
An Efficient Indexing Scheme for Bit-String
Signatures

C. H. Lee1and P. W. Huang2

1Department of Information Management, Chaoyang University of Technology

168 Gifeng E.Rd., Wufeng, Taichung, Taiwan, R.O.C.

2Department of Applied Mathematics, National Chung-Hsing University

Taichung 40227, Taiwan, R.O.C.

Abstract

Searching for the desired images similar to a query picture is very time-

consuming in an image database system. To speed up the search process, a

signature file containing the signatures associated with database images is fre-

quently used as a filter to prune off non-promising images at the early stage

of query processing. In this paper, we propose a novel structure for organizing

signatures. By using this new indexing structure, the number of signatures to

be examined per query is reduced significantly. In particular, the reduction

ratio in examining signatures is about 51% as compared to the quick filter. As

a result, image retrieval in image database systems becomes very efficient by

using our method.

Keywords

Signature Filter Image database Image retrieval Symbolic image

This paper is intended for the Workshop on Databases and Software Engineering.

Contact author: C. H. Lee

1Email: chlee@cyut.edu.tw, Phone: 886-4-23323000 ext 7122, Fax: 886-4-23742337
2Email: huang@amath.nchu.edu.tw, Phone: 886-4-22860133 ext 612, Fax: 886-4-22873028

1



1. INTRODUCTION

In designing image database systems, many powerful spatial knowledge structures

for image representation have been proposed such as 2D string [3], 2D C-string[11],

and 2D C+-string [7], etc. The common characteristic of these spatial knowledge

representations is that they preserve the spatial relationships among objects in a

picture to facilitate spatial reasoning and similarity retrieval. For these approaches,

retrieving images similar to a query picture is done by iconic indexing based on a pre-

selected spatial knowledge representation and the problem of similarity retrieval is

reduced to a task of string subsequence matching which is still a very time-consuming

process.

One way of improving the efficiency of similarity retrieval is to use a signature

file as the spatial filter to prune unqualified images at the early stage of searching

[1], [2], [8], [9], [10]. A bit-string signature is a coded binary word which records

the major characteristic of a picture. Bit-string signatures are usually generated by

superimposed and disjoint coding techniques [14]. Thus, if Sq ∩ Sp = Sq, where Sq

is the signature of a query picture q and Sp is the signature of a database picture p,

then p is possibly a picture matched to q. With a signature file as the spatial filter,

the number of images required for detailed inspection is thus reduced significantly.

Since the purpose of the signature file is to reduce the search space in the image

database, a sequential organization was assumed in most of the analytical works on

signature extraction method [4], [5], [6]. However, searching the signature file itself

may still be inefficient. There are two well-known techniques to avoid sequential

search: the bit-slice approach and the two-level approach. These methods assumed

that signatures are also disk-resident and emphasized the ways of reducing the number

of disk accesses. In recent years, the capacity of main memory in a computer becomes

much larger while the price of memory devices is significantly decreased. Thus, storing

signatures in the main memory as the directory for searching the image database

becomes possible and practical. In this paper, we assume that the signatures in a

signature file can be loaded and stored in the main memory. Based on this assumption,

we proposed a novel structure for organizing a signature file. With this new indexing

2



structure, the number of signatures to be examined per query is the minimum. Thus,

the process of searching for qualified signatures becomes very efficient.

The remainder of this article is organized as follows. A review for the previous

work about signature organization is given in Section 2. A novel structure for orga-

nizing signatures is presented in Section 3. We analyze the efficiency of our method

in Section 4. Experimental results demonstrating the efficiency of our method is

presented in Section 5. Finally, concluding remarks are given in the last section.

2. A REVIEW OF THE PREVIOUS WORK

Traditionally, three techniques are used to improve the performance of searching

a signature file [12], [15], [16], [17]: the bit-slice approach, the two-level approach,

and the partitioning approach. In bit-slice approach, let N be the total number of

signatures with each containing b bits. Then, a signature file can be viewed as b

strings of N bits. Assume that w is the number of 1’s contained in a query signature.

Since we need to examine these w bit positions when answering the query, only wN

bits rather than bN bits are inspected. Let b be the length of a signature. The ratio

w/b is called the weight of a signature. The bit-slice approach is not suitable for the

multimedia database because query signatures in such an application usually have

very high weight [17].

