1, κ2) has a Hamiltonian path with respect to T where κ1 = |X | − h

and κ2 = max{1, p− y}.

4 The 1HP problem

Given a distance-hereditary graph G = (V,E) and a subset T = {s} of V , the 1HP problem is to
determine whether G has a Hamiltonian path P such that s is an end vertex of P or not. The 1HP
problem can be classified into the following three cases: (1) T ⊆ Y , (2) T ⊆ X , and (3) T ⊆W .

If T ⊆ X , we shall prove that |X | ≥ h + 1 if G has a Hamiltonian path with respect to T . If
T ⊆ Y , we shall prove that |X | ≥ π(G[Y ], T ) if G has a Hamiltonian path with respect to T . Then,
we consider the case of T ⊆W . In this case, we have two subcases that |X | = h and |X | ≥ h+1. We
will prove the necessary and sufficient condition for reducing G to G∗ according to the above cases
below.

Lemma 4.1. Assume T = {s} and T ⊆ Y . Then, G has a Hamiltonian path with respect to T
if and only if |X | ≥ π(G[Y ], T ) and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where
κ1 = |X | − π(G[Y ], T ) + 1, κ2 = max{1, p− y + 1}, s′ ∈ X ′, and T ′ = {s′}.

Proof. Only if part:
Suppose P is a Hamiltonian path of G with respect to T . For clarity, let xm = |Xm(P )|, ym =

|Ym(P )|, wm = |Wm(P )|, and h1 = π(G[Y ], T ). By Lemma 2.5, we have xm = ym+wm or xm = ym+
wm− 1 depending on whether the end vertex of P other than s is in X or not. Hence, wm = xm− ym

or wm = xm − ym + 1. Since |X | ≥ xm ≥ p and y ≥ ym ≥ h1, we have |X | − h1 ≥ xm − ym ≥ p− y.
Thus, |X | − h1 ≥ wm ≥ max{1, p− y} or |X | − h1 +1 ≥ wm ≥ max{1, p− y+1}. In either cases, we
have |X | ≥ h1 and κ1 ≥ wm ≥ κ2 − 1. By definition of G∗, π0(G∗[X ′]) = κ2. By Lemma 2.1, there
exists a path cover D of G∗[X ′] of size wm or wm + 1 since κ1 ≥ wm ≥ κ2 or κ1 ≥ wm + 1 ≥ κ2. We
can construct a Hamiltonian path of G∗ with respect to T ′ from Wm(P ) and D easily.
If part:

Suppose P ′ is a Hamiltonian path of G∗ with respect to T ′ = {s′}. Wm(P ′) is a zWz-path-cover
of G[W ]. By Lemma 2.7, there exists a zWz-path-cover B of G[W ] with respect to T ′ such that
κ1 + 1− k ≥ |B| ≥ κ2 + 1− k where 2 ≥ k = |T ∩X ′| ≥ 1. Then, we have κ1 ≥ |B| ≥ κ2 − 1. There
are two cases:
Case 1: p ≥ |B| + h1. Let f = p − |B|. In case of p − y + 1 ≤ 1, clearly y ≥ p ≥ p − |B| = f . In
case of p− y + 1 > 1, we have |B| ≥ κ2 − 1 = p− y and hence y ≥ p− |B| = f too. By Lemma 2.1,
there exists a path cover F of G[Y ] such that |F | = f since y ≥ f ≥ h1. By definition, G[X ] has a
path cover D of size d = p. By Lemma 2.6, G has an G has a Hamiltonian path with respect to T
since |D| = |F |+ |B|.
Case 2: p < |B|+ h1. Since κ1 ≥ |B|, we have that |X | = |X ′|+ h1 − 1 ≥ |B|+ h1 − 1. By Lemma
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2.1, there exists a path cover D of G[X ] such that |D| = |B| + h1 − 1. By definition, there exists a
path cover F of G[Y ] such that |F | = h1. By Lemma 2.6, G has a Hamiltonian path with respect to
T since |D| = |B|+ |F | − 1. Q.E.D.

