

Analyzing performance on AES implementations

 Yueh-Min Huang Chi-Sung Laih

 Department of Engineering Science Department of Electrical Engineering

 National Cheng Kung University National Cheng Kung University

 Taiwan, R.O.C. Taiwan, R.O.C.

Neng-Wen Wang
Department of Engineering Science
National Cheng Kung University
Taiwan,R.O.C.
nwwang@cc.kyit.edu.tw

Abstract

 NIST(National Institute of standards and Technology) announced that Rijndael was selected as

the proposed AES(Advanced Encryption Standard)[2] on Oct 2, 2000. Following the year, NIST

approved the AES as a standard enumerated by FIPS 197(Federal Information Processing Standards

Publication 197) [1] on Nov 26,2001. Several Versions of programs was also proposed for AES

implementation [3]. However, there exists difference of more than hundred times in the efficiency of

encryption/decryption among these versions. In this paper, we evaluate efficiency for these AES

algorithms. We also elaborately analyzed these algorithms in their technical skills, especially for the

latest 32-bit algorithm. We will describe some special methodology to expedite on the encryption and

decryption. The result shows that the latest algorithm would largely promote the encryption/

decryption efficiency. To take advantage of the latest version, some restrictions should be taken in the

hardware resource and code implementation. However, there is no clear explanation in the original

proposed AES [2]. There are some ambiguous paragraphs that may confuse programmers. Thus, we

suggested NIST to modify those paragraphs in [4]. The original AES proposal has been amended as a

final official FIPS197 standard which had added some sections, including the ambiguous paragraphs.

Keywords: AES(Advanced Encryption Standard), FIPS 197(Federal Information Processing Standards
Publication 197)

1. Introduction

 AES has been chosen as the next generation encryption standard by NIST. It will replace the

use of DES in the following 30 years. The original DEA (DES Algorithm) was designed for

mid-1970s hardware implementation and does not produce efficient software code. TDEA (Triple

DEA), which has three times as many rounds as DEA, is correspondingly slower. Both of them use a

- 1 -

64-bit block size encryption/decryption. For reasons of both efficiency and security, a large block

size is desirable. Because of these drawbacks, TDEA is not a reasonable candidate for long term

use[5]. In 1997, NIST issued a call for proposals for a final advanced encryption standard (AES),

which should have a security strength equal to or better than TDEA and significantly improved

efficiency. AES must be a symmetric block either with a block length of 128 bits and support for key

lengths of 128,192, 256 bits. On Oct. 2,2000, Rijndael was finally chosen as the proposed AES.

The AES standard was completed on the next year. NIST published the AES standard as FIPS197 on

Nov 26,2001. The major concerns for AES are the efficiency and the security. There are theoretical

proofs of the security issue in relative documents. However, there are few mentioned about the

efficiency issues. In this paper, we evaluate these implementation algorithms. We dedicate on this

efficiency issue. Currently, Computers are well designed in the hardware architecture. To achieve a

better efficiency, one should design an algorithm that can utilize CPU power as high as possible. The

32-bit algorithm can fully utilize CPU power. We will describe these issues in detail on the following

sections. The definition of the state and cyber key arrays in Rijndael Algorithm is described in Section

2. Some major amended sections in the final AES standard (FIPS197) are described in Section 3. We

analyze AES Algorithms and elaborate its implementation issues in section 4. The performance is

evaluated in section 5. Conclusion is finally summarized in section 6.

2. The state and the cipher key arrays in AES Algorithm

The Rijndael cipher is suited to be implemented efficiently on a wide range of processors and in

dedicated hardware. We will define the terminology in following paragraph [2], then describe the

Rijndael Algorithm.

2.1 The state and the cipher key [2]

 The different transformations operated on the intermediate cipher result are called the state. The

state can be pictured as a rectangular array of bytes. This array has four rows, the number of columns

is denoted by Nb and is equal to the block length divided by 32.

