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ABSTRACT 

The problem of locating centers in distributed systems are especially important since 

they are ideal locations for placing resources that need to be shared among different 

processors in a network. In this paper, we design and prove the correctness of a 

self-stabilizing center-finding algorithm under a more realistic demon in a distributed 

system with a tree topology. 
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A SELF-STABILIZING ALGORITHM FOR THE

CENTER-FINDING PROBLEM UNDER A MORE REALISTIC

DEMON

TETZ C. HUANG, JI-CHERNG LIN AND NATHAN MOU

Abstract. The problem of locating centers in distributed systems are espe-

cially important since they are ideal locations for placing resources that need

to be shared among different processors in a network. In this paper, we design

and prove the correctness of a self-stabilizing center-finding algorithm under a

more realistic demon in a distributed system with a tree topology.

1. Introduction

E. W. Dijkstra first introduced the notion of self-stabilization in a distributed

system in his pioneering paper [2] (cf. also [3][4]) in 1974, in which he coined the

phrase and showed the feasibility of designing such algorithms in a distributed

system. In addition to Dijkstra’s classic papers [2][3][4], a good reference for the

basics on the self-stabilizing system of Dijkstra type can be found in Bruell et

al. [5]. Later in 1993, Dolev et al., introduced a new type of self-stabilizing

system in their famous paper [1]. The computational model of the new type of

system assumes the read/write separate atomicity. Under such an assumption,

each atomic step in the system of Dolev type consists of internal computations

Date: July 2, 2002.
Key words and phrases. Self-stabilizing algorithm, center, rooted tree, model of computation,
read/write separate atomicity, read/write composite atomicity.
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and either a single read operation or a single write operation. In this setting,

Dolev et al. presented two simple self-stabilizing algorithms in [1], one of which

is for the mutual exclusion problem and the other is for the breadth-first search

tree problem. As is proved in the paper, both algorithms are self-stabilizing under

the computational model of Dolev type.

Self-stabilizing center-finding algorithms in a distributed system that uses the

computational model of Dijkstra type have been investigated during the past

[5][6]. In this paper, we design and prove the correctness of a self-stabilizing

algorithm that finds the center(s) for any distributed system with a tree topology

that uses the computational model of Dolev type. To the best of our knowledge,

there has been no published paper so far that discusses the self-stabilizing center-

finding algorithm in a distributed system whose computational model assumes

the read/write separate atomicity.

The rest of this paper is arranged as follows. In Section 2, the algorithm

is proposed and the meaning of the legitimate configuration is explained. The

correctness proof of the algorithm is given in Section 3. Finally, in Section 4,

some remarks conclude the whole discussion.

2. The Center-finding Algorithm

Let T = (V, E) be an undirected tree that is used to model a distributed system

with a tree topology. Each node x ∈ V represents a processor in the system and

each edge {x, y} ∈ E represents the bidirectional link connecting processors x
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Figure 1. Eccentricities of nodes in a tree. The shaded node
stands for the unique center of the tree.

and y. For any x, y ∈ V , let d(x, y) denote the distance between x and y, that is,

the length of the unique simple path in T that connects x and y. Let e(x) = max

{d(x, y) | y ∈ V } denote the eccentricity of a node x, viz. the distance between x

and a farthest vertex from x in T . Then a center of T is a node with the minimum

eccentricity. The so-called center-finding problem for the system T is to identify

the center(s) of the system. Proposition 1 states a well-known property regrading

the center(s) of a tree. The proof of it can be found in Theorem 2.1 in [7].

Proposition 1. A tree has a unique center or two adjacent centers (cf. Figure

1 and 2).

For later use, for any x ∈ V , we define N(x) to be the set of all x’s neighbors.

We also introduce some notations p(x), T (x) and H(x) relating to T in the fol-

lowing definition. Then, we demonstrate some properties with regard to H(x).
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Definition 1. Let T = (V, E) be as above.

Case 1. T has a unique center c. In this case, we designate c as the root and T

thus becomes a rooted tree at c. For any x ∈ V − {c}, the parent of x is denoted

by p(x). For any x ∈ V , let T (x) represents the subtree of T rooted at x . Then

we define H(x) = max{d(x, y) | y is a leaf node in T (x)}, i.e., the height of T (x).

Case 2. T has two centers c1, c2. In this case, we first delete from T the edge

connecting c1 and c2 and thus obtain two subtrees T1 and T2 of T , where c1 ∈

V (T1) and c2 ∈ V (T2). T1 and T2 can be considered as rooted trees at c1 and c2,

respectively. For any x ∈ V − {c1, c2}, p(x) denotes the parent of x in the rooted

tree to which x belongs. For any x ∈ V , the meanings of T (x) and H(x) are also

apparent.

