

Submit to 2002 International Computer Symposium (ICS2002), Workshop on
Algorithms and Computational Molecular Biology, December 18-21, 2002,

National Dong Hwa University, Hualien, Taiwan, R.O.C.

Heap Traversal and Its Applications

Abstract

The heap is a very fundamental data structure used in many computer software
applications as well as in operating systems. In this paper, we propose a heap
traversal algorithm which visits the nodes of a binary heap in ascending order of the
key values stored in the nodes. We demonstrate two implementations of the heap
traversal algorithm, using a binary search tree or a binary heap as the auxiliary
structure that facilitates the traversal process. We also report the experimental results
comparing the efficiency of heap-traversal based sorting algorithms vs. other
well-known sorting algorithms. Our experimental results show that heap traversal
can be applied to many traditional applications with improved performance.

Li-Jen Mao* and Sheau-Dong Lang**

*Department of Information Management, Fortune Institute of Technology

Chi-Shan, Taiwan, R.O.C. Email: larry.mao@msa.hinet.net Tel: 886-918-054-121

**School of Electrical Engineering and Computer Science, University of Central
Florida, Orlando, FL 32816-2362, U.S.A.

Email: lang@cs.ucf.edu Tel:407-823-2474 Fax:407-823-5419

(Contact author: Li-Jen Mao*)

Keywords: Data Structures, Binary Search Tree, Heap Sort, Heap Traversal.

mailto:larry.mao@msa.hinet.net
mailto:lang@cs.ucf.edu

1. Introduction

A binary heap is a fundamental yet important data structure that provides an
efficent implementation of priority queue operations [1, 2, 6, 10, 11]. A binary
(min-)heap is also called a heap ordered binary tree; it is a method of storing a binary
tree in an array where the binary tree maintains two properties: (1) the heap property
in which the value stored in every node is smaller than the values of its two children
(if exist); and (2) the heap shape property in which the binary tree must be a complete
tree; that is, every level of the tree is complete except possibly for the last level which
is filled in from left to right. Since a complete binary tree of height h has between 2h
and 2h+1 – 1 nodes, this implies that the height of a complete binary tree is O(lg n).
When a binary heap is stored in an array, the root of the tree has array index one (the
element with index zero is usually not used), the children of the root are at indexes
two (left child) and three (right child), etc. In general, the children (if exist) of the tree
node with index k have indexes 2k (left child) and 2k+1 (right child) and the parent
(except for the root) is in position k/2.

The basic operations of a (min-)heap are: build-heap, heapify, insert, find-
minimum, and delete-minimum. Figure 1 gives a pseudo-code description of the
heapify operation, which rearranges the heap to restore its heap property at the node
with position index, assuming its two subtrees satisfy the heap property prior to the
adjustment. This procedure takes O(lg n) time, where n is the number of nodes.

Procedure heapify(Hp[], index, n) {

/* n : number of nodes, Hp [1..n]: an array storing a heap of size n,

F dex]
index: index of a tree node where the heap property may be violated */

1. pos = 2 * index;
2. item = Hp[index];
3. not_done = true;
4. while (pos < n and not_done) do
5. if (pos < n – 1 and HP[pos] > Hp[pos+1])
6. pos++;
7. if (item <= Hp[pos])
8. not_done = false;
9. else Hp[pos/2] = Hp[pos];
10. pos = 2*pos;
11. end while
12. Hp[pos/2] = item;
13. }

igure 1: The Heapify procedure to restore the heap property at node HP[in

The build-heap operation converts an input array to a heap by executing the
heapify operation repeatedly from the last non-leaf node towards the root node. A
pseudo-code description of build-heap is given in Figure 2. The procedure takes O(n)
time [1, 6, 10]. It is also well known that the insert and delete-minimum operations
take O(lg n) time in the worst case; delete-minimum takes O(1) time.