Lemma 4.2. Assume T = {s} and T ⊆ X. Then, G has a Hamiltonian path with respect to T if
and only if |X | ≥ h+1 and G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where κ1 = |X |−h,
κ2 = max{1, π(G[X ], T )− y}, s′ ∈ X ′, and T ′ = {s′}.

Proof. We can prove this lemma by similar arguments for proving Lemma 4.1. Due to the space
limitation, the proof is omitted. Q.E.D.

Lemma 4.3. Assume T = {s}, T ⊆W and |X | = h. Then, G has a Hamiltonian path with respect to
T if and only if G∗(κ1, κ2) has a Hamiltonian path with respect to T ′ where κ1 = 1, κ2 = 1, t′ ∈ X ′,
and T ′ = {s, t′}.

Proof. Only if part:
Assume P is a Hamiltonian path of G with respect to T = {s}. Since |X | = h ≥ |Xm(P )|

and |Ym(P )| ≥ h, we have 0 ≥ |Xm(P )| − |Ym(P )|. By Lemma 2.5, we have |Xm(P )| + 1 − t1 ≥
|Wm(P )| + |Ym(P )| where t1 = |T ∩X |. Thus, 0 ≥ |Xm(P )| − |Ym(P )| ≥ |Wm(P )| − 1 + t1. Since
t1 ≥ 0, we have 0 ≥ |Wm(P )| − 1 + t1 ≥ |Wm(P )| − 1. Since W is not empty, we have |Wm(P )| = 1.
Let Wm(P ) = {PW }. Note that one of end vertices of PW is in Z and the other end vertex of PW is
vertex s. Without loss of generality, assume PathStart(PW ) ∈ Z. Then t′PW is a Hamiltonian path
of G∗ with respect to T ′ = {s, t′}.
If part:

Suppose P ′ is a Hamiltonian path of G∗ with respect to T ′. Since |X ′| = 1, |Wm(P ′)| = 1. Let
Wm(P ′) = {PW }. One of end vertices of PW is s and the other end vertex of PW is in Z. It is easy
to see that PW visits all vertices in W . Without loss of generality, assume P ′ = PW t′ where t′ ∈ X ′.
Let P = {P1, P2, · · · , Ph} be a minimum path cover of G[Y ], |P| = h and X = {x1, x2, · · · , xh}. Then
P ∗ = PW x1P1x2P2x3 · · ·Ph−1xhPh is a Hamiltonian path of G with respect to T = {s}. Q.E.D.

Lemma 4.4. Assume T = {s}, T ⊆ W and |X | ≥ h + 1. Then, G has a Hamiltonian path with
respect to T if and only if G∗(κ1, κ2) has a Hamiltonian path with respect to T where κ1 = |X | − h

and κ2 = max{1, p− y}.

Proof. We can prove this lemma by similar arguments for proving Lemma 4.1. Due to the space
limitation, the proof is omitted. Q.E.D.

5 The Hamiltonian Path problem

In this section we show how to reduce an instance of Hamiltonian path problem on distance-hereditary
graphs to a smaller instance of Hamiltonian path problem or 1HP problem on distance-hereditary
graphs.

Lemma 5.1. Assume W is not empty. If there exists a Hamiltonian path P of G, then |X | ≥ π(G[Y ]).
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Proof. Let T be the set of end vertices of P . By Lemma 2.5, we have |Xm(P )|+1− t1 ≥ |Wm(P )|+
|Ym(P )| where t1 = |T ∩X |. Since |X | ≥ |Xm(P )|, 2 ≥ t1 ≥ 0, |Ym(P )| ≥ π(G[Y ]), and |Wm(P )| ≥ 1,
we have |X | ≥ π(G[Y ]). Q.E.D.

Lemma 5.2. Assume W is not empty and |T | ≤ 2. If there exists a Hamiltonian path P of G with
respect to T where T ∩ Y = ∅, then |X | ≥ π(G[Y ]) + 1.