We now give two examples to assist readers in comprehending the notions

given in above definition. The tree shown in Figure 3-(1) has a unique center c.

It induces a rooted tree at c shown in Figure 3-(2). The shaded nodes constitutes
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Figure 2. Eccentricities of nodes in a tree. The two shaded nodes
stand for the two centers of the tree.



A SELF-STABILIZING CENTER-FINDING ALGORITHM 5

� � � F �

�

�

�

�

�

���

���

�

F

�

�
�

� �

�

�

�

7

7

Figure 3. A tree with a unique center c and the induced rooted
tree rooted at c.

the subtree T (3) with H(3) = 2. Also note that p(5) = 4. Next, the tree shown

in Figure 4-(1) has two adjacent centers c1 and c2. It induces two rooted trees

T1 and T2 in Figure 4-(2). The shaded nodes represent the subtree T (2) with

H(2) = 1. Also note that p(7) = 2.

Lemma 1. Suppose x is a node in T such that deg(x) > 1 and x is not a center

of T . Then H(p(x)) ≥ H(x) + 1 and [ ∀y ∈ N(x) − {p(x)}, H(y) ≤ H(x)− 1 ]

and [ ∃y0 ∈ N(x)− {p(x)} such that H(y0) = H(x)− 1 ].
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Lemma 2. Suppose T has a unique center c. Then [ ∀y ∈ N(c), H(y) ≤ H(c)−1

] and [ ∃y1, y2 ∈ N(c) such that y1 6= y2 and H(y1) = H(y2) = H(c)− 1 ].

Lemma 3. Suppose T has two centers c1 and c2. Then H(c1) = H(c2), [ ∀y ∈

N(c1) − {c2}, H(y) ≤ H(c1) − 1 ] and [ ∃y0 ∈ N(c1) − {c2} such that H(y0) =

H(c1)− 1 ].

Later in this section, we will propose a self-stabilizing algorithm that finds

the center(s) for the distributed system T with a tree topology. The underlying

model of computation employed here in the system was introduced by Dolev et
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Figure 4. A tree with two centers c1 and c2 and the induced
rooted trees rooted at c1 and c2.
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al. in [1] (cf. also [8]) that assumes the read/write separate atomicity instead of

the commonly used read/write composite atomicity. Thus, for each x ∈ V and

for each y ∈ N(x), let x maintain a register hxy, in which x writes and from which

y reads. The register is serializable with respect to read and write operations.

For each processor x with deg(x) > 1 and for each y ∈ N(x), let x also maintain

a local variable ryx, in which x stores the value that it reads from the shared

register hyx of the neighbor y. The values of each register hxy and each local

variable ryx are in the range N = {0, 1, 2, . . .}. Figure 5 illustrates the distributed

system that assumes the read/write separate atomicity and is equipped with the

proposed algorithm. Nx,r = {ryx | y ∈ N(x)} denotes the multi-set of values

of all x’s local variables whereas N−

x,r = Nx,r − {max Nx,r} denotes the set Nx,r

with one maximum value in it removed. For example, if Nx,r = {3, 4, 4}, then

N−

x,r = {3, 4}. The legitimate configurations for the system are defined to be

those configurations in which ∀x ∈ V , [ deg(x) = 1 ∧ hxy = 0 for the unique

y ∈ N(x) ] or [ deg(x) > 1 ∧ (∀y ∈ N(x), ryx = hyx∧ hxy = 1 + max N−

x,r) ].

Theorem 1 (Uniqueness). If the system T = (V, E) is in any legitimate config-

uration, then ∀x ∈ V and ∀y ∈ N(x), hxy = H(x), the height of T (x).

The above theorem shows the meaning and the uniqueness of the legitimate

configuration. The converse is also true, which shows the existence of the legiti-

mate configuration.
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Theorem 2 (Existence). The configuration in which [ ∀x ∈ V and ∀y ∈ N(x),

hxy = H(x) ] and [ ∀x ∈ V with deg(x) > 1 and ∀y ∈ N(x), ryx = hyx ] is a

legitimate configuration.

The above two theorems reveal that there is actually a unique legitimate con-

figuration, that is, the configuration in the statement of Theorem 2, and when

the system is in the legitimate configuration, for any x ∈ V and for any y ∈ N(x),

the register hxy records the height H(x) of T (x).

Now we equip the system with the algorithm.

Self-stabilizing center-finding algorithm

{For every leaf node x in the system}

1. repeat forever

2. if hxy 6= 0 then write(hxy := 0) endif

(where y is the unique neighbor of x.)