Procedure build-heap (Hp [], n) {
/* n : number of nodes, Hp[1..n]: an array to be converted into a heap */

-heap

[
d
o
a
c
t

t
a
b
f
t
w
d
s
i
T
a
f
p
a

t
c
h
(
o

2

h

1. for (i = n/2; i > 0; i--)
2. heapify(HP[], i, n);

Figure 2: The Build-heap procedure which converts an array into a min

There are many variants of the basic heap data structure reported in the literature
2, 6, 7]. Some implementations also support efficient merge operation (of two heaps),
eletion of an arbitrary item, and increasing the priority of a item (the decrease-key
peration). Although these variants may outperform the standard binary heap
symptotically, the binary heap has a very small constant in its O(lg n) time
omplexity and will often outperform other more complex heap implementations for
ypical cases [5, 10, 11, 12].

In this paper, we propose a novel algorithm which traverses a min-heap by visiting
he nodes in ascending order of the values stored in the heap. The algorithm can be
pplied to any implementation of heaps although our discussions will be limited to the
inary min-heap only. The heap traversal algorithm explores the heap property to
acilitate the traversal process, and it produces the same output as that of the in-order
raversal of a traditional binary search tree. However, because the heap property is
eaker than that of a binary search tree, our heap traversal algorithm uses an auxiliary
ata structure for bookkeeping purposes. We will prove that the size of the auxiliary
torage required is at most n/2, and the time for locating the next node for traversal
s O(lg n) in the worst case if the auxiliary structure is organized as a binary heap.
hus, the entire traversal process takes O(nlg n) time in the worst case. The main
dvantage of the proposed heap traversal technique is that locating the next node is
ast due to the small size of the auxiliary data structure, which makes heap traversal a
otentially useful subroutine for other priority-based applications [9]. However, this is
ccomplished at the expense of the additional space required.

The remainder of the paper is organized as follows. Section 2 describes the heap
raversal algorithm and provides theoretical analysis of its space and time
omplexities. In Section 3, we will present experimental results comparing two
eap-traversal based sorting algorithms with some traditional sorting algorithms
heapsort and two versions of Quicksort). Section 4 concludes the paper and points
ut some directions for further research.

. Heap Traversal

Our heap traversal algorithm takes a (min-)heap as the input, and traverses the
eap in ascending order of the values stored in the nodes without making any changes

to the structure or contents of the heap. The nodes that are being traversed are
copied into another list, producing an ordered listing of the values stored in the
original heap. Thus, the heap traversal is similar to an in-order traversal of a binary
search tree; the only difference is that since the heap structure does not provide as
much order information as in a binary search tree, attempting to efficiently traverse a
heap is a more challenging problem.

2.1 The Heap Traversal Algorithm

We now describe the general heap traversal algorithm HeapTraversal as shown in
Figure 3. Suppose the input heap is stored in an array Hp[1..N]. Let the output items
be stored in the array OrderList[1..N]. (We should comment that the results stored in
OrderList[1..N] are identical to the array Hp[1..N] if heapsort is applied, due to the
similarity between the traversal procedure and heapsort.) Our algorithm first
initializes an auxiliary data structure AuxDS as empty. The structure AuxDS will be
used to store the indexes of the elements of heap Hp[] for selecting the next minimum
element. The AuxDS can be implemented as a binary search tree or another binary
heap. More details on the implementation of AuxDS will be given later.

Algorithm HeapTraversal(Hp[], AuxDS, OrderList[], N) {
/* traverse a heap Hp[1..N] using an auxiliary data structure AuxDS which can be a binary

search tree, or another binary heap; the results of traversal are copied into
OrderList[1..N] in order */

1. ListIdx = 1; HpIdx = 1
2. OrderList[ListIdx++] = Hp[HpIdx] // we know the heap top is the smallest
3. InsertAuxDS(max{Hp[2], Hp[3]}); // put larger item in AuxDS
4. OrderList[ListIdx++] = min{Hp[2], Hp[3]}
5. HpIdx = index(min{Hp[2], Hp[3]})
6. repeat
7. HpIdx = HpTraverse(Hp[], AuxDS, HpIdx, N) // visit an new item
8. OrderList[ListIdx++] = Hp[HpIdx] // copy in ordered list
9. until (HpIdx == N) // until all items has been traversed

