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Abstract

The longest common subsequence (LCS) problem, a famous NP-Hard problem, is to find the
common subsequence with maximum length on a set S of n strings of length m over an alphabet
set X.. One of important applications of this problem is to measure the similarity of biological
sequences in molecular biology. This paper introduces a new algorithm for LCS problems, which
uses the ant colony optimization approach and runs in O(nm* logm + Rlmn) time when m > n
and m > |X|, where R denotes the number of iterations and ! denotes the number of ants. Our
algorithm is also a greedy algorithm based on Hamiltonian cycles. In this paper, we prove that
this algorithm has performance ratio of |X| and show that the algorithm obtains better solutions
than previous algorithms from our initial experimental results.
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1 Introduction

Let S = {s1, s2, S3, ..., sp} be a set of n strings of length m over an alphabet set X, where m > n
and m > 3. String s is called a common subsequence of s;s’ iff s can be obtained by deleting
zero or more symbols from each s;, where i=1, 2, ..., n. The longest common subsequence (LCS)
problem is to find a common subsequence of s;s’ of maximal length.

LCS has many important applications in different areas. In molecular biology, LCS is an
appropriate method for measuring the similarity of biological sequences [14]. When we want to
know how homologous those DNA or protein sequences are, we can calculate the maximum number
of identical symbols among them. That is exactly the longest common subsequence of them.
Moreover, we can even compare the evolutionary distances of those sequences only by using a
special LCS algorithm [1].

The LCS problem on two strings (2LCS) is polynomial-time solvable and has received much
attention. Many authors have tried for years to use the dynamic programming technique on the
2LCS problem [16, 8, 13, 2]. But most of them still needed O(mn) in the worse case. However,
the LCS problem on n strings was shown to be NP-hard [12] (even on a binary alphabet). Exact
algorithms using dynamic programming for solving LCS problems appear in [7, 9].

Jiang and Li [10] showed that there exists a constant ¢ > 0 such that, if LCS has a polynomial-
time approximation algorithm with performance ratio n’, then P=NP. They proposed Long Run
algorithm for approximating L.CS problems. This algorithm finds the longest common subsequence
consisting of only one distinct symbol over . For example, given strings aaabc, bbbaac and ccaa,
Long Run will output aa, because aa is the longest common subsequence with a single symbol.

Bonizzoni, Vedova and Mauri [3] proposed another approximation algorithm called Expansion
Algorithm (EA). Given a set .S of strings, EA performs the following four steps: (1) Compute all

streams of S of maximum length 2. (2) Compress each sequence into its longest stream. (3) Use



the Huffman-like greedy algorithm to obtain a common stream 7" of S by merging pairwise streams
into a common subsequence. (4) Expand all streams of S of maximum length 2 and all substrings
of T for determining the final common subsequence.

The performance ratio of an approximation algorithm A for LCS problems is the ratio between
the length of longest common subsequence and the length of common subsequence found by A. It
was proved that the performance ratio of EA and Long Run are both |X|.

Tsai and Hsu [15] proposed an approximation algorithm MSTG for LCS problems. This al-
gorithm is a greedy algorithm based on a minimal spanning tree (MST). Although MSTG has
the same performance ratio and time complexity as that of EA, the authors showed that MSTG
have better solutions from their experimental results. Table 1 summaries recent results for LCS
problems.

Ant Colony Optimization(ACO) is a general-purpose heuristic algorithm that can be applied
to solve different combinatorial optimization problems [6, 5]. The ACO algorithm imitates the
foraging behavior of real ant colonies. When ants search for the sources of food or from food
sources back to the nest, they lay a chemical substance called pheromone. The closer trail will have
more pheromone than the farther one will have, accordingly, the ants can reach the closer trail
much quicker. The ants smell pheromone and choose the stronger pheromone trail to go. This is
the exact way that they find the shortest path between the food and the nest. ACO was proposed
firstly by Dorigo [4] and can be applied to combinatorial problems by following four steps:

1. Define an appropriate graph of the problem that can be searched by ants.

2. Define the autocatalytic feedback process.

3. Define a heuristic algorithm that can work on the graph.

4. Define a constraint satisfaction method.

ACO has already been adapted to solve a number of different combinatorial problems and



network routing problems, such as the shortest common supersequence problem (e. g. traveling
salesman, quadratic assignment, job-shop scheduling, vehicle routing, sequential ordering, graph
coloring, etc.) [5].