3. endrepeat

{For every non-leaf node x in the system}

01. repeat forever

02. for each y ∈ N(x) do

03. read (ryx := hyx)

04. endfor

05. for each y ∈ N(x) do

06. if hxy 6= 1 + max N−

x,r then write (hxy = 1 + max N−

x,r) endif
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07. endfor

08. endrepeat

It should be understood that each processor in the system runs its own program

indefinitely and at its own pace, and the running of the program has to follow

the order of the statements in the program.

3. Correctness Proof

We now give the correctness proof in the following theorem. To facilitate the

presentation in the following proof, we define some terminologies. We say that

a node x with deg(x) > 1 just completes a full round of reading all its neighbors

whenever x just completes a full execution of the loop from statement 02 to

statement 04 in the algorithm. Likewise, we say that a node x with deg(x) > 1

just completes a full round of writing all its registers whenever x just completes

a full execution of the loop from statement 05 to statement 07. For any time

instant t, we use hxy(t
+) to denote the value of hxy right after t and hxy(t

−) to

denote the value of hxy right before t. If hxy(t
+) = hxy(t

−), the value of hxy at t

is well-defined and is denoted as hxy(t); otherwise, hxy(t) is undefined. Likewise,

ryx(t
+) and ryx(t

−) stand for the value of ryx right after t and the value of ryx right

before t, respectively. If ryx(t
+) = ryx(t

−), the value of ryx at t is well-defined

and is denoted as ryx(t); otherwise, ryx(t) is undefined.
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Theorem 3 (Self-stabilization). Regardless of any initial state, the system will

converge to the legitimate state and then stay in the legitimate state thereafter.

Proof. Let t = 0 be the initial time instant and L be the diameter of T . Let

m =
⌊

L
2

⌋

.

Claim. ∀j ∈ {0, 1, . . . , m}, there exists an instant tj > 0 such that ∀t > tj, [

∀x ∈ V with 0 ≤ H(x) ≤ j and ∀y ∈ N(x), hxy(t) = H(x) ] and [ ∀x ∈ V with

H(x) > j and ∀y ∈ N(x), hxy(t
+) ≥ j ].

Proof of the Claim. We prove the claim by induction on j. For j = 0, in view

of statement 2 in the algorithm, it is obvious that for each x ∈ V with H(x) = 0,

there exists a t0(x) > 0 such that ∀t > t0(x), hxy(t) = 0 for y ∈ N(x). Let

t0 = max
x∈M0

t0(x). Then, ∀t > t0, [ ∀x ∈ V with H(x) = 0, hxy(t) = 0 for y ∈ N(x)

] and [ ∀x ∈ V with H(x) > 0 and ∀y ∈ N(x), hxy(t
+) ≥ 0 (since, as mentioned

before, the register hxy always attains a value in N = {0, 1, 2, . . .} for any x ∈ V

and for any y ∈ N(x)) ]. Hence the claim is true for j = 0. Let 0 ≤ k < m.

Assume that for j = k, the claim is true, that is, there exists a tk > 0 such that

∀t > tk, [ ∀x ∈ V with 0 ≤ H(x) ≤ k and ∀y ∈ N(x), hxy(t) = H(x) ] and [

∀x ∈ V with H(x) > k and ∀y ∈ N(x), hxy(t
+) ≥ k ].

Subclaim 1. If x ∈ V with H(x) = k + 1, then there exists a t1(x) > tk such

that ∀t > t1(x), max N−

x,r(t) = k.

Proof of Subclaim 1.

Case 1. x is not a center. Then, by Lemma 1, [ H(p(x)) ≥ k + 2 ], [ ∀y ∈
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N(x)−{p(x)}, H(y) ≤ k ] and [ ∃y0 ∈ N(x)−{p(x)} such that H(y0) = k ]. Thus,

by the induction hypothesis, ∀t > tk, [ hp(x)x(t
+) ≥ k ], [ ∀y ∈ N(x) − {p(x)},

hyx(t) = H(y) ≤ k ] and [ hy0x(t) = H(y0) = k ]. Let tp(x) > tk be an instant at

which x reads rp(x)x = hp(x)x. Then ∀t ≥ tp(x), if we let t′
p(x) be the last instant

in the time interval (tk, t] at which x reads rp(x)x = hp(x)x, then we can see that

rp(x)x(t
+) = hp(x)x(t

′

p(x)) and thus rp(x)x(t
+) ≥ k. Similarly, ∀y ∈ N(x) − {p(x)},

∃ty > tk such that [ ∀t ≥ ty, ryx(t
+) ≤ k ] and [ ∀t ≥ ty0

, ry0x(t
+) = k ]. Let

t1(x) = max
y∈N(x)

ty. Then t1(x) > tk and ∀t ≥ t1(x), max N−

x,r(t
+) = k. Conse-

quently, ∀t > t1(x), max N−

x,r(t
+) = k.