Figure 3: The heap traversal procedure

The algorithm HeapTraversal initializes the two index variables ListIdx (for

OrderList[]) and HpIdx (for Hp[]) to 1, in Step 1 of Figure 3. The ListIdx will be
increased each time a newly traversed element of Hp[] (indexed by HpIdx) is copied
to the OrderList[]. After the variable initialization, since we already know that the
smallest element is on top of the heap, it is copied to OrderList[]. The larger value

of the two children (i.e. Hp[2] and Hp[3]) of the root is copied into the auxiliary
structure AuxDS by calling InsertAuxDS (Step 3); the smaller value (indexed by
HpIdx) of the root is copied to OrderList[]. The algorithm HeapTraversal then gets
into a loop (Steps 6 to 9) which repeatedly calls the a subroutine HpTraverse using
HpIdx as the index of the next item of Hp[] for traversal. The loop continues until all
nodes have been traversed and values being copied to OrderList[]. It is easy to see
that the number of iterations of this loop is exactly N – 2.

The subroutine HpTraverse (shown in Figure 4) is called by the algorithm
HeapTraversal and will return the next smallest element that has traversed so far to
the caller. HpTraverse first gets the index of last traversed element (i.e. argument
Idx) from its caller HeapTraversal, and computes the indexes of two child nodes of
Idx in Step 1-2. Their values are compared to the smallest element of the auxiliary
structure AuxDS; the smallest of all these will be returned as the next element for
traversal and be copied to OrderList[]. The two indexes of two remaining elements
will then be put into AuxDS by calling the procedure InsertAuxDS (Steps 4 and 9 of
Figure 4). Note that there is a little difference between the if part (Steps 4-6) and the
else part (Steps 7-11) of the algorithm HpTraverse: the if part involves only one call
to the procedure InsertAuxDS; the else part involves two calls to the procedure
InsertAuxDS, plus one extra call to the DeleteMin(AuxDS) (Step 8). Thus the if part
will use rightly 2/3 of the execution time of the else part, this may be worth attention
for further improvement.

Algorithm HpTraverse(Hp[], AuxDS, idx, N) {
/* traverse a heap Hp[1..N] using the auxiliary data structure AuxDS, the idx is the index of

item last visited in heap Hp[], this procedure returns the index of next smallest item
traversed so far */

1. LeftChild = Hp[idx*2];
2. RightChild = LeftChild + 1;
3. if (min{Hp[LeftChild], Hp[RightChild]} < Hp[min(AuxDS)]) {
4. InsertAuxDS(max{Hp[LeftChild], Hp[RightChild]}); // put larger
5. return index of min{Hp[LeftChild], Hp[RightChild]} // smaller for process
6. }
7. else { /* the min item in the auxiliary data structure is smallest */
8. MinIndex = DeleteMin(AuxDS) // remove smallest from AuxDS
9. InsertAuxDS({Hp[LeftChild], Hp[Righthild]}); // put both in AuxDS
10. return MinIndex;
11. }

Figure 4: The HpTraverse subroutine

2.2 A Heap Traversal Example

Figure 5 uses an example to demonstrate the heap traversal procedure
HeapTraversal of Figure 3. In Figure 5 (a), a binary min-heap of 15 nodes is given as
the input, where the values of the nodes are shown in the figure. When applying the
algorithm HeapTraversal to the heap, the order in which each node is visited during
heap traversal is shown in Figure 5 (b), where a value k inside a node means that node
is the kth value visited during traversal. Note the similarity between heap traversal and
heapsort, the main difference is that heap traversal doesn’t modify the input heap
(Figure 5 (a)), and uses an auxiliary structure to maintain information of the potential
locations for selecting the next smallest item for traversal. Also, heap traversal copies
the output to another list without modifying the input heap, whereas heapsort does
sorting in-place, i.e., without using auxiliary storage. Also note that an auxiliary
structure for efficient heap traversal must keep some order information of its values;
thus, a binary search tree or a binary heap would be good candidates for the auxiliary
structure AuxDS. We will report the experimental results based on these two
implementations of the auxiliary structure in Section 3. Since the height of the
auxiliary structure AuxDS (if implemented as a tree) tends to be lower than that of the
original heap, the search and insertion time of the auxiliary structure is better than that
based on the original heap. A complexity analysis is given in the next section.