- 2 -

 The cipher key is similarly pictured as a rectangular array with four rows. The number of columns

of the cipher key is denoted by Nk which is equal to the key length divided by 32. These

representations are illustrated in Fig 1.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5 k0,6 k0,7
k1,0 k1,1 k1,2 k1,3 k1,4 k1,5 k1,6 k1,7
k2,0 k2,1 k2,2 k2,3 k2,4 k2,5 k2,6 k2,7
k3,0 k3,1 k3,2 k3,3 k3,4 k3,5 k3,6 k3,7

Fig 1 Examples of state with Nb=6 and key with Nk=8

 The input and output used by Rijndael at its external interface are considered to be

one-dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. These blocks hence

have lengths of 16,24 0r 32 bytes and array indices in the ranges 0..15, 0..23 or 0..31. The cipher key is

considered to be one-dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nk-1.

These blocks hence have lengths of 16,24 0r 32 bytes and array indices in the ranges 0..15, 0..23

or0..31.

 The cipher input bytes are mapped onto the state bytes in the order a0,0, a1,0, a2,0, a3,0, a0,1,a1,1,a2,1,a3,1,

a0,2,a1,2,a2,2,a3,2, …, and the cipher key input bytes are mapped onto the state bytes in the order

k0,0,k1,0,k2,0,k3,0, k0,1,k1,1,k2,1,k3,1, k0,2,k1,2,k2,2,k3,2, …. At the end of the cipher operation, the cipher

output is extracted from the state by taking the state bytes in the same order.

2.2 Using Transpose Matrix to enhance the efficiency of data access

 The Rijdael algorithm use matrices to store the state and the cipher key. All the

encryption/decryption operation will perform on these two matrices. During the implementation, if

we use the original matrix orientation as Fig 1, sequential words accesses may become slower. To

enhance the efficiency in data access, we would like to transpose the matrix while implementing it as

Fig 2. The reason will be explained in the next paragraph.

- 3 -

a0,0 a1,0 a2,0 a3,0
a0,1 a1,1 a2,1 a3,1
a0,2 a1,2 a2,2 a3,2
a0,3 a1,3 a2,3 a3,3
a0,4 a1,4 a2,4 a3,4
a0,5 a1,5 a2,5 a3,5

Fig. 2 Transpose matrix

 For most of the currently high-level programming language, the alignment of array elements is

row major. That is, array elements are placed in the memory with a sequential order of row by row.

If the CPU manipulates data in another fashion of column by column, the column’s elements (such as

a00, a10, a20, a30) are not in the consecutive location. The access time for nonconsecutive data is

always much slower than the consecutive data. Fig 3 shows the architecture of classical DRAM[7].

To access data in a location, the row address should be decoded before the column address. Fig 4 and

Fig. 5 show the difference of time required between consecutive-byte access and nonconsecutive one

[6][7]. For consecutive-byte access, the row address is decoded only one time, which followed by

four- column address. Nevertheless, the row address should be decoded for each nonconsecutive-

byte. Because of this drawback, the 32-bit algorithm will arrange data access in fashion of row by row.

 Fig 3 Classical DRAM architecture

Fig. 4 Nonconsecutive bytes access

- 4 -

 Fig. 5 Consecutive bytes access

2.3 Some ambiguity in the AES proposal and our suggestion for AES standard

 In the section 4.1 of AES proposal, there are some ambiguous descriptions for the state matrix

and key matrix. First, we list these paragraphs as follows:

 The input and output used by Rijndael at its external interface are considered to be

one-dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. These blocks hence

have lengths of 16,24 0r 32 bytes and array indices in the ranges 0..15, 0..23 or0..31. The cipher key is

considered to be one-dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nk-1. These

blocks hence have lengths of 16,24 0r 32 bytes and array indices in the ranges 0..15, 0..23 or0..31.