Case 2. x is the unique center of T . By employing Lemma 2 and arguing

analogously as in Case 1, we will get a t1(x) > tk such that ∀t > t1(x), max

N−

x,r(t
+) = k.

Case 3. x is one of the two centers of T . By employing Lemma 3 and arguing

analogously as in Case 1, we will obtain a t1(x) > tk such that ∀t > t1(x), max

N−

x,r(t
+) = k. Therefore, Subclaim 1 is proved.

Let x and t1(x) be as in Subclaim 1. Let t2(x) > t1(x) be the first instant after

t1(x) at which x just completes a full round of reading all its neighbors. Let

y ∈ N(x) be arbitrary. (a) If after t1(x), the value of hxy is never changed, then

hxy(t2(x)) = 1 + max N−

x,r(t2(x)). (Otherwise, x will execute statement 06 in the

algorithm to change the value of hxy after t2(x)). Hence, hxy(t2(x)) = 1 + k, by

Subclaim 1. Therefore, we have (]): ∀t ≥ t1(x), hxy(t) = hxy(t2(x)) = 1+k. (b) If

after t1(x), the value of hxy is ever changed, then let t̄y > t1(x) be the first instant
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after t1(x) at which the value of hxy is changed. Then hxy(t̄
+
y ) = 1+maxN−

x,r(t̄
+
y ).

Hence, hxy(t̄
+
y ) = 1 + k, again by Subclaim 1. Since after t̄y, the guard condition

in statement 06 in the algorithm never evaluates to true, node x will never execute

the write action. Therefore, we have (]]): ∀t > t̄y, hxy(t) = 1 + k. From (]) and

(]]) above, it follows obviously that there exists a t∗ > tk such that ∀t > t∗ and

∀y ∈ N(x), hxy(t) = k+1. Thus, we have shown (�): ∀x ∈ V with H(x) = k+1,

∃t∗ > tk such that ∀t > t∗ and ∀y ∈ N(x), hxy(t) = k + 1. By arguing in the

same manner as in the above proof of Subclaim 1 and by employing Lemmas 1,

2 and 3 again, we will obtain

Subclaim 2. If x ∈ V with H(x) > k + 1, then there exists a t∗1(x) > tk such

that ∀t ≥ t∗1(x), max N−

x,r(t
+) ≥ k.

Then, arguing analogously as right after Subclaim 1, we will eventually get (F):

For any x ∈ V with H(x) > k + 1, there exists a t̃ > tk such that ∀t > t̃ and

∀y ∈ N(x), hxy(t
+) ≥ k+1. Consequently, by (�) and (F) above, there exists an

instant tk+1 > 0 (e.g. tk+1 can be chosen to be max{t∗, t̃}) such that ∀t > tk+1,

[ ∀x ∈ V with 0 ≤ H(x) ≤ k + 1 and ∀y ∈ N(x), hxy(t) = H(x) ] and [ ∀x ∈ V

with H(x) > k + 1 and ∀y ∈ N(x), hxy(t) ≥ k + 1 ], that is, the claim is true for

j = k + 1. Therefore, by the postulate of mathematical induction, the claim at

the beginning is proved.

According to above claim, there exists a tm > 0 such that ∀t > tm, ∀x ∈ V

with 0 ≤ H(x) ≤ m and ∀y ∈ N(x), hxy(t) = H(x). This obviously implies

that ∀x ∈ V and ∀y ∈ N(x), hxy = H(x) never changes after tm. Consequently,
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in view of the algorithm, there exists a t∗m > tm such that after t∗m, ∀x ∈ V

with H(x) > 0 and ∀y ∈ N(x), ryx = hyx. Therefore, after t∗m, [ ∀x ∈ V with

H(x) = 0, hxy = 0 for y ∈ N(x) ] and [ ∀x ∈ V with H(x) > 0 and ∀y ∈ N(x),

hxy = H(x)∧ ryx = hyx ], that is, the system is in the legitimate configuration.

Hence, the proof is completed. �

4. Concluding Remarks

In the above, we have shown that the proposed algorithm is indeed self-

stabilizing in a distributed system whose underlying computational model as-

sumes the read/write separate atomicity and in the legitimate configuration, all

hxy’s records the height H(x) of T (x). Arguing analogously as in the proof of

Theorem 1, we can get that the h-value h(x) defined in [5] and H(x) defined in

this paper are actually the same. Thus, by Theorem 4.4 in [5], as soon as the

system reaches the legitimate configuration, identifying a center of T is to select

a node x that satisfies hxy ≥ hyx for any y ∈ N(x). Hence the center-finding

problem is solved.
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