Proof. By Lemma 2.5, we have |Xm(P )| + 1 − t1 ≥ |Wm(P )| + |Ym(P )| where t1 = |T ∩ X |. By
definitions, 2 ≥ t1 ≥ 0, |X | ≥ |Xm(P )|, |Wm(P )| ≥ 1, and |Ym(P )| ≥ π(G[Y ]). In case of 2 ≥ t1 ≥ 1,
it is easy to see that |X | ≥ π(G[Y ]) + 1. Assume t1 = 0. We have |Xm(P )| ≥ |Wm(P )|+ |Ym(P )| − 1
and |T ∩W | = 2. In other words, |Wm(P )| ≥ 2. Thus |X | ≥ π(G[Y ]) + 1. Q.E.D.

Lemma 5.3. Assume W is not empty and |X | = π(G[Y ]). Then, G has a Hamiltonian path if and
only if there exists a Hamiltonian path of G∗(κ1, κ2) with respect to T = {s} where κ1 = κ2 = 1 and
s is the only vertex of X ′.

Proof. Only if part:
Assume P is a Hamiltonian path of G. Let T be the set of end vertices of P . Since |X | =

π(G[Y ]) ≥ |Xm(P )| and |Ym(P )| ≥ π(G[Y ]), we have 0 ≥ |Xm(P )| − |Ym(P )|. By Lemma 2.5, we
have |Xm(P )| + 1 − t1 ≥ |Wm(P )| + |Ym(P )| where t1 = |T ∩X |. Thus, 0 ≥ |Xm(P )| − |Ym(P )| ≥
|Wm(P )| − 1+ t1. Since t1 ≥ 0, we have 0 ≥ |Wm(P )| − 1+ t1 ≥ |Wm(P )| − 1. Since W is not empty,
we have |Wm(P )| = 1. Let Wm(P ) = {P ′

W }. Note that P ′
W is also a Hamiltonian path of G∗[W ] such

that at least one end vertex of P ′
W is in Z. Without loss of generality, assume PathStart(P ′

W ) ∈ Z.
Then sP ′

W is a Hamiltonian path of G∗ with respect to T = {s}.
If part:

Suppose P ′ is a Hamiltonian path of G∗. Let T be the set of end vertices of P ′. Since |X ′| = 1,
|Wm(P ′)| = 1. LetWm(P ′) = {PW }. By definition PW is a zWz-path. It is easy to see that PW visits
all vertices in W . Without loss of generality, assume P ′ = PW s. Let P = {P1, P2, · · · , Ph} be a mini-
mum path cover of G[Y ], |P| = h and X = {x1, x2, · · · , xh}. Then P ∗ = PW x1P1x2P2x3 · · ·Ph−1xhPh

is a Hamiltonian path of G. Q.E.D.

Lemma 5.4. Assume |X | ≥ h+ 1. Then, G has a Hamiltonian path if and only if G∗(κ1, κ2) has a
Hamiltonian path where κ1 = |X | − h, and κ2 = max{1, p− y}.

Proof. Only if part:
Suppose P is a Hamiltonian path of G. Let T be the set of end vertices of P . For clarity, let