 The cipher input bytes are mapped onto the state bytes in the order a0,0, a1,0, a2,0, a3,0,

a0,1,a1,1,a2,1,a3,1, …, and The cipher key input bytes are mapped onto the state bytes in the order

k0,0,k1,0,k2,0,k3,0, k0,1,k1,1,k2,1,k3,1, …. At the end of the cipher operation, the cipher output is

extracted from the state by taking the state bytes in the same order.

 However, there is inconsistent description in another paragraph as follows:

 In some instances, these blocks are also considered as one-dimensional arrays of 4-byte vectors,

where each vector consists of the corresponding column in the rectangular array representation. These

arrays hence have lengths of 4,6 or 8 respectively and indices in the ranges 0..3,0..5 or 0..7. 4-byte

vectors will sometimes be referred as words.

 If the matrix blocks are considered as one-dimensional arrays of 4-byte (words) vectors, which

each vector consists of the corresponding column. These arrays hence have indices in the ranges 0..3,

0..5, 0..7 for 128,192,256 bits block respectively. For C programming language, the column vectors

- 5 -

([] , [] , etc.…) are never allocated in the consecutive

location. These vectors can not be directly treated as words. Except that there are other temporary

variables or arrays used for storing the transposed column vectors. The transposed vectors are directed

from the column vectors. The transposed vectors will be [a], [],

and etc…. This additional procedure needs to be handled for the implementation in row-major

programming languages such as C. There will be another overhead in transposing vectors and

additional variables or arrays. It will be better that the AES standard should provide another technique

note to explain this additional procedure for programmers.

00a 10a 20a 30a t
01a 11a 21a 31a t

00 10a 20a 30a 01a 11a 21a 31a

 Because of this drawback, we suggest that the AES proposal adopt the transposed matrices as Fig 2.

In addition to benefitting the efficiency of data access (as explained in section 2.2), it also resolve the

ambigious problem. If the transposed matrices are adopted in the AES proposal, no additional

transposing procedure is needed.

3. Some modified sections in the final offical AES standard[1]

3.1 Related modifications in the Matrices

 If the matrix is transposed, the row vectors and column vectors are actually interchanged.Hence,

some modifications should be needed in the Rijndael Algorithm. First, Shiftrow should be modified as

Shiftcolumn, Second, Mixcolumn should be modified as Mixrow. After this modification, the Rijndael

Algorithm will be clearly understood both by the system designer and the programmer. Unfortunately,

the orientations of states and keys are not modified in the final AES standard. The original rightward

orientation of matrices which have been used for a long period of time, due to some other reasons of

the AES work group, is continuously been used. However, NIST did modify the ambiguity sections in

the original AES proposal section 4.1. The new definitions of the matrices are described in Sections

3.3: Arrays of Bytes, Section 3.4: The State and Section 3.5: The state as array of columns.

The sequence of element and the orientation in arrays are much clearly defined than before. There

should be no more ambiguity in the final FIPS197 standard. However, programmers are still needed to

- 6 -

take notice of the definition in the standard may be inconsistency with their chosen programming

language in aspect of orientation of arrays.

3.2 Modified the size of the state arrays

 The most significant amendment in the final FIPS197 standard is in the size of the state array. The

original arrays allow three different size of arrays with Nb(numbers of columns)= 4 , Nb=5 or Nb=6.

To achieve the maximum efficiency of the 32-bit processors, the final AES standard does merely allow

Nb=4(that is with a cyber block of 128-bit). The reason can be easily understood by reading our

explanations in the next section.

4. The analysis of AES Algorithms and its implementation issues[1][2]

 The Rijndael cipher is suited to be implemented efficiently on a wide range of processors and

in dedicated hardware. Its algorithm is based on the byte (8-bit)-manipulation. However, most of

contemporary computer platforms have a 32-bit (or above) processor. Although the Rijndael algorithm

is suitable for all range of processors, this algorithm will be less efficient while executing in a 32-bit

(or above) processor. The latest version of 32-bit algorithm is provided and suited for processors over

32 bits.

