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1 INTRODUCTION

The purposes for studying phylogenetics include (1) resconstructing the correct
genealogical ties between species and (2) estimating the time when a divergence
occurs between species from a common ancestor. These usually can be done by
constructing trees, whose leaves represent present-day species and whose interior
nodes represent hypothesized ancestors. Trees of this kind are called evolution
trees. When an evolution tree is constructed from a distance matrix, the distances
should be properly reflected. Usually, the criterion is that all of the distances in
the tree reflect the original distances among species. That is, when two species
are close to each other in the distance matrix, they should be close to each other
in the evolution tree. The following object functions give us different evolution
trees, and each criterion corresponds to a distinct evolution tree problem. We use
Dr(i,7) to denote the path length from specie i to specie j in the evolution tree
T and D(3, j) to denote the distance between species 7 and j in the input distance

matrix D.

1. Minimax

In a minimax evolution tree, the maximum of D7 (7, j) —D(i, 7) is minimized.

2. Minisum

In a minisum evolution tree, the total sum of all pairs of distances among
leaf nodes is minimized.
3. Minisize

In a minisize evolution tree, the total length of the tree is minimized.

These absolute object functions are insufficient for constructing evolution trees.
That is, new evolutionary relations between species defined by a evolution tree with
good minisum may conflict with those defined by the original distance matrix D.
Or, there are two evolution trees with the same minisize, yet it is hard to determine
which one is better? From the output result, we cannot measure the details of the
topology of a tree.

So we propose an objective function, compact set neighboring relation , and
use it to work out the preserved neighboring ratio. We describe a new optimization
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probelm below and its hardness is still open.
Maximum Preserved Neighboring Ratio
INSTANCE: A distance matrix D over label set S.
QUESTION: Finding the evolution tree T labeled by S with maximum preserved
ratio.

We introduce the definition of neighboring relation, compact set, and compact
set neighboring relation in section 2.In section 3 we present our algorithm used to
generate the compact set neighboring relations and the calculation of preserved

neighboring ratio. In section 4 we show the experimental result.



2 Preliminaries

2.1 Neighboring Relation

Given a set S of n sequences, we use a symmetric n X n matrix D to denote
the distance matrix of S and D(i, ) to denote the distance between sequence i
and j in D. That is, all the elements in D are nonnegative, D(i,7) = 0 and
D(i,j) = D(j,i) for any 4,j € S. D is metric if the distances obey the triangle
inequality, i.e. D(i,5) + D(j, k) > D(i, k) for any 4,7,k € S.

For any sequences i,j,k € S, let ((i,7),k) denote the relation D(i,j) <
min{D(i,k), D(j,k)}. For any sequences i,j in a tree 7, we use LCA(i,j) to
denote the least common ancestor of 7 and j in 7. For any sequences %,j and
k, there is a nerighboring relation in T if and only if the relations ((Z,7), k) and
(LCA(7,5) < LCA(4, k) = LCA(j, k)) exist.

2.2 Compact Sets

Given a set S = {51, 52, -+, Sy} of N sequences, we use D(S;,S;) to denote
the distance between S; and S; in the distance matrix D. We also can represent
this instance by a connected undirected graph G = (V, E), such that V is S and
each edge (S5;,5;) in E is associated with a weight D(S;, S;). For any subset C' of
S, C is called a compact set if the distance between elements in C' and elements
not in C' is larger than the longest distance in C, i.e., min{D(S;, S;)|S; € C,S; €
S\ C} > max{D(S;,5;)|S; € C,S; € C}. In other words, the sequences of a
compact set are closer to each other than to other sequences. By definition, S
is a compact set and each set consisting of single sequence is also a compact set
(i.e., these compact sets are trivial). Consider the distnace matrix of Figure 1 as
an example. It is not hard to see that there are three nontrivial compact sets
{S1,S6},{S1,S2,Ss} and {S3, 54, S5} among the sequences.