On the other hand, the two-level signature file structure consists of block signa-

tures and record signatures. The record signatures are partitioned into blocks. Each

block is associated with a block signature. During the signature matching process, the

block signatures are searched first. Then, the record signatures of the matched blocks

are searched to find the totally matched signatures. On an average the two-level

signature scheme has better performance than the bit-slice approach [10]. However,

there are still two major problems with the two-level signature scheme. One is the

increasing density of bits set to ”1” in the block signatures. The other is the rate

of combinatorial errors caused by a large class of queries. They both cause query

signature to qualify more objects, thereby increasing the false drop rate [17].

3



The third type of signature scheme is called the partitioning approach [12], [17].

In this approach, the signatures are divided into partitions in such a way that all

signatures in a partition hold the same part which can be treated as the key for

searching. As a result, it is possible to determine whether the signatures in a partition

satisfy a query by merely examining the key. Partitions not matching the key need

not be searched. Based on the partitioning approach, a quick filter for similarity

retrieval of symbolic images was proposed [1].

Since the quick filter seems to have better performance, we describe this approach

in more detail in the following paragraphs and use it as the benchmark for comparison

with our method. In a quick filter, the signatures are clustered into blocks by a linear

hashing function [13]. Let N be the number of signatures in the signature file and

Si (i = 1, 2, . . . , N) be a sequence of w binary digits b1,b2,. . . ,bw. A linear hashing

function h maps the signature Si onto the address space {0, 1, 2, . . . , n − 1}, where
2l − 1 < n ≤ 2l for some integer l. The value of l is called the level of the signature

file. Thus, the linear hashing function for signatures can be defined as follows:

For l = 0, n=1: h(Si, 0, 1) = 0.

For l > 0:

h(Si, l, n) =



∑l−1

j=0 bw−j2
j, if

∑l−1
j=0 bw−j2

j < n;∑l−2
j=0 bw−j2

j, otherwise.

The following example illustrates the process of building a quick filter. Assume

that each block contains two signatures. The six signatures to be inserted into the

signature file are: R1 = 100001, R2 = 001100, R3 = 010001, R4 = 000110, R5 =

100010, and R6 = 010011. The signatures are inserted in the order of R1, R2, R3, R4,

R5 and R6. The content of each block, the values of l and n are shown as below:

1. Initially, we have P0 = ∅, l = 0 and n = 1.

2. After inserting R1, we have P0 = {R1}, l = 0 and n = 1.

3. After inserting R2, we have P0 = {R1, R2}, l = 0 and n = 1.

4. After inserting R3, we have P0 = {R2}, P1 = {R1, R3}, l = 1 and n = 2.

4



5. After inserting R4, we have P0 = {R2, R4}, P1 = {R1, R3}, l = 1 and n = 2.

6. After inserting R5, we have P0 = {R2}, P1 = {R1, R3}, P2 = {R4, R5}, l = 2

and n = 3.

7. After inserting R6, we have P0 = {R2}, P1 = {R1, R3}, P2 = {R4, R5}, P3 =

{R6}, l = 2 and n = 4.

The organization of the resulting quick filter is shown in Table 1. The important

feature of this organization is that all signatures in a block have the same 2-bit suffix.

The algorithm of signature matching by using a quick filter is re-stated as below

where the following notations are used:

• l: the level of a signature file.

• P : a l-bit binary integer.

• h: a linear hashing function.

• Q: a query signature.

• l(Q): the l-bit suffix of Q.

• n: the number of addressable blocks.

Algorithm: Signature Matching by Quick Filter

Input: The signature Q of a query picture.

Output: Signatures matched with Q.

For P := h(Q, l, n) To n − 1.

If l(Q) ∩ P ≡ l(Q) then

/* access block P to find qualified signatures */

For each signature R in P do

If Q ∩ R ≡ Q then

Output the qualified signature R.

Assume that we have a quick filter with l = 2 and n = 4 as shown in Table 1. Let

Q=010010 be the query signature. The hash value for Q is h(Q, 2, 4) = 2. Thus,

5



signature searching starts with block P2. Since l(Q) ∩ Pi ≡ l(Q) for i = 2, 3, the

signatures in P2 = {000110, 100010} and P3 = {010011} are examined. Because

Q∩ 000110 	= Q, Q∩ 100010 	= Q, and Q∩ 010011 = Q, only 010011 is returned as a

qualified signature.

Although the quick filter was originally designed for disk-based signature files,

it is equally valid for implementing the quick filter in the main memory. However,

the performance of the filter will be measured in terms of the number of signatures

examined rather than the number of disk accesses. In this paper, we compare the

performance of our approach with that of the quick filter in terms of the number of

signatures examined.

3. HIERARCHICAL RELATION GRAPH

A Hierarchical Relation (HR) Graph is a directed graph with the following two

properties: (1) A node contains a signature; (2) If Si and Sj are two signatures

contained in nodes A and B, respectively, and node A is an immediate predecessor

of node B, then Si ∩ Sj = Si with only one bit difference between Si and Sj .