xm = |Xm(P )|, ym = |Ym(P )|, and wm = |Wm(P )|. By Lemma 2.5, xm+1−t1 ≥ ym+wm ≥ xm+t2−1
where t1 = |T ∩ X | and t2 = |T ∩ (V \ X)|. Since 2 ≥ t1 ≥ 0 and 2 ≥ t2 ≥ 0, we have that
ym+wm +1 ≥ xm ≥ ym+wm − 1. Therefore, wm +1 ≥ xm− ym ≥ wm− 1, i.e., xm− ym = wm− 1,
xm−ym = wm or xm−ym = wm+1. Since |X | ≥ xm ≥ p and y ≥ ym ≥ h, we have κ1 ≥ xm−ym ≥ κ2.
By definition of G∗, π0(G∗[X ′]) = κ2. By Lemma 2.1, there exists a path cover D of G∗[X ′] of size
wm − 1, wm or wm + 1. Hence, we can form a Hamiltonian path of G∗ from Wm(P ) and D easily.
If part:
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Suppose P ′ is a Hamiltonian path of G∗. Let T be the set of end vertices of P ′. Wm(P ′) is a
zWz-path-cover of G[W ]. By Lemma 2.7, there exists a zWz-path-cover B of G[W ] with respect to T
such that κ1+1−k ≥ |B| ≥ κ2+1−k where k = |T ∩X ′|. Let |B| = wm. Then κ1 ≥ wm+k−1 ≥ κ2.
There are two cases:
Case 1: p ≥ wm + k − 1 + h. Let f = p − wm − k + 1. In case of p − y ≤ k, clearly y ≥ p − k ≥
p− k− (wm − 1) = f . In case of p− y > k, wm − 1+ k ≥ κ2 = p− y. Hence y ≥ p−wm − k+ 1 = f .
By Lemma 2.1, there exists a path cover F of G[Y ] such that |F | = f since y ≥ f ≥ h. By definition,
G[X ] has a path cover D of size d = p. By Lemma 2.6, G has a Hamiltonian path.
Case 2: p < wm+k−1+h. Since |X ′| ≥ wm−1+k, we have that |X | = |X ′|+h ≥ wm−1+k+h > p.
By Lemma 2.1, there exists a path coverD of G[X ] such that |D| = wm+k−1+h. By definition, there
exists a path cover F of G[Y ] such that |F | = h. By Lemma 2.6, G has a Hamiltonian path. Q.E.D.

6 Linear time Algorithms for Hamiltonian Problems

In this section, we shall present linear time algorithms for the constrained Hamiltonian path problems
on distance-hereditary graphs. Recall that the PTF-tree PT (G) of a distance-hereditary graph can be
generated in O(n+m) time [8]. Notice that the notation used but not defined in this section can be
found in Section 2. Before presenting our linear algorithms for the constrained Hamiltonian problems
on distance-hereditary graphs, we state some relevant properties of cographs below.

Let H1 = (V1, E1) and H2 = (V2, E2) be two cographs. A graph H = (V,E) is obtained from H1

and H2 by a ”union” operation, denoted by H = H1 +H2, if V = V1 ∪ V2 and E = E1 ∪ E2. And
graph H = (V,E) is obtained from H1 and H2 by a ”joint” operation, denoted by H = H1 -. H2, if
V = V1∪V2 and E = E1∪E2∪{(u, v)|u ∈ H1 and v ∈ H2}. By definition of cographs, H is a cograph
if it is obtained form H1 and H2 by either a ”union” or ”joint” operation. Obviously, each internal
node of the PTF-tree PT (H) of a cograph H is either a T -node or a F -node. Let u be an internal
node in PT (H). By Definition 1, it is easy to see that H(u) is obtained from H(ul) and H(ur) by a
”union” (resp. ”joint”) operation if u is a F -node (resp. T -node).

In [10], [30], [28], and [31], some researchers have shown the following lemmas to compute π(H, T )
for a cograph H with respect to T , where 0 ≤ |T | ≤ 2. In the following, let H , H1, and H2 be three
cographs such that H is obtained from cographs H1 and H2 by a union or joint operation. Assume
that η = max

1≤i≤2
{π(Hi)− |V (H3−i)|} if H = H1 -. H2.

Lemma 6.1. [10][30][28] Let H1 and H2 be two cographs. Then
(1) If H = H1 +H2, then π(H) = π(H1) + π(H2);
(2) If H = H1 -. H2, then π(H) = max{1, η}.