4.1 Using word (4 bytes)-manipulation in Transposed Matrix

The original matrix suffers the efficiency problem as described in section 2.2, hence the

modified 32-bit algorithm will always uses the transposed matrix. This will also benefit the word

manipulation in the row since there is always 4 bytes in each row on the transposed matrix. The

original state matrix and cipher key matrix are not uniform in the row. In the original matrix, there are

4, 6, and 8 elements in a row each for 128, 192 and 256 bit-data, hence we can not handle the row by

word manipulation for all cases.

 In the original matrix, there is always four elements in column for all cases (128, 192 and 256 bits

data). After transposing, the new matrix will always has 4 elements in the row. Instead of four

- 7 -

continuous byte-access in the row, the 32-bit algorithm manipulates it as one word-access. For most of

current computers with 32-bit (or above) CPU, it takes only one access for one word in the row. In C

programming language, we can treat the word (four-byte) data as the type of long integer. The

word-manipulation (such as additions) can be performed in this data of long-integer type. It will take

less than one-fourth of time in comparing with byte-manipulation.

4.2 Using lookup table to enhance substitution and multiplication

In the proposed Rijndael Algorithm, substitutions and multiplications always waste plenty of time.

The 32-bit algorithm replaces those mathematical operations by looking up table. It merely takes a

index lookup array of 256 elements for byte substitution. This will be much faster than substitution

operation. All mapping results are calculated in advance, then stored these results in a array [256] for

all the 256 input conditions. Of course, the index lookup will be much faster than mathematical

substitution operation which is composed of array multiplication and array addition.

 The 32-bit algorithm also speeds up the mixcolumn operation by lookup table. The original

mixcolumn operation is as Fig 6, where ar =[] vector is from the state. 0a 1a 2a 3a t



















3
2
1
0

a
a
a
a



















3
2
1
0

b
b
b
b



















2113
3211
1321
1132

=

 Fig. 6

 By using byte-multiplication, it takes 16 multiplications to acquire the result vector of b

r
. The

32-bit algorithm will replace these multiplications by the lookup table. The original mixcolumn

could be modified as:

t

b
b
b
b

a

t

a

t

a

t

a

t



















=



















+



















+



















+



















3

2

1

0

3210

2
3
1
1

1
2
3
1

1
1
2
3

3
1
1
2

 rewritten as:

- 8 -

 r
 + + + = b0pr 1pr 2pr 3pr

 where = , = , 0pr 0

3
1
1
2

a

t



















1pr 1

1
1
2
3

a

t



















2pr = , 2

1
2
3
1

a

t



















3pr = , 3

2
3
1
1

a

t



















 b
r

=

t

b
b
b
b



















3

2

1

0

 The column vectors are transposed. We would treat it as 4-byte row vector. The partial result

of , , , can be treated as one word and can be placed in the consecutive memory location.

In high-level language such as C, we can read those vectors by a type of long integer. For 32 bits

computer it takes only one time for data access.

0pr 1pr 2pr 3pr

 Multiplication is the most time-wasting operators in Rijndael algorithm. Instead of using

multiplication, we use lookup tables in acquiring the partial result of , , , . The

multiplication result can be calculated in advance and store in the array. Therefore, every partial

result can be acquired by looking up method. The lookup table for mixcolumn needs to be arranged

as an array of 4*256, since each partial result

0pr 1pr 2pr 3pr

pr is composed of four elements. We can design 4

kinds of lookup array. The first lookup array is for vector [2 1 1 3] which is multiplied by . The

second one for vector [3 2 1 1] which is multiplied by , and so on.

t
0a

t
1a

 Instead of 4 multiplication needed for each partial result, the 32-bit algorithm uses only one

index lookup. In comparing with byte-manipulation, it takes much less than one-fourth of time in

acquiring the result vector. The original byte-manipulation method needs 16 additions. The 32-bit

algorithm needs only 4 additions to sum up 4 partial result of

b
r

0pr , 1pr , 2pr , 3pr . It will take only

one-fourth of time in comparing with byte-addition.