In this paper, one approximation algorithm for solving the LCS problem is proposed. This
algorithm is an Hamiltonian-cycle-based greedy algorithm, which searches for better candidate
sequences of LCS by finding better Hamiltonian cycles. Our algorithm HCG uses Ant Colony
Optimization (ACO) approach for Hamiltonian cycles and has time complexity O(nm4logm +
RImn), where R is the user-defined number of iteration and [ is the number of ants. HCG algorithm
has performance ratio of |¥|, and has better experimental results compared with the previous
approximation algorithms.

The remainder of this paper is organized as follows. Section 2 will introduce our HCG algorithm
and analyze its time complexity. The experimental results are given in Section 3. Future research

directions and works are provided in Section 4.

2 The Algorithm

In this section, we shall introduce our new approximation algorithm for LCS problem. Let ¢! denote
a string composed of ¢ consecutive os’ for 0 € ¥, where 4 is a positive integer. String o109...0%
with 0; € ¥, 1 < j <k, is a stream of string s if 0; # 0,41 for all 1 <4 < k and 0?032 . ..02’“ =3
for positive integers 7;’s. String s = 0{1052 ... O’ik with o, € 3, 1 <[ <k, is called the expand of
stream o109 ...0, with respective to a set S of strings if s is the common subsequence of S and
718" are maximized for 1 <[ < k.

The minimum-spanning-tree-based greedy (MSTG) algorithm, proposed in [15], uses a MST as
a guide tree for merging the common subsequences. The details of this algorithm is described in

Figure 1. In MSTG, phase 0 runs in O(mn) time, while Phase I needs O(n?m?) + O(n?logn) +

O((n — 1)m?) = O(n?*m?) time, where Step 2 runs in O(n?m?) time, O(n?logn) time is needed in



Algorithm: MSTG
Input: A set S = {s1,...,5,} of n strings of length m
Output: A common subsequence for S

1.

// Phase 0
Compute S = {sq,...,s,} where s; is the longest stream of s;.

. // Phase I

Compute the longest common subsequence Ls, s, for s; and s, where 1 <i < j <n.

Let G = (V, E) be a complete graph with cost function ¢ : E — R, where V = {1,2,...,n} is
the vertex set, F is the edge set and ¢;; =m — [Ls, s, | for 1 <i # j <n.

Let {e1,ea,...,e,_1} be the accepted edge sequence in constructing a minimum spanning
tree using Kruskal’s algorithm.

. Let r; and [; denote the two end vertices of edge e;.

Let T = {T1,T»,...,T,}, where T} is the labeled tree containing root s; only, where 1 < j < n.
Let i=1.

Let T" and T" denote the labeled trees in 7 containing s,, and s, respectively.
Let s' and s” denote the labels of roots of 7" and T" respectively.

Create a new node y with label Ly g.

Construct a tree T" rooted at y by linking y with the roots of 7" and T".

Let T=T—{T",T"} + {T"}.

Let ¢ =44 1.

Repeat Step 5 n-2 times.

// Phase II
Let S denote the all streams of S of length < 2.
Add to S all substrings of the label of root of tree in 7.

Find the longest ezpand of w € S with respect to S.

Report the result sequence.

Figure 1: MSTG algorithm



Step 3, and Step 5 is repeated n-1 times of O(m?) time each. Phase II which is the same process
as ExpandArbitray function of EA in [3] runs in O((|X|? + m?)nm?logm) time, where it takes
O(nm?logm) time to get an ezpand and there are at most |X|2 +m? steams in S. When m > n
and m > |X|, the total time complexity is O(nm? logm).

Our algorithm assumes that there are | ants, denoted by aq, ..., a;. Let e(7,j) be the edge
linking 7 and j. Let ¢;; be the cost of edge e(i,j). Let n;; be the quantity of visibility on edge
e(i, j). Let 7;; be the quantity of pheromone on edge e(7, j). Let ATikj be the quantity of pheromone
laid on edge e(i, ) by ant a;. Let Nj be a set of unvisited vertices by ant ax. Let « denote the
relative importance of the trail. Let 8 denote the relative importance of the visibility. Let p denote
the trail persistence and 1 — p the trail evaporation. Note that a > 0, 8> 0 and 0 < p < 1. Let

PZ’; be the probability that ant a; chooses edge (i, 7) to be on it’s trail, which is defined as follows:

(74)* (nij )P e )

_sz — ngNk(Tiv)a(niv)ﬁ lf] € Nk’ (]_)

J .
0 otherwise.