A graph is called Hamiltonian-connected if for every two different vertices there is a Hamiltonian
path joining these vertices. In [28], Jung proved the following lemma:

Lemma 6.2. [28] Let H, H1, and H2 be cographs and H = H1 -. H2. Then
(1) H has a Hamiltonian path if and only if η ≤ 1;
(2) H has a Hamiltonian cycle if and only if η ≤ 0 and |V (H)| ≥ 3;
(3) H is Hamiltonian-connected if and only if η < 0.
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By Lemma 6.2, H has a Hamiltonian cycle if H = H1 -. H2 and η ≤ 0. Hence, H has a
Hamiltonian path with respect to {s}; that is, π(H, {s}) = 1. Assume that s ∈ V (H1) and η ≥ 1.
Clearly, π(H1) ≤ π(H1, {s}). If π(H1) = π(H1, {s}), then s is an endpoint of one path in the minimum
path cover of H1. Then, we have the following lemma.

Lemma 6.3. [31][28](1HP problem for cographs) Assume that T = {s} ⊆ V (H1). Then,
(1) If H = H1 +H2, then π(H, T ) = π(H1, T ) + π(H2);
(2) If H = H1 -. H2, then

π(H, T ) =



1 ,if η ≤ 0;
η ,if η ≥ 1, π(H1) = π(H1, T ), and η = π(H1)− |V (H2)|;
η + 1 ,otherwise.

By Lemma 6.2, H is Hamiltonian-connected if H = H1 -. H2 and η < 0. Hence, π(H, T ) = 1
if H = H1 -. H2, |T | = 2, and η < 0. By similar to Lemma 6.3, we can easily derive the following
lemma:

Lemma 6.4. [31](2HP problem for cographs) Assume that T = {s, t} ⊆ H. Then,
(1) If H = H1 +H2, then π(H, T ) = π(H1, T ) + π(H2, T );
(2) If H = H1 -. H2, then

π(H, T ) =




1 , if η < 0;
η + 1 , if η ≥ 0, s ∈ V (H1), t ∈ V (H2), and

((π(H1) = π(H1, {s}) and η = π(H1)− |V (H2)|) or
π(H2) = (π(H2, {t}) and η = π(H2)− |V (H1)|));

η + δ , if η ≥ 0, T ⊆ V (H1), η = π(H1)− |V (H2)|, and
δ = π(H1, T )− π(H1);

η + 2 , otherwise.

Following the above lemmas, we can easily compute π(H, T ), |T | ≤ 2, for cograph H in constant
time if π(H1), π(H2), |V (H1)| and |V (H2)| are given.

The basic ideas of our linear algorithm to solve the 2HP problem on a distance-hereditary graph
G is sketched as follows. If G is a cograph, then we solve the 2HP problem by the algorithm given
in [11, 31]. In the following, we assume that G is not a cograph and the PTF-tree of G has been
constructed. We first traverse the PTF-tree PT (G) of G by a reverse breadth-first search which visits
the nodes in the reverse ordering of a breadth-first search on PT (G). Let u be the node currently
visited. If u is either a F -node or a T -node, we find π(G(u)), π(G(u), {s}) if s ∈ V (G(u)), and
π(G(u), {s, t}) if s, t ∈ V (G(u)) by Lemma 6.1, 6.3, and 6.4. If u is a P -node, we reduce the 2HP
problem for G to the same problem for G∗ by Lemma 3.1 to Lemma 3.6. For instance, given a PTF-
tree T shown in Figure 1(b) and T = {v0, v8}, our algorithm computes κ1 = 2 and κ2 = 1 when
it visits the final pendant node of T . Then, the corresponding PTF-tree PT (G∗) of G∗(κ1, κ2) is
shown in Figure 2 and T becomes {v0, v9}. Note that our algorithm does not need to re-traverse the
nodes of X ′ in PT (G∗) since |X ′| = κ1 and π(X ′, T ) = κ1 are known. After completing the reverse
breadth-first search on PT (G), we solve the 2HP problem for G in linear time.