 For the decryption, the 32-bit algorithm will use the same technique in the inverse operation. All

the lookup tables have been calculated in advance. All the substitutions and multiplications are

replaced by lookup. The encryption of 32-bit algorithm will be at the same speed as the encryption.

Because we use lookup table to replace the inverse of multiplication, the looking time will be almost

- 9 -

as the same as the one in encryption.

4.3 Speedup key schedule

The efficiency of key schedule is a major concern of encryption/decryption. All the

intermediate round for encryption/decryption will perform only after the intermediate key was

expanded. To explain the 32-bit algorithm of key schedule, we take an example of key with Nk=4.

The original Rijndael key schedule for Nk=4 is illustrated in Fig 7. Other cases for Nk=6 and Nk=8

will be also modified by this method.

Original key Round 1 Round 2 Round 10

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 ••• W40 W41 W42 W43

Step 1 : W4=W0+W3t where W3t=SubByte(RotByte(W3)) + Rcon[4/Nk]
Step 2 : W5=W1+W4
Step 3 : W6=W2+W5
Step 4 : W7=W3+W6
……

 Fig 7 Key expansion example for Nk=44
 = W0+W3
 To speed up the key expansion, all additions use the word-manipulation as the same reason as we

described in previous section. After the key matrix being transposed, there are 4 elements in each row.

The 4-element byte-data in the first row can be represented as word-data W0, which is followed by

word data W1, W2 and W3. To expanse the next round key, W4 can be acquired by word-addition of

W0+W3, as illustrated in Figure 7 step 1.As the same method, W5, W6 and W7 can be acquired in

step 2, 3 and 4.

4.4 Expediting the Decryption

 The decryption for the block cipher is generally to manipulate the cipher in the reverse steps and to

use the inverse operations as in the encryption. Since the operations in encryption are not symmetrical,

we need to develop another procedure to handle the decryption. If there exists another equivalent

decryption procedure whose operations order is the same as the one in the encryption, we can use the

same procedure (exception for using reverse operations during decrypting) to manipulate both

encryption and decryption. This will benefit on the speedup of decryption. There is another benefit that

- 10 -

is particular useful when we implement both encryption and decryption in the hardware. It means we

need only one set of process logic circuit. It will save both cost and time in the decryption. We will

prove the equivalent decryption procedure in the following paragraph.

 Before going on further proof, we need to define some notations. The encryption on AES Rijadael

composes of four district operations. [8]

(a) Substitution γ:

 γ: b= γ (a) ⇔ b i,j = Sγ (a i,j)

 γ is a nonlinear byte substitution with an invertible 8-bit S-Box. The inverse of γ is the inverse

substitution Sγ
-1(by using inverse lookup table) to all bytes of a state.

(b) ShiftRow π:

 The inverse of ShiftRow π is to shift the row in the reversed direction.

(c) Mixcolumn θ:

 θ: b = θ(a) ⇔ bi,j = cj ai,0 ⊕cj-1 ai,0⊕cj-2 ai,2⊕cj-3 ai,3

 Mixcolumn is a linear operation that operations separately on each of the four rows of a state.

Where the multiplication is in GF(28) and the indices of c must be taken modulo 4. The

polynominal corresponding to row i of a state a is given by

 ai(x) = ai,0 ⊕ ai,0 x ⊕ ai,2 x2 ⊕ ai,3 x3

 Using this notation, we define c(x) = ⊕j cjxj. The Mixcolumn can be rewritten as

θ: b = θ(a) ⇔ bi (x)= c(x) ai(x) mod (1⊕x4)

 The inverse of θ corresponds to a polynominal d(x) is given by

 d(x) c(x) = 1 mod (1⊕x4)

 c(x) is chosen as 2 ⊕ 1 x ⊕ 1 x2 ⊕ 3 x3

 d(x) is chosen as E ⊕ 9 x ⊕ D x2 ⊕ B x3

 Using this notation, we define

 θ -1: a = θ(b) ⇔ ai (x) = d(x) bi(x) mod (1⊕x4)

- 11 -

(d) Keyaddition σ:

 σ[Kt]: b = σ[Kt](a) ⇔ b = a ⊕ Kt

 σ -1[Kt]= σ[Kt]: b = σ -1[Kt](a) ⇔ b = a ⊕ Kt

 σ[Kt] consists of the bitwise addition of a round key Kt. The inverse of σ[Kt] is itself.