Our algorithm is the Hamiltonian-cycle-based greedy (HCG) algorithm for LCS problems. The
complete description of it is listed in Figure 2. The step 4 uses the ACO heuristics described in [6]
for Hamiltonian cycles. In HCG, phase 0 runs in O(mn) time to compute streams. Phase I needs
O(n*m?) + O(n?) + O(RImn) = O(n?*m? + Rlmn) time, where Steps 2, 3 and 4 run in O(n?m?),
O(n?) and O(RImn) time, respectively. Phase II is the same process as Phase IT of MSTG and
runs in O(nm*logm) time for m > n and m > |X|. Therefore, it is O(nm?* logm + Rlmn) time in
total for m > n and m > ||, where R is the number of iterations. The time complexity becomes
O(nm*logm) if R = O(m) and | = O(m).

Long Run algorithm proposed in [10] had shown that it has performance ratio of ¥. It is easy to
know that the common subsequence generated by our HCG algorithm has at least the same length

of that of Long Run algorithm. Therefore, we have the following result immediately.

Theorem 1 HCG algorithm has performance ratio of |X.



Algorithm: HCG
Input: A set S = {s1,...,s,} of n strings of length m, a, 3, p, l and R
Output: A common subsequence for S

1. // Phase 0
Compute S = {s1,...,s,} where s; is the longest stream of s;.

2. // Phase 1
Compute the longest common subsequence Lsi,sj for s; and s;, where 1 <14 < j <mn.
Let G = (V, E) be a complete graph with cost function ¢ : E — R, where V = {1,2,...,n} is
the vertex set, E is the edge set and ¢;; = m — |Lsi’sj| for 1 <i#j5<n.

3. Set 7;; =1for 1 <i# 5 <n.
Set Nij = 1/Cij for1 <i#j<n.
Set D to be an empty sequence.

4. Reapeat the following steps R times

4.1 Set Arfi=0for1<i#j<mnand1<k<I
Set N ={1,...,m} —{k} for 1 <k <|I.
Place ant a; to a random vertex v for 1 < k < [.
Set t, =< vp >.

4.2 Repeat the following steps m — 1 times.

4.2.1 For 1 <k <,
(a) find the jj such t.hat Pfk g = max{Pfk j
(b) set Nk = Nk — {]k},
(c) set vk = ji;
(d) append vy to the vertex sequence t.
4.3 For 1 <k <,
(a) use GCS algorithm (see Figure 3) to compute the candidate sequence dy, for 5 with
respect to S;
(b) if |dk| > |D|, set D = dy.
44 For1 <i#j<nand1<k<I,
(a) set ATZ-kj =0;
(b) if e(4,j) € dy, set ATZ-kj = |dk|/|D].
Set AT;; = Zlgkgl ATikj for1<i#j<n.
Set Tij = PTij —i—ATij for1 <i#j<n.

|7 € Ni};

5. // Phase II
Let S denote the all streams of S of length < 2.
Add to § all substrings of D.

6. Find the longest ezpand of w € S with respect to S.

7. Report the result sequence.

Figure 2: HCG algorithm



Algorithm: GCS
Input: A set S = {s1,...,s,} of n strings of length m, and a vertex sequence Q = {q1,...,Sn}
Output: A candidate sequence

1. If |S| =1, return s;.
2. Set D = the LCS of s; and ss.

3. For s =3 ton do
Set D = the LCS of D and g;;

4. Return D.
Figure 3: GCS algorithm

3 Experimental Results

We shall give our initial experimental results and the comparative study with EA in [3] and MSTG
in [15]. Our experiments can be divided into two parts. In the first part, we test DNA and protein
sequences selected from some conserved regions of bacteria and generated from an evolution process
according to the one-parameter substitution scheme, Jukes-Cantor model [11]. Besides, we also
discuss the performance in sequences of four different lengths of average lengths 250, 500, 750, and
1000. In the second part, we test three groups of sequences with different divergence. All of our
experimental data are obtained from National Center for Biotechnology Information (NCBI) and
sequence lengths are all ranged between 400 and 500. As for parameters of HCG algorithm, the
setting values are a= 2, =2, p= 0.3, R=n and [ = n.

Table 2 shows the length of common subsequences found by EA, MSTG and HCG algorithms
on 10 sets of DNA sequences and 10 sets of protein sequences. This table demonstrates that HCG
almost has better solutions in the data sets.