3

512

16

1718 1311

9

8 10

6

2624

23

(a) An input heap of 15 nodes, where the numbers are

the values stored in the nodes.

10

11 12

1

28

9 7

5

4 6

3

15 14

13

(b) The heap traversal order of the above heap, where
the numbers represent the sequencing order.

Figure 5: A Heap traversal example

2.3 Complexity Analysis of Heap Traversal

We first analyze the space requirement of the auxiliary structure AuxDS used in
heap traversal. Notice that whenever the next smallest item is removed from AuxDS,
the children (if exist) are inserted into AuxDS (Step 4 or 9 of Figure 4). Thus, the size
of AuxDS increases by one if the removed node has two children; otherwise, the size
either remains the same (if there is one child) or will decrease by one (if there are no
children). Since in an input heap of size n to the heap traversal algorithm, there are
exactly n/2 non-leaf nodes, so the size of the auxiliary structure can increase at most
n/2 times. Thus, we have proved the following result.

Theorem 1: The required size of the auxiliary structure used in the heap traversal
algorithm is at most n/2, where n is the size of the input heap.

To analyze the time complexity of the heap traversal algorithm, we will
concentrate on the number of heap element comparison operations. (Thus, we will
ignore data movement, index comparison, initialization operations in this analysis.)
However, the result of comparison operations will provide a Big-O measure of the
overall time complexity of the algorithm.

We assume a binary min-heap is used for the implementation of AuxDS.
According to Theorem 1, the size of this heap will increase from 0 to at most n/2,
then decrease eventually back to 0. If we apply the bottom-up version of the heap
siftdown function [3, and 8, p.192], which essentially uses one comparison per
tree-level during the InsertAuxDS operation (Steps 4 and 9 of Figure 4), the total
number of heap element comparisons during heap traversal is bounded by the
following summation:

nnnnennnnnexdxek
nn

k
443.2lg)(lg

2
lg)

22
ln

2
)((lg2ln)(lg2lg2

2/

1

12/

1
−=−=−=∫∑ ≤

−

=

Theorem 2: If a binary heap is used to implement the auxiliary structure employing
the bottom-up version of the heap siftdown function, the total number of heap element
comparisons of the heap traversal algorithm is bounded by nlgn – 2.443 n. As a result,
the time complexity of heap traversal is O(n lg n).

This result indicates that the number of element comparisons of the heap traversal
algorithm is optimal, based on the nlgn lower bound for comparison-based sorting
algorithms. However, the additional term 2.443 n in the complexity indicates potential
advantage comparing other results published in the literature. However, it should be
noted that the additional storage overhead required by the heap traversal algorithm
could make the algorithm unsuitable for some applications.

3. Experimental Results

In this section, we report the experimental results comparing sorting algorithms
based on the heap traversal technique vs. other well-known sorting algorithms. In this
study, we implemented two versions of the heap traversal algorithm: one uses a binary

search tree and the other uses a binary heap as the auxiliary structure for heap
traversal. However, the binary heap didn’t use the bottom-up siftdown technique
used in the analysis reported in the previous section. The corresponding sorting
algorithms are named heaptrav-bt (using a binary search tree) and heaptrav-hp (using
a binary heap). We also implemented two versions of Quicksort and the traditional
heapsort [12], for our comparative study. The first version of Quicksort is a generic
version without recursion; the second version of Quicksort uses the median-of-three
partitioning and a cutoff of array size ten for recursive calls to optimize its
performance [10, 11]. All these algorithms were implemented using the C language
and were compiled using the BSD compatibility package C compiler (i.e. cc). The
data in the input arrays were generated by the random number generator; the sizes of
arrays were 300, 3000, and 30000. We ran the experiments using a Sun SPARC
Server with 2048 megabytes of memory running SunOS 5.6, where each algorithm
was run 3000 times using randomly generated numbers for each array size.