Let T = {s, t} be a subset of vertices and be the input of the 2HP problem. To solve the 2HP
problem on a distance-hereditary graph G in linear time, we put a annotation on each node u in
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Figure 2: The PTF-tree PT (G∗) after visiting the final pendant node of the PTF-tree shown in
Figure 1(b) and the new T = {v0, v9}.

PT (G). The annotation contains a sequence (χ, τ, π0, π1, π2) of elements as follows:
(1) χ: the number of vertices of G(u);
(2) τ : |T ∩ V (G(u))|;
(3) π0: the minimum cardinality of path cover of G(u);
(4) π1: π(G(u), T ′) if T ′ = T ∩ V (G(u)) and |T ′| = 1;
(5) π2: π(G(u), T ) if |T | = 2 and T ⊆ V (G(u)).
We denote the above element on node u by u.γ where γ is either χ, τ , π0, π1, or π2.

Initially, υ.χ = 1, υ.π0 = 1, υ.π1 = 1, and υ.π2 = 1 for each leaf υ in PT (G). And , υ.τ = 1 if
υ ∈ T ; otherwise, υ.τ = 0. Then, we traverse the internal nodes in PT (G) by a reverse breadth-first
search. The algorithm is formally presented in the following.

Algorithm 2HP-DH. Determine whether a given distance-hereditary graph has a Hamiltonian path
with end vertices s, t or not.
Input: A PTF-tree PT (G) of a distance-hereditary graph G = (V,E) and a subset T = {s, t} of V .
Output: Yes or No.
Method:

1. if G is a cograph then call the algorithm in [31];
2. for each leaf node υ in PT (G) do
3. if υ ∈ T then υ.τ ←− 1; else υ.τ ←− 0;
4. υ.χ←− 1; υ.π0 ←− 1; υ.π1 ←− 1; υ.π2 ←− 1;
5. Let S = {u0, u1, · · · , un−2} be the ordered set of internal nodes by a breadth-first search on

PT (G);
6. for i = n− 2 downto 0 do
7. if ui is either a T -node or a F -node then
8. Compute ui.χ, ui.τ , ui.π0, ui.π1, and ui.π2 by Lemma 6.1, 6.3, and 6.4;
9. if ui is a P -node then
10. Let L and R be the left and right child nodes of ui in PT (G), respectively;
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11. x←− L.χ; p←− L.π0; y ←− R.χ; h←− R.π0;
12. Consider the following cases:
13. Case 1: R.τ = 2 (say T ⊆ Y ) /*Lemma 3.1*/
14. if (x < max{2, R.π2}) then return (No);
15. κ1 ←− x−max{0, R.π2 − 2}; κ2 ←− max{2, p− y + 2};
16. Case 2: R.τ = 1 and L.τ = 1 (say s ∈ Y and t ∈ X) /*Lemma 3.3*/
17. if (x < R.π1 + 1) then return (No);
18. κ1 ←− x−R.π1 + 1; κ2 ←− max{2, L.π1 − y + 1};
19. Case 3: R.τ = 1 and L.τ = 0 (say s ∈ Y and t ∈W ) /*Lemma 3.2*/
20. if (x < R.π1) then return (No);
21. κ1 ←− x−R.π1 + 1; κ2 ←− max{1, p− y + 1};
22. Case 4: L.τ = 2 (say T ⊆ X) /*Lemma 3.4*/
23. if (x < h+ 2) then return (No);
24. κ1 ←− x− h; κ2 ←− max{2, L.π2 − y};
25. Case 5: L.τ = 1 and R.τ = 0 (say s ∈ X and t ∈ W ) /*Lemma 3.5*/
26. if (x < h+ 1) then return (No);
27. κ1 ←− x− h; κ2 ←− max{1, L.π1 − y};
28. Case 6: L.τ = 0 and R.τ = 0 (say T ⊆W ) /*Lemma 3.6*/
28. if (x < h+ 1) then return (No);
29. κ1 ←− x− h; κ2 ←− max{1, p− y};
30. ui.χ←− κ1; ui.π0 ←− κ2; ui.π1 ←− κ2; ui.π2 ←− κ2; ui.τ ←− L.τ +R.τ ;
31. if (u0.π2 = 1) then return (Yes); else return (No);