The relation among the compact sets can be represented in tree with using the

following property:

LeEMMA 2.1 ([1]). Let A and B be two different compact sets of S. If AN B # (),
then either A C B or B C A.
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Figure 1. A distance matrix D for 5 sequences and its compact set tree with three

nontrivial compact sets {S1, S}, {S1, S2, S¢} and {Ss, Sy, S5} -

Given a compact set A of S such that A # S, we consider the smallest size
compact set C'4 that properly conatins A. According to Lemma 2.1, C'4 is unique.
Since, if two different compact sets of S have non-empty intersection. For example,
they both contain the compact set A. According to Lemma 2.1, one properly
contains the other, so the smallest size compact set containing A is unique. We
represent the containment relationship of these compact sets by a graph 7 =
(V1., E7.), such that V7, is the set of all compact sets and each edge (A,C,) in
E7, links a compact set A to the set C4. Clearly, 7¢ is a rooted tree, in which
the root represents the compact set S, each of its leaves represents a compact
set, of single sequence of S, and each internal node represents the union of the
compact sets represented by its children. Given 7¢, the compact sets can be found
by travesing 7; in postorder and unioning the compact set represented by the
children to obtain their parent’s compact set. Here, we call 7¢ as a compact set
tree of S (see Figure ?? for example). For example, we can represnet the compact
set in Fingure 7?7 as {{S55, 54,55}, {{S1, 56}, S2}}.

2.3 Compact Set Neighboring Relation

Let C be the sets of all compact sets of S. For any three species S;, S, Sy € S,
if there is a compact set C' of C such that S;,S; € C and Si, ¢ C, then we say



Figure 2. The compact set tree 7¢ of above distcne matrx D with three internal
node Iy, I, and I3 representing compact sets {S1, Se}, {S1, S2, S¢}, and{Ss, S4, S5}

respectively.

that these three sequences have the compact set neighboring relation , and denote
it by ((S;,S;), Sk) € Ne. Let R be the sets of all three sequences in S possessing
the neighboring relations with respect to C, i.e., R = {((S:, S;), Sk)|((Si, S;), Sk) €
AS



3 The Implementation

Before we find all compact set neighboring relations, we should know all the
compact sets. we use Kim’s algorithm[2] to find all compact sets, then start our
algorithm.Our algorithm is composed of two stages:

1. Generate the neghboring relations R of C and Ry from Dr.

2. Calculate the set-difference of R and R+.

3.1 Stagel

When given a C, the bellow algorithm generates the total compact set neigh-

boring relations.

Algorithm 1: Compact Set Neighboring Relations

Input: Given C be a compact set of S = {Sy,Ss,---,S,} represented as

brackets.
Output: The total compact set neighboring relations.

begin
NR-STACK =NULL ;
1 PARESE-CS(S) *Construct a compact set tree 7¢ from C ;
for each child v of root(Tc) do
| NERCOM (S,v) ;

end

Let C, be the compact set belonging to the node v of the compact set tree 7.

We now describe the subroutine NERCOM (s, v):



Procedure PARESE-CS(s)

begin

repeat

switch W =getc(s) do
case {

| Push W into STACK ;

case Species

| Push W into STACK ;

case }

1. Pop the species from STACK until the top of STACK is {.

2. Pop {.

3. Create a new internal node I and assign the species poped in stepl as
children.

4. Push I into STACK.

until Reading to the end of s;
end

Procedure NERCOM(s, v)

begin

Cout = 8 \ Cy ;

NR-STACK <« ((S5;,5;), S), for all S;, S; € CpandSy € Coyy ;
for each child u of v and u isn’t a leave do

| NERCOM (C,,u) ;

end

For example, the input compact set is represented as {{Ss, S4 S5}, {{S1, S6}, S2}}.

Its compact set tree 7z can be obtained after running step 1, like shown in
Figure ??. The root node of 7¢ contains of two children I5 and I3 so two subroutines
NERCOM (S, I5) and NERCOM (S, I3) are called respectively. In subroutine NERCOM
(S, I5), it generates neighboring relation listed in Table 1. Because internal node I,

contains of a child, I;, another subroutine NERCOM (C,,, I1) is called. Neighboring
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((S1,52),53) | ((S1,56),52) | ((S3,54),51)
((S1,52), 54) ((S3,54), 52)
((S1,52), 55) ((S3,54), Se)
((S1,56),53) ((S3,55), 51)
((S1:S6), S4) ((S3,55), S2)
((S1,56), S5) ((S3,55), Se)
(( ),S3) ((Ss,S5), S1)
(( ), S4) ((S4, S5), Sa)
(( ), S5) ((S1,S5), S6)

N

Table 1. The neighboring relation in internal nodes I, I; and I3.

relation generated in this subroutine is also listed in Table 1. We note that it
does not generate duplicate neighboring relation been generated in its parent. In
subroutine NERCOM (S, I3), it is the same. The respective C, and C,,; of each
internal node are shown in Figure 3.

