
 
2002 International Computer Symposium (ICS2002) 

 
 
(1) Name of the workshop：Workshop on Cryptology and Information Security 

 

(2) Title of the paper：A Specifiable-Verifier Group-Oriented Threshold Signature 

Scheme Based on the Elliptic Curve Cryptosystem 

 

(3) A short abstract：Aimed at the group-oriented threshold signature, the research is 

devoted to the specifiable-verifier characteristic in a 

group-oriented cryptosystem.  In light of the characteristic, 

the group of signers is provided with the limits of authority to 

specify the group of verifiers.  Moreover, the elliptic curve 

cryptosystem is applied to the integration with the proposed 

scheme due to the superiority of low-amount operation, so that 

the performance can be raised to be more efficient than that by 

the other algorithms. 

 

(4) Name：Tzer-Shyong Chen, Gwo-Shiuan Huang, Yu-Fang Chung,  

and Nien-Tzu Chang 

Current affiliation：Department of Computer Science and Information 

Engineering, Da-Yeh University 

Postal address：Department of Computer Science and Information Engineering, 

Da-Yeh University, 112 Shan-Jiau Rd, Da-Tsuen, Changhua, 

Taiwan 515, R.O.C. 

   E-mail address：r9006013@mail.dyu.edu.tw 

   Telephone number：0923696355 

 

(5) Name of the contact author：Tzer-Shyong Chen 

 

(6) A list of keywords：threshold signature, elliptic curve cryptosystem, elliptic curve 

discrete logarithm problem, cryptography 
 

 0



A Specifiable-Verifier Group-Oriented Threshold Signature 

Scheme Based on the Elliptic Curve Cryptosystem 

Tzer-Shyong Chen   Gwo-Shiuan Huang*   Yu-Fang Chung *   Nien-Tzu Chang * 

Department of Information management, Tunghai University, Taichung, Taiwan 40744, R.O.C. 

* Department of Computer Science and Information Engineering, Da-Yeh University 

E-mail: arden@mail.dyu.edu.tw 

 

Abstract 

Aimed at the group-oriented threshold signature, the research is devoted to the 

specifiable-verifier characteristic in a group-oriented cryptosystem.  In light of the 

characteristic, the group of signers is provided with the limits of authority to specify 

the group of verifiers.  Moreover, the elliptic curve cryptosystem is applied to the 

integration with the proposed scheme due to the superiority of low-amount operation, 

so that the performance can be raised to be more efficient than that by the other 

algorithms. 

Key words: threshold signature, elliptic curve cryptosystem, elliptic curve discrete 

logarithm problem, cryptography 

 

1. Introduction 

The concept of group-oriented cryptography, initiated by Desmedt [1] in 1987, is 

devoted to the research for the secure communication between the contrasts of groups.  

Moreover, the group-orient schemes of further applications are developed into the 

threshold signature ones.  In the case of the application of the perfect secret sharing 

scheme [2] by Shamir, Harn [3] originated to construct a (t, n) threshold signature 
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scheme based on the property of Lagrange Polynomials.  The so-called (t, n) 

threshold signature scheme means that only t members of a n-member group enables 

to represent the whole group and give the valid signature in the name of the group, in 

which t is a threshold value located from 1 to n (1 ≤  t ≤  n).  In the recent years, 

lots of related research [4-10] is proposed.  However, some of these schemes allow 

anyone to play the role of verifier for the signature.  A (t, n) threshold signature 

scheme with (k, l) threshold shared verification [11] later is presented by Wang et al. 

to specify the verifier.  In other words, one disables to verify the group signature 

unless he is the specific verifier.   For the scheme by Wang et al., k of a specific l- 

verifier group enables to act for the verification of group signature, in which k is a 

threshold value located in the scope from 1 to l(1 ≤  k ≤  l).  Later in 2002, the 

scheme is shown to violate the requirements for the (k, l) threshold shared verification 

by Hsu et al. [12].  That is, an attacker can verify the validity of the group signature 

alone without the favor of the others in the group of verifiers.  Besides, Hsu pointed 

that the private key of the signer can be easily retrieved from the individual signature 

for a message.  For solving these two secure leaks, an improvement was proposed 

by Hsu.  The improvement inclines the solution to randomly select a number 

through a system center (SC) so that the above-mentioned weaknesses can be 

successfully prevented.  However, an additional operation through the SC for each 

generation of individual signature is inefficient for performance.  Therefore, a new 

scheme is proposed in the research to achieve both security and efficiency based on 

the elliptic curve cryptosystem[13-16], and succeeding in omitting the additional 

operation by the SC in the generation phase of individual signature. 