In addition, the experimental results on strings generated by JC model are listed in Table 2.
Four sets of probabilistic DNA and protein sequences are tested, where two sets of 5 sequences and
two sets of 10 sequences. The results also demonstrate that HCG has better solutions than others

in all data sets.



Table 4 and Table 5 show the length of LCS found by EA, MSTG, and HCG in four groups
of sequences of average lengths 250, 500, 750, and 1000, where each group consists of 5 sequences.
These results show that HCG algorithm outperforms other algorithms.

Finally, we consider three groups of sequences with different divergence. Given a set of sequences

of length m, the divergence degree is defined by the following formula:
(LLCS — SLCS)/m,

where LLCS is the length of the longest one of all pairwise LCSs and SLC'S is the length of the
shortest one of all pairwise LCSs. Each group contains 10 sequences with the same divergence. The
experimental results for convergence degrees 10%, 20%, and 30% are shown in Table 6, Table 7
and Table 8, respectively. The results of HCG are better than others, especially on DNA sequences

with higher divergence and protein sequences.

4 Concluding Remarks

This paper have proposed a new approximation algorithm HCG for LCS problems, which is a greedy
algorithm based on Hamiltonian cycles and runs in O(nm?logm + Rlmn) time when m > n and
m > |3, where R denotes the number of iterations, ! denotes the number of ants. We have proven
that HCG has performance ratio of |X| and shown that the algorithm obtains better solutions than
previous algorithms from our initial experimental results.

More experiments must be performed to further determine the practicability of HCG. One
research direction is to find the tight performance ratio for HCG. To design better approximation

algorithms for LCS problems by new approach is worthy to exploit.
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Problem | Algorithm | Results
2LCS [16] O(nm) time
[8] O(rn + nlogn) time
[13] O(nm/logn) time
LCS [7] ea: O(m|Z|n + AZ|n(log” 3 m + log" ?|X]|)) time
[9] ea: O(nr(m —r)" 1 4+ n|X[m) time
[10] aa, pr: |X|, O(mn) time
[3] aa, pr: |X|, O(nm?logm) time
[15] aa, pr: |X|, O(nm?logm) time
this paper | aa, pr: ||, O(nm?logm + Rlnm) time

Table 1: Previous algorithms and results, where r denotes the length of LCS, A denotes the number
of dominant matches, R denotes the number of iterations, [ denotes the number of ants, 'pr’
stands for 'performance ratio’, ’ea’ stands for 'exact algorithm’, and ’'aa’ stands for ’approximation
algorithm’.

Data No | |¥| | » | EA | MSTG | HCG
1 169 178 | 179
2 175 181 179
3 45 | 176 176 | 181
4 175 177 182
5 179 179 | 177
6 137 148 | 150
7 127 131 141
8 4110|123 131 140
9 128 136 141
10 136 139 141
11 66 75 79
12 47 61 62
13 200 5 | 69 75 79
14 61 64 66
15 58 69 66
16 43 47 48
16 36 41 41
18 20| 10 | 38 36 42
19 36 36 45
20 34 34 42

Table 2: Experiments on DNA and protein sequences of length 400~500.

Data No | |¥| | » | EA | MSTG | HCG
1 41 5 |210 211 213
2 4110 | 182 192 215
3 20| 5 | 167 183 | 183
4 20 | 10 | 102 113 119

Table 3: Experiments with sequences generated by JC model of length 400~500.
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Data No | Length | EA | MSTG | HCG
1 250 | 92 91 95
2 500 | 169 178 179
3 750 | 292 303 302
4 1000 | 363 370 373

Table 4: Experiments on DNA sequences of different lengths.

Data No | Length | EA | MSTG | HCG
1 250 | 32 34 35
2 500 | 66 75 79
3 750 | 87 97 105
4 1000 | 108 118 126

Table 5: Experiments on protein sequences of different lengths.

Data No | |¥| | » | EA | MSTG | HCG
1 4110 | 378 379 | 378
2 20|10 | 76 7 82

Table 6: Experiments on DNA and protein sequences with divergence degree 10%

Data No | |X| | » | EA | MSTG | HCG
1 4110 | 164 165 168
2 20 | 10 | 50 ol 98

Table 7: Experiments on DNA and protein sequences with divergence degree 20%

Data No | |¥| | » | EA | MSTG | HCG
1 4110 | 160 170 173
2 20 | 10 | 48 56 99
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Table 8: Experiments on DNA and protein sequences with divergence degree 30%