 The encryption in the AES complete round consists of the round transformation denoted by ρ[Kt].

ρ [Kt]: = ρ [Kt]。θ。 π。 γ

If we encrypt the state as 10 rounds proceeded by an initial key addition σ[K0], then the encryption

procedure is as

Encrypt(k)=(ρ [K10]。π。γ)。ρ [K9]。ρ [K8]。ρ [K7]。ρ [K6]。ρ [K5]。ρ [K4]。ρ [K3]。ρ [K2]

。ρ [K1]。σ [K0] (1)

The decryption procedure should be

Decrypt(k) = σ [K0]。ρ-1 [K1]。ρ-1 [K2]。ρ-1 [K3]。ρ -1 [K4]。ρ -1 [K5]。ρ-1 [K6]。ρ -1 [K7]。ρ -1 [K8]

。ρ-1 [K9]。 (γ-1。π-1。ρ [K10]) (2)

Where

ρ -1 [Kt]: = γ -1。π -1。θ -1。σ -1[Kt] (3)

 Since γ -1 only operates on the individual bytes, we have γ -1。 π -1 =π -1。γ -1. Equation (3) can be

rewritten as

ρ -1 [Kt]: = π -1。γ -1。θ -1。 σ [Kt] (4)

Moreover, since

θ -1(a) ⊕ Kt = θ -1(a ⊕ θ(Kt)), we have

σ [Kt]。θ -1 = θ -1。σ [θ(Kt)] (5)

We can also derive

θ -1。σ [Kt] (a) = θ -1(a ⊕ Kt) = θ -1(a) ⊕ θ -1(Kt) = σ [θ-1 (Kt)]。θ -1(a)

⇒ θ -1。σ [Kt] = σ [θ-1 (Kt)]。θ -1 (6)

- 12 -

 Now, we define the complete round transformation of the decryption as

ρ′ [Kt]: =σ [Kt]。θ -1。 π -1。 γ -1 (7)

 The decryption of round 10 and round 9 can be written as

ρ-1 [K9]。γ -1。 π -1。σ -1[K10]= π -1。γ -1。θ -1。σ [K9]。 π -1。γ -1。σ [K10]= π -1。γ -1。σ -1[θ -1 (K9)]。

θ -1。 π -1。γ -1。σ [K10]

= π -1。γ -1。ρ′ [θ -1 (K9)]。σ [K10] (8)

 We can continue the rest of rounds, thus the decryption of ten rounds can be rewritten as

Decrypt(k)= (σ [K0]。π -1。γ -1)。ρ′ [θ -1(K1)]。ρ′ [θ -1(K2)]。ρ′ [θ -1(K3)]。ρ′ [θ -1(K4)]。ρ′ [θ -1(K5)]。

ρ′ [θ -1(K6)]。ρ′ [θ -1(K7)]。ρ′ [θ -1(K8)]。ρ′ [θ -1(K9)]。σ [K10] (9)

 The decryption procedure in equation (9) is equivalent to decryption procedure in equation (2).

From equation (9), we can clearly find that the inverse decryption have the same structure as the one

in encryption equation (1). We use equation (9) in the decryption since it will allow us to save both

cost and time in the implementation. In equation (9), the internal complete round (from round 1 to

round 9) takes round key θ -1(Kt) rather than Kt. This is the reason why we list two different time for

key scheduling in the performance result of 32-bit algorithm. The first one is for encrypting and the

second one is for decrypting.