In the following, the introduction to the scheme by Hsu is briefly discussed for 

the contrast in Section 2.  Section 3 surveys the proposed scheme with special 
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emphasis on the elliptic curve cryptosystem.  Section 4 analyses the security and 

efficiency of the proposed scheme presented in the previous two Sections.  Section 5 

furnishes the conclusions. 

 

2. Review of the Scheme by Hsu 

In the section, the scheme by Hsu is briefly introduction to the related concepts.  

The scheme requires for a system center (SC) in charge of the generations of system 

parameters, individual/group private keys, and individual/group public keys.  Firstly, 

let  be denoted as the n-signer group, and  

be denoted as the l-verifier group.  Any t members of the n-signer group enable to 

give the valid signature for the signer group G

},,,{ 21 snsss uuuG K= },,,{ 21 vlvvv uuuG K=

s, and any k members of the l-verifier 

group enable to verify the validity of the received group signature for the verifier 

group Gv.  Then, these t signers jointly elect a clerk (CLK) from themselves to 

validate all individual signatures and to combine the t valid individual signatures into 

a group signature.  The procedure of performance contains the following three 

phases: Parameter Generation Phase, Individual Signature Generation and 

Verification Phase, and Group Signature Generation and Verification Phase. 

2.1 Parameter Generation Phase 

The SC determine the required parameters and keys according to the following: 

(1) two large primes p and q, where q︱p-1; 

(2) a generator g with order q over GF(q);  

(3) a one-way hash function h; 

(4) two secret polynomials  and 
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(5) a group private key  and a group public key  

for G
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s, and a group private key  and a group public key 

 for G

0c=

Yv = v; 

(6) an individual private key  and public key  for 

each signer u

pgy sis xf
si mod)(=

si in Gs, in which n  and xsi is the public values 

associated with each signer usi; 

(7) an individual private key  and public key  for 

each verifier u

pgy viv xf
vi mod)(=

vi in Gv, in which l,  and xvi is the public values 

associated with each signer uvi. 

Then, the SC declares the system parameters p, q, g, h, ysi (for ), yni ,,2,1 K= vi 

(for ), Yi = s, and Yv public. 

2.2 Individual Signature Generation and Verification Phase 

The SC firstly select the required functions and parameters, as follows: 

(1) a secret polynomial  , where 

 for i =0, 1, 2,…, t-1; 

qbxbfb mod...( 01
2 +++−

∈bi

(2) a secret value  and a public value  for G0b pgY bf
b mod)0(= s; 

(3) a secret value  and a public value  for each 

signer u

)si pgy sib xf
bi mod)(=

si in Gs, in which . 

It is noteworthy that fb(0), Yb, fb(xsi), and ybi are all random numbers changeable 

in different time of signature. 

Assume that there are t signers ( ).  In order to give a valid st
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signature for a message m, each of usi ( i t,,2,1 K= ) uses his private key , the 

group public key Y

)( sis xf

v of Gv, and the random integer fb(xsi) to compute the commitment 

value, as follows: 
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Then, each of the t signers sends the rsi to the other associates via a secure channel.  

After receiving all rsi ( i ), each of ut,,2,1 K= si ( i t,,2,1 K= ) computes r and si, as 

follows: 
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After that, usi sends si, which is regarded as the individual signature for m, to the 

CLK who then verifies the validity of si according to the equality: 
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If the equality is certifiable, then the individual signature si can be verified to be 

valid. 

2.3 Group Signature Generation and Verification Phase 

If these t individual signatures are all verified to be valid, the CLK computes the 

group signature for m, as follows: 
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Then, every verifier sends it to the other associates via a secure channel.  Upon all of 

the receiving rvi ( i ), each associated verifier computes .  

Afterwards, the validity of the group signature s for m can be verified according to the 

following equality:  

k,,2,1 K= prr
k

i
vi mod

1
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b

smh
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If the equality can be satisfied, the group signature is valid. 

 

3. The Proposed Scheme 

   Herein is the introduction to the proposed scheme.  The scheme requires for a 

system center (SC) to execute the generation of the necessary parameters of the 

system and users.  Let a group of n signers be indicated as , in 

which a association of any t members (

},,,{ 21 snsss uuuG K=

nt ≤≤1 ) can give a valid group signature for 

a message in the name of the whole group, and let a group of l verifiers be indicated 

as , in which a association of any k members (1 ) can 

verify the validity of the received group signature for the whole verifier group.  