A node of an HR graph may contain a real or virtual signature. Only the real signa-

tures are associated with database pictures. Virtual signatures has no corresponding

images in the database. An example of HR graph is shown in Fig. 1.

3.1. Constructing an HR Graph

The following notations are used in the HR graph construction algorithm:

• S = (b1, b2, . . . , bw) is a w-bit signature, where bk = 0 or 1 for 1 ≤ k ≤ w.

• Za(S) = (z1, z2, . . . , zw) is a signature modified from S with zk = 0 if k = a,

otherwise zk = bk.

• N(S) is a node containing signature S.

Algorithm: Constructing an HR graph.

Input: A set of signatures S = {S1, S2, . . . , Sn}
Output: An HR graph G = (V, E) for S.

6



(1) V = ∅; E = ∅.
(2) For each Si ∈ S do

(a) Generate node N to contain Si and mark N(Si) as a ”real signature” node.

(b) If N(Si) /∈ V , then call Insert node(N(Si)).

(3) Return G = (V, E).

Function: Insert node(N(S))

(1) Add the node N(S) to V .

(2) c =
∑w

k=1 bk, where S = (b1 · · · bw). Let ba1 = ba2 = . . . = bac = 1.

(3) For k = 1 to c do

If N(Zak
(S)) /∈ V then

(a) Generate node N(Zak
(S)) and mark it as a ”virtual signature” node.

(b) Add the edge (N(Zak
(S)), N(S)) to E.

(c) Insert node(N(Zak
(S))).

The root of an HR graph will contain a signature in which all bits are ”0”. The

root is the only node at level 0. A node at level i contains a signature in which the

number of 1’s in the signature is i. To see how the above graph construction algo-

rithm works, let us look at example shown in Fig. 2. Assume that signature 1010100

will be inserted into an empty HR graph. Because the node N(1010100) /∈ V , we

add this node to the HR graph. Since the signature ”1010100” has three non-zero

bits at positions 1, 3, and 5, respectively, the three predecessors of node N(1010100)

can be obtained by changing ”1” to ”0” at these positions one at a time. Thus,

N(0010100), N(1000100), and N(1010000) will be added into the HR graph subse-

quently. Similarly, the predecessors of N(0010100) are N(0000100) and N(0010000);

the predecessors of N(1000100) are N(0000100) and N(1000000); the predecessors of

N(1010000) are N(0010000) and N(1000000). So the nodes N(0000100), N(0010000),

and N(1000000) are added into the graph. Finally, the root N(0000000) is added into

the graph. In this HR graph, there are three nodes at level 1, three nodes at level

2, and one node at level 3. The node at level 3 contains a real signature and other

seven nodes contain virtual signatures.

7



3.2. Implementing the HR Graph

An HR graph captures the relationships of signatures in a signature file to fa-

cilitate signature matching. Assume that a signature is w-bit long. An HR graph

can be implemented by an array A of size 2w. Each element A[i] of the array con-

sists of two fields denoted by A[i].string and A[i].tag, respectively. The content of

A[i].string is either null or a string coded by three symbols 0, 1, and x. A query

signature b = (b1, b2, . . . , bw) can be used to index the array. A[b].string records all

immediate successors of node N(b1, b2, . . . , bw) in the corresponding HR graph. We

replace an ”x” by an ”1” one at a time to find an immediate successor of the signature

(b1, b2, . . . , bw). The content of A[b].tag is either ”0” or ”1”. An ”1” indicates that

N(b1, b2, . . . , bw) is a real signature node in the HR graph. Otherwise, it is a virtual

signature node. For example, assume that A[0000100].string = xxxx100. Then, we

can obtain N(1000100), N(0100100), N(0010100), and N(0001100) as the children

nodes of N(0000100) in the corresponding HR graph. The array structure corre-

sponding to a HR graph is called the adjacency-coded representation of a signature

file. Figure 3 shows an HR graph and its corresponding adjacency-coded representa-

tion.

3.3. Access Method

Assume that a database contains m pictures. Each picture pi (1 ≤ i ≤ m)

is associated with a signature ps
i . Let qs be the signature corresponding to query

picture q. Our goal is to find all signatures ps
i such that qs ∩ ps

i ≡ qs. We present

the algorithm of searching for all qualified signatures in an HR graph implemented

by the adjacency-coded representation as follows.

Algorithm: Signature matching based on HR graph with adjacency-coded representation.

Input: A query signature qs = (q1, q2, . . . , qw) and a signature file A in adjacency-coded

representation.