5. Performance evaluation

To show the enhanced performance in the 32-bit algorithm, we compared with the old version of

algorithm which use byte-manipulations. Table 1 through table 3 is the test results run at PC platform

of 450MHz CPU, 128M DRAM. We also executed all programs (written in C language) by using NIST

API in different platforms (table 4 through table 6). Table 1 shows the performance for original

algorithm of byte-manipulations. To speed up byte-manipulation, we replace byte-multiplication by

lookup table. The performance is showed in table 2.

- 13 -

Table 1. Original algorithm (Byte-Manipulation)

key length Key schedule Encrypt Decrypt
bits Mbps Mbps Mbps
128 4.4 1.42 0.85
192 5.5 1.13 0.71
256 6.2 0.99 0.56

Table 2. Speedup in enhanced original algorithm where multiplication is replaced by
 Lookup table (in comparison with the original 8-bit algorithm)

key length Key schedule Encrypt Decrypt
bits Mbps Mbps Speedup Mbps Speedup
128 4.4 8.1 5.7 7.2 8.5
192 5.5 6.7 5.9 6.0 8.5
256 6.2 5.8 5.8 5.2 9.3

As the result showed, the lookup table can speed up the encryption/decryption more than five times.

Table 3 shows the enhanced performance of the 32-bit algorithm which speeds up the

encryption/decryption more than sixty times in comparison with the old algorithm of

byte-manipulations.

Table 3. Performance of the 32-bit algorithm and its speedup (in comparison with the original 8-bit algorithm)

key length Key schedule for
 Encryption

Encrypt Key schedule for
 Decryption

Decrypt

bits Mbps Speedup Mbps Speedup Mbps Speedup Mbps Speedup
128 50.7 11.5 87 61.2 40.1 9.1 86.5 101.7
192 51.5 9.4 73.9 65.4 42.3 7.7 73.4 103.3
256 52.7 8.5 64.2 64.8 44.1 7.1 64.1 114.5

Transpose matrix, word-manipulation and lookup table in our modified algorithm contributes the

enhancement in encryption/decryption. The enhancement in the key schedule is also showed in table 3.

The 32-bit algorithm speeds up the key schedule about nine times, which is contributed by transpose

matrix and word-manipulation.

 We also executed our program in different platforms. Table 4 shows the performance in PC

platform of 233MHz CPU, 64M DRAM. Table 5 shows the performance in PC platform of 450MHz

CPU, 128M DRAM. Table 6 shows the performance in PC platform of 900MHz CPU, 256M DRAM.

Some AES test results are also provided in the AES Proposal [2]. We choose their related test results of

C programs run on 200MHz Pentium to compare. Their performance on encryption is listed as:

- 14 -

27.0Mbps for 128-bit key, 22.8Mbps for 192-bit key and 19.8Mbps for 256-bit. There is another test

result provided by Brian Gladman, which have a better efficiency on performance. We would not

compare with this set of data since they replace some part of program by assembly code (the core of

encryption and decryption) in this version. Our codes are all implemented in high level C language.

Our test result run on PC with 233Mhz CPU is listed as table 4: 44.0Mbps for 128-bit key, 37.9Mbps

for 192-bit key and 32.3Mbps for 256-bit key. We have a better test result on the performance in

comparison with their public announcement in the AES proposal.

 Table 4 Performance in PC platform of 233MHz CPU, 64M DRAM

key length Key schedule for
 Encryption

Encrypt Key schedule for
 Decryption

Decrypt

bits Mbps Mbps Mbps Mbps
128 23.2 44.0 16.6 44.9
192 25.7 37.6 18.2 37.5
256 27.8 32.3 19.9 32.4

Table 5 Performance in PC platform of 450MHz CPU, 128M DRAM

key length Key schedule for
 Encryption

Encrypt Key schedule for
 Decryption

Decrypt

bits Mbps Mbps Mbps Mbps
128 48.7 87.0 40.1 86.5
192 51.5 73.9 42.3 73.4
256 52.7 64.2 44.1 64.1