Then, these t signers jointly elect a clerk (CLK) from themselves to validate all 

individual signatures and to combine the t valid individual signatures into a group 

},,,{ 21 vlvvv uuuG K= lk ≤≤
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signature.  The procedure of the performance is concluded into three phases: 

Parameter Generation Phase, Individual Signature Generation and Verification Phase, 

and Group Signature Generation and Verification Phase. 

3.1 Parameter Generation Phase 

The SC is responsible for the generation of the required parameters of the system 

and the keys of the users.  The generation phase is as follows: 

(1) a field size p, which is a large odd prime; 

(2) two field elements a and b∈  to define the elliptic curve equation E over 

F

pF

)(mod pp, (i.e.  where p > 3 and ); 32 baxxy ++= )(mod0274 23 pba ≠+

(3) a finite point G = (xg, yg) whose order is a large prime number over E(Fp), 

where G ≠ Ο (It is because Ο denotes an infinite point); 
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(8) an individual private key  and public key  for each 

signer u
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,2,1 K
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si in Gs, in which ni ,=  and xsi is the public values associated 
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verifier uvi in Gv, in which li ,,2,1 K=  and xvi is the public values associated 

with each signer uvi. 
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Then, the SC declares the system parameters p, E, G, q, h, ysi (for ), 

y

ni ,,2,1 K=

vi (for ), Yli ,,2,1 K= s, and Yv public. 

3.2 Individual Signature Generation and Verification Phase 

Assume that there are t signers ( ).  In order to give a valid 

signature for the message m, each of u

stu,,2 K

,2,1 Ksi ( i t,= ) generates the individual 

signature, as follows: 

Step 1: Randomly select an integer b  to compute  in 

which B

]1,1[ −∈ q GbB sisi =

si is a point, and sends the Bsi to the other associates through a 

broadcast channel; 

Step 2: Combine all received Bsi ( i t, ) to obtain the B, as follows: 

),( bb yx  

Step 3: Compute the following commitment value rsi which is a point using the 

private key fs(xsi), the group public key Yv of Gv, and the random integer 

bsi, then send rsi to the other associates through a secure channel; 
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Step 4: Respectively derive the common session key r of Gs and of Gv using all 

of the received rsi ( i ) so as to respectively generating the 

individual signature si which is a point both and send si to the CLK, in 

which  

), ryr  
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After receiving all individual signatures for the message m, the CLK has to 

verify the validity of each signature through the following determinant equality: 
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    If the equality is certifiable, then the individual signature si can be verified to be 

valid. 

 

Theorem 1: If the individual signature indeed results from the valid signer, then the 

signature verification equality holds.  
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3.3 Group Signature Generation and Verification Phase 

If all of the t individual signatures are shown as valid, the CLK computes the 

group signature s for the message m so as to sending it to the verifier group Gv, as 
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follows: 
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verification group Gv intends to verify the received group signature s, any k verifiers 

can verify it for the whole verifier group.  Each verifier of uvi ( i ) 

computes a commitment value r
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vi using the private key fv(xvi), public parameter B, and 
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    For verifying the validity of the group signature for the message m, each 

associated verifier computes r after receiving all rvi ( i k,,2,1 K= ), as follows: 
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If the following determinant equality can be certifiable, then the group signature 

for the message m can be verified to be valid: 
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Theorem 2: If the group signature indeed results from the valid signer group, then 

the signature verification equality holds.  
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4. Estimation of Security and Performance 

4.1 Analyses of Security 

The security of the proposed scheme is based on the difficulty by the elliptic 

curve discrete logarithm problem (ECDLP).  The following are the analyses aimed 

at the possible attacks and the factors why the proposed scheme enables to overcome. 

(1) Plaintext Attack 

The so-called plaintext attacks can be formed from different ways, such as the 

derivation of individual private keys  and  using the individual 

public keys  and , and the derivation of the group 

private keys f

)( sis xf

Gxviv )(

)( viv xf

Gxfy sissi )(= fyvi =

s(0) and fv(0) using the group public keys  and 

.  Besides, an attacker can force to derive the signer’s private key f
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or the verifier’s private key fv(xvi) according to the commitment value 
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. Such kinds 

of solutions are infeasible under the defense of the ECDLP.   