There are n species poped and pushed in the procedure PARESE-CS. Because
each couple brackets merges at least one species, there are at most O(n) couple
brackets poped and pushed in PARESE-CS. The number of internal node poped
and pushed is also at most O(n). Conbining above analysis, we have the cost of step
1 is O(n). In the procedure NERCOM, it generates every neighboring relation only
once. Therefor, denoting by p the number of compact set neighborong relations,
we have that the total work of NERCOM is O(p). Conbining this two results, we

have

THEOREM 3.1. The total neighboring relation with respect to C can be generated

in time O(n + p).

3.2 Stage 2

Given a topology of 7, we can list a linear inequality satisfying that tha path
length between leaves i and j on 7 is larger than or equal to D(i, j), for any two
1,5 € V. Then, we can get D7 by solving the linear porgramming minimizing the
tree size. For any three sequences i, j, k € V,if D7 (i, j) < min{D+(i, k), Dr(j,k)},

then we say that these three sequences have the neighboring relation with respect
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Figure 3. The respective C, and C,,; of each internal node.

to T, and denote it by ((z,7), k) € N7. Let Ry be the sets of all three sequences

in V possessing the neighboring relation with respect to 7. Then we define the

_ |RORT|

preserved neighboring ratio of T to be P(T) R



4 Exprimental Results

We choose the two algorithms NJA and GA with some real data, then calculate
their preserved neighboring ratio.
The data sets we use in the expriment are as follow and their r are smaller

than 30.

1. The first data set, denoted by PROTEIN12, consists of 12 protein sequences
with length 80-160 residues.

2. The second data set, denoted by DNA28, consists of 28 DNA sequences of
fruit flies with length 800-900 nucleotides.

3. The third,fourth, fifth and sixth date set, denoted by HUMAN34-1, HUMAN34-
2, HUMAN34-3 and HUMAN34-4 respectively, each of them consists of 34
DNA sequences of human mitochondria with length 660-690 nucleotides.

4. The other 5 data sets are selected from the BAIiBASE [4, 5] benchmark align-
ment database, denoted by 1vin(4), lycc(4), 2abk(4), 1pysA(5) and 2cba(5)
with length 118-236, 105-190, 211-344, and 234328, respectively, where the
number in the brackets denotes which reference sets this data set belogs to.
1vin(4) and 2cba(5) consist of 14 and 8 sequences, respectively. However,
we have to remove some sequences from the original data sets such that the
program can successfully output result. lycc(8) has 8 sequenes, which is the
same as BAlIBASE except sequence letp; 2abk(4) has 5 sequenes, which is
the same as BAIiBASE except sequence 1IMPGA; 1pysA(5) has 7 sequenes,
which is the same as BAIIBASE except sequence laszB, 1adjA and 1lylA.

Our experimental flow chat is shown as Figure 4.
Table 2 shows the preserved neighboring ratios of Tk,, and NJ. In this case,

the trees almost have the equal number of outperformance.
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Data NJA | GA
PROTEIN12 | 41.35% | 41.35%
DNA28 | 59.57% | 73.48%
HUMAN34-1 | 80.50% | 90.50%
HUMAN34-2 | 79.66% | 82.63%
HUMAN34-3 | 65.34% | 85.96%
HUMAN34-4 | 82.70% | 81.45%
1vin(4) | 38.37% | 53.49%
lycc(d) | 52.94% | 23.53%
2abk(4) | 60.00% | 30.00%
1pysA(5) | 65.52% | 48.28%
2cba(5) | 42.50% | 32.50%

Table 2. The results of preserved compact-set ratio.
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5 CONCLUSIONS AND FUTURE WORK

From the topology viewpoint, we propose a new measurment of preserved neigh-
boring ratio to evalute the quality of evolution tree. When there are two evolution
trees with the same or similar tree size, we may chioce the one with the larger
preserved neighboring ratio. In the following, we propose some open problems

concerning our compact set evalutation.

1. Can we classify the nerighboring relations with respect to compact set ac-

cording to the height of least common ancestor ?

2. When there are few non-trivial compact sets, can we relax compact set re-
strictions? For example, any inside is less than border edge multiplying a

constant number.
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