Table 6 Performance in PC platform of 900MHz CPU, 256M DRAM

key length Key schedule for
 Encryption

Encrypt Key schedule for
 Decryption

Decrypt

bits Mbps Mbps Mbps Mbps
128 89.2 138.8 40.1 138.6
192 93.2 118.3 42.3 116.2
256 97.5 103.1 44.1 102.8

The results show the platform of 450MHz CPU which can speed up the operations of key

scheduling and encryption/decryption about two times. Nevertheless, the platform of 900MHz CPU

can merely speed up the operations of key scheduling and encryption/decryption less than two times.

When the CPU clock rate is quite fast to the extension, the bottleneck of performance will not on the

CPU but on the data-bus.

- 15 -

6. Conclusion

AES is the next generation secret encryption standard of NIST. The original DEA uses a 64-bit

block size encryption/decryption. It is not secure enough for current computer technology. TDEA

(Triple DEA) has a 192-bit key, which has three times as many rounds as DEA, is correspondingly

slower. Both use a 64-bit block size encryption/decryption. A large block size is desirable for reasons

of both efficiency and security. Because of these drawbacks, AES is called and proposed as the next

generation standard. It is more efficient than DEA. The AES algorithm is designed for general type of

computers. However, current microprocessors are well designed in the hardware architecture. Many

microprocessors are over 32 bits. There is no reason to use the general AES algorithm which uses

byte-manipulations in encryption/decryption. In this paper we analyze the modified 32-bit AES

algorithm, which can fully utilize the CPU power for computers with 32-Bit (or above) processors.

According to the performance evaluation in section 5, the modified 32-bit AES algorithm can speed

up the encryption/decryption more than sixty times. For the key schedule, it speeds up about eight

times. The modified AES algorithm can largely enhance the efficiency of encryption/decryption if

32-bit processor (or above) was selected as the encrypting tool. Some skills of the modified

algorithm can be also applied in 8-bit processors, which include transposed matrix to enhance the

efficiency of data access and lookup tables to enhance the byte-multiplication.

The Rijndael Algorithm becomes the standard of AES in Nov 26, 2001. Since most of the computer

languages are row-major in the matrices, we remind that programmers should take notice of the

definition of the standard which may be inconsistent with their chosen programming language in

aspect of orientation of arrays. In these cases, programmers should use transposed matrix on their

implementations to acquire a better efficiency. According to our evaluation in this paper, the 32-bit

algorithm can be a very nice choice in the AES implementation on the target system with 32-bit

processor. Programmers should always take advantage of the 32-bit algorithm if 32-bit (or above)

processors were supported by their target systems.

- 16 -

Reference

1. FIPS197(Federal Information Processing Standards Publication 197), Nov 26, 2001,Federal

Register Announcement.

2. AES Proposal: Rijndael, Joan Daemen,Vincent

Rijmen,http://csrs.nist.gov/encryption/aes/rijndael/Rijndael.pdf

3. http://www.nist.gov/aes

4. Neng-Wen Wang, Yueh-Min Huang, Chi-Sung Laih, “Concerns about the efficiency of data access

and ambiguity in the AES Proposal”, Public Comments on the Draft Federal Information Processing

Standards (FIPS) for the Advanced Encryption Standard

5.William Stallings, Network Security Essentials-applications and standards, Prentice Hall,2000

6.Carl Hamacher etc., Computer Orgranazation, fifth ed.,McGraw Hill, p296-p307.

7. Sao-Jie Chen, http://www.cc.ee.ntu.edu.tw, Computer Architecture, Ch. 7 Memory System

8. Joan Daemen, L.Knudsen, V.Rijmen,”The Block Cipher Square”, Fast Software Encryption

1997,Spinger LNCE 1267, pp.149-165.

- 17 -

http://csrs.nist.gov/encryption/aes/rijndael/Rijndael.pdf
http://www.nist.gov/aes
http://www.cc.ee.ntu.edu.tw/