In the following, we give an example to illustrate Algorithm 2HP-DH.
Example 1. Given a PTF-tree PT (G) shown in Figure 1(b) and T = {v0, v8}. Let S = {u0, u1, · · · ,
u9} shown in Figure 3(a) be the ordered set of internal nodes by a breadth-first search on PT (G).
Then, Algorithm 2HP-DH visits the elements of S in the reverse order. When it visits node u7 which
is a final pendant node (P -node), it computes κ1 = 2, κ2 = 1, and reduces PT (G) to PT (G∗(κ1, κ2))
shown in Figure 3(b). That is, PT [u7] is replaced by PT (X ′) where X ′ = I ∪K, I is an independent
set of size κ2 − 1, and K is a clique of size κ1 − κ2 + 1. Note that our algorithm does not need to
visit any nodes in X ′ of PT (G∗) since π(X ′, T ) = κ2 and |X ′| = κ1 are known. After visiting all
internal nodes of PT (G), we obtain that u0.π2 = 1. Hence, G has a Hamiltonian path with respect
to T . Figure 4 depicts the traversal on PT (G). �

The correctness of Algorithm 2HP-DH follows Lemma 3.1 to 3.6 and Lemma 6.1 to 6.4. Clearly,
the computation done at each node by Algorithm 2HP-DH is bounded by a constant. Furthermore,
Algorithm 2HP-DH visits each internal node exactly once. Therefore, we conclude the following
theorem.

Theorem 6.5. Algorithm 2HP-DH solves the 2HP problem for distance-hereditary graph G in O(n)
time if the PTF-tree of G has been constructed.

A PTF-tree PT (G) of a distance-hereditary graph G = (V,E) can be computed in O(n+m) time
[8]. Thus, the following result immediately holds.
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Figure 3: (a)The reverse breadth-first traversal of the PTF-tree PT (G) presented in Figure 1(b)
where T = {v0, v8}, and (b)The PTF-tree PT (G∗) of G∗(κ1, κ2) and T = {v0, v9}.
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Figure 4: u0.π2 = 1 after completing the traversal of nodes in PT (G), where the annotation on each
node is a sequence (χ, τ, π0, π1, π2).
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Corollary 6.6. The 2HP problem on distance-hereditary graphs can be solved in O(n+m) time.

With the aid of previous theorem and corollary, one can modify Algorithm 2HP-DH to conclude
the following theorems.

Theorem 6.7. There exists an algorithm to solve the 1HP problem on distance-hereditary graphs
in O(n + m) time. Moreover, it can solve the 1HP problem in O(n) time if the PTF-tree has been
computed.

Theorem 6.8. There exists an algorithm to solve Hamiltonian path problem on distance-hereditary
graphs in O(n + m) time. Moreover, it can solve Hamiltonian path problem in O(n) time if the
PTF-tree has been constructed.

In [26], we proved the following lemma for Hamiltonian cycle problem on distance-hereditary
graphs.

Lemma 6.9. [26] G has a Hamiltonian cycle if and only if |X | ≥ h + 1 and G∗(κ1, κ2) has a
Hamiltonian cycle where κ1 = |X | − h and κ2 = max{1, p− y}.

By the above lemma, one can modify Algorithm 2HP-DH to conclude the following corollary.

Corollary 6.10. There exists an algorithm to solve Hamiltonian cycle problem on distance-hereditary
graphs in O(n+m) time. Moreover, it can solve Hamiltonian cycle problem in O(n) time if the PTF-
tree has been computed.

Though we only describe how to decide whether a distance-hereditary graph has a Hamiltonian
path with respect to T , these algorithms can be easily extended to find a Hamiltonian path with
respect to T following the constructive proofs of lemmas in Section 3, 4, and 5 in the same time
bound.
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