(2) Forgery Attack 

Assume that an attacker forge a group signature s to make the following 

determinant equality certifiable.  Such an attack is to randomly select xr, h(m), and 

the point B = (xb, xb) so as to deriving the value of s which can satisfy the determinant 
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equality.  However, the difficulty of the derivation is concluded to the solution of the 

ECDLP so it is infeasible. 

BxsGYmhx rsb +=
?

)(  

(3) Equation Attack 

Assume that an attacker intends to derive the private key fs(xsi) of the signer 

through the following the individual signature: 

 ∏
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Such kinds of solution are infeasible because these two data fs(xsi) and bsi in the 

equality are secret and unknown to any others. 

4.2 Analyses of Performance 

In the scheme [12] by Hsu, whenever the signer group signs a message in the 

individual signature generation and verification phase, the SC must assign the group 

with a secret polynomial fb(x) so as to computing a secret value fb(xsi) and a public 

value .  Note that these two values should be different for 

different time of signature to avoid the individual private key f

pgy sib xf
bi mod)(=

s(xsi) from being easily 

derived.  However, the same phase in the proposed scheme no longer asks for the 

participation of the SC.  In the below, for the convenience to make a comparison, a 

contrast aimed at the analyses of performance between the scheme by Hsu and that by 

us is presented. 

Table 1 is the definitions of the given notations, and Table 2 shows the 

comparison of different operations.  Then, the required time complexity in the 

different phases is estimated in Table 3, so that the efficiency in performance can be 

specifically analyzed. 
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Table 1: Definitions of Notions 

Notations Definitions 
TMUL the time for the modular multiplication 
TEXP the time for the modular exponentiation 
TADD the time for the modular addition 
TINV The time for the modular inversion 

TEC_MUL the time for the multiplication of a number and an elliptic curve point
TEC_ADD the time for the addition of two points in an elliptic curve 

 

According to the following conditions, the time complexity for the different 

operations can be roughly united into the multiplication operation [17][18]: 

- gx mod p, where p is a 1024-bit prime and x is a random 160-bit 

integer. 

- k×B is given, where B∈E(Zp), E is an elliptic curve defined over Zp, 

p≈2160, and k is a random 160-bit integer. 

Thus, a comparison between different kinds of operations and multiplication 

operation is given, as follows: 

 

Table 2: Comparison Between the Other Operation and Multiplication Operation 

TEXP ≈ 240TMUL TEC_MUL ≈ 29TMUL TEC_ADD ≈ 0.12TMUL TADD is negligible 

 

Table 3: Estimation of Performance Aimed at Time Complexity 

Scheme by Hsu Scheme by us 
Items Time 

Complexity 
Roughly 

Estimation 
Time 

Complexity 
Roughly 

Estimation 
Parameter 
Generation 

Phase 
(n+l+2) TEXP 240(n+l+2) TMUL (n+l+2) TEC_MUL 29(n+l+2) TMUL 
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Individual 
Signature 

Generation and 
Verification 

Phase 

(n+5) TEXP 
+ (7t-3) TMUL 
+ (6t-4) TADD 
+ (3t-3) TINV 
+ 2 Hashing 

(240n+7t+1197)TMUL

+ (3t-3) TINV 
+ 2 Hashing 

5 TEC_MUL 
+ (2t-1) TEC_ADD

+ (6t-2) TMUL 
+ (6t-4) TADD 
+ (3t-3) TINV 
+ 2 Hashing 

(6.24t+142.88)TMUL

+ (3t-3) TINV 
+ 2 Hashing 

Group 
Signature 

Generation and 
Verification 

Phase 

4 TEXP 
+ (3k-1) TMUL 
+(t+2k-3)TADD 

+ (k-1) TINV 
+ 1 Hashing 

(3k+959) TMUL 

+ (k-1) TINV 
+ 1 Hashing 

4 TEC_MUL 
+ (k+1) TEC_ADD

+ (2k-1) TMUL 
+ ( t+2k-3) TADD

+ ( k-1) TINV 
+ 1 Hashing 

(2.12k+115.12)TMUL

+ (k-1) TINV 
+ 1 Hashing 

 

5. Conclusions 

The proposed group-oriented threshold signature scheme achieves the ability to 

specify the verifier group.  Except for the specific group, no one enables to verify 

the group signature.  Such a characteristic can be fit to some certain situation.  

Moreover, the integrated application with the elliptic curve causes the cryptosystem 

secure and efficient. 
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