Table 1 shows the experimental results of the average execution times of 5000
runs for each array size. It can be seen that the optimized Quicksort performs the best.
The algorithm heaptrav-bt outperforms Heapsort and outperforms the generic
Quicksort, but is about 20% worse than the optimized Quicksort. The binary-heap
based heap traversal sorting algorithm, heaptrav-hp, on the other hand, has a
performance very close to that of Heapsort, using our current implementation of the
binary heap for the auxiliary structure.

Table 1: Average execution time (5000 Runs) in microseconds (µs) of sorting

algorithms with problem size range from 300 to 30000.
 Sorting

Algorithms

Size
Quicksort
(Generic)

Quicksort
(Optimized)

Heapsort heaptrav-bt heaptrav-hp

300 1127 µs 742 µs 1331 µs 933 µs 1388 µs
3000 14294 µs 9941 µs 17962 µs 11703 µs 17880 µs
30000 180181 µs 126946 µs 234942 µs 157534 µs 231502 µs

4. Conclusion

In this paper, we proposed a novel technique which traverses a heap in ascending

order of the values stored in the heap. The heap traversal technique can be applied to
any implementation of the heap although our studies were limited to binary heaps.
The heap traversal technique can be used in applications that involve processing items
in a priority-based order; for example, locating the kth smallest values in an array for
multiple values of k, without sorting the array. Our theoretical analysis showed that a
binary-heap based implementation of heap traversal uses an optimal number of

element comparisons, but at the expense of additional storage required by heap
traversal. We implemented two versions of heap sorting algorithm with this heap
traversal approach, namely; heaptrav-bt (heapsort using the heap traversal technique
with a binary search tree as the auxiliary structure) and heaptrav-hp (heapsort using
the heap traversal technique with a binary heap as the auxiliary structure). These two
sorting algorithms were compared with the well-known Quicksort and Heapsort
algorithms. The experimental results showed that the new variation of heapsort,
heaptrav-bt, could be competitive although was slower than the optimized Quicksort.

For further research, we plan to apply other auxiliary structures for heap traversal
to improve its performance. We also plan to perform an average-case analysis of the
heap traversal algorithm, to better understand the theoretical aspects of the algorithm.
We also like to study other applications of heap traversal, and consider the
possibilities of combining heap traversal with other sorting techniques such as
heap-mergesort [4].

REFERENCES

[1] V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms, Addison-Wesley, New York, 1974.
[2] S. Baase and A.V. Gelder. Computer Algorithms, 3rd ed., Addison Wesley

Longman, 2000.
[3] S. Carlsson. A variant of heapsort with almost optimal number of comparisons,

Information Processing. Letters, 24(4), 247-250, 1987.
[4] R. A. Chowdhury, S. K. Nath, and M. Kaykobad. The heap-mergesort,

Computers and Mathematics with Applications, 39, 193-197, 2000.
[5] R. Cole. An optimally efficient selection algorithm, Information Processing.

Letters, 26, 295-299, 1988.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, 2nd ed., MIT Press, 2001.
[7] Paul F. Dietz and Rajeev Raman. Small-rank selection in parallel, with

applications to heap construction, Journal of Algorithms, 30, 33-51 1999.
[8] R.W. Floyd. Algorithm 245 - Treesort3, Communications of the ACM, 7 (12),

p.701, 1964.
[9] D. W. Jones. An empirical comparison of priority-queue and event-set

implementations, Communications of the ACM, 29 (4), 300-311, 1986.
[10] D. E. Knuth. The Art of Computer Programming, Vol. III: Sorting and Searching,

Addison-Wesley, Reading, MA. 1973.
[11] M. A. Weiss. Data structures and algorithm analysis in C. 2nd edition,

Addison-Wesley, 1997.

[12] J. W. J. Williams. Algorithm 232 - Heapsort, Communications of the ACM, 7
(12), 347-348, 1964.

	REFERENCES