Output: The set R of all qualified signatures.

(1) R = ∅; Uninspected Q = ∅.
(2) If A[qs].tag = 1, then R = R ∪ {qs}.
(3) Let C = A[qs].string.

8



(4) For each symbol ”x” in C

(a) Replace this ”x” by ”1” and all other x’s by ”0” to get a new string s.

(b) If s /∈ Uninspected Q, then add s to Uninspected Q.

(5) If Uninspected Q = ∅, then return R.

Otherwise, remove an item l from Uninspected Q.

(6) If l ∩ qs = qs and A[l].tag = 1, then R = R ∪ {l}.
(7) Let C = A[l].string.

If C = null, then Goto 5.

Otherwise, Goto 4.

Assume that we have three picture signatures {0100, 1100, 1001} in the database.

The HR graph for organizing these signatures, as well as its adjacency-coded represen-

tation A for this graph is shown in Fig. 3. Let qs = 1000 be a given query signature.

Since A[1000].tag = 0, so 1000 is not a database signature. Because A[1000].string =

1x0x and by elaborating ”1x0x”, we have Uninspected Q = {1001, 1100}. Since

A[1001].string = null and A[1100].string = null, no more signatures will be added

to the Uninspected Q. When we examine the signatures in Uninspected Q, we can

see that 1001 ∩ 1000 = 1000 and A[1001].tag = 1, so 1001 is a matched signature.

Furthermore, 1100∩ 1000 = 1000 and A[1100].tag = 1, so 1100 is also a matched sig-

nature. After removing the two signatures 1001 and 1100 from Uninspected Q, the

queue becomes empty and {1001, 1100} is returned as the set of matched signatures.

4. ANALYSIS OF PROPOSED METHOD

In this section, we will analyze the effectiveness of our method in terms of the

reduction ratio of the search space in the signature matching process.

Definition 4.1. The number of nodes of the subgraph rooted at a node x in an HR

graph is called the graph-size of x.

Definition 4.2. A full HR graph for w-bit signatures is an HR graph with 2w nodes

containing signatures from (00 . . . 0)2 to (11 . . . 1)2. Thus, the number of nodes at

level i in an HR graph for w-bit signatures is at most
(

w
i

)
.

9



Lemma 1: Given a full HR graph for w-bit signatures, the graph-size of the subgraph

rooted at a node x of level i is 2w−i.

Proof: The number of descendants at level i+ a of node x is
(

w−i
a

)
, where 1 ≤ a ≤

w − i. So the graph-size of the subgraph rooted at node x of level i is equal to:

1 +
w−i∑
a=1

(
w − i

a

)
= 1 +

(
w − i

1

)
+

(
w − i

2

)
+ . . . +

(
w − i

w − i

)
= 2w−i.

Theorem 1: The average graph-size of a subgraph of a full HR graph for w-bit

signatures is (3
2
)w.

proof: Since

(2 + x)w = 2w

(
w

0

)
x0 + 2w−1

(
w

1

)
x1 + . . . + 20

(
w

w

)
xw =

w∑
k=0

2w−k

(
w

k

)
xk

So we have (for x = 1)

(3)w = 2w

(
w

0

)
+ 2w−1

(
w

1

)
+ . . . + 20

(
w

w

)
=

w∑
k=0

2w−k

(
w

k

)
(1)

From Lemma 1 and equation (1), the average graph-size of a subgraph of a full HR

graph is

2w
(

w
0

)
+ 2w−1

(
w
1

)
+ . . . + 20

(
w
w

)
2w

=

∑w
k=0 2

w−k
(

w
k

)
2w

= (
3

2
)w (2)

Theorem 2: The reduction ratio of the search space of w-bit signatures organized

as a full HR graph is (3/4)w on an average.

Proof: From Theorem 1, we know that if the node containing a signature matched

with the query signature is at level i, then the number of nodes need to be visited is at

most (3/2)w. So the reduction ration of the search space is equal to (3/2)w

2w = (3/4)w.

Note that signatures for multimedia databases have very high weights (Zezula et

al., 1991). They can be organized as a structure close to a full HR graph. Thus, the

above analytical results are valid for signatures in image database domains.

10



5. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our signature file indexing method

as compared to that of a quick filter. In our experiment, there were 15 different

objects from which a set of 1000 images were randomly created as the database

pictures. A database image contained 5 to 12 objects. We also generated eight

groups of query images; each group contained 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, or

10-12 objects, respectively. There were 100 randomly generated query images in each

group. We evaluated the performance of a signature filtering method by counting the

average number of signatures accessed per query. To compare with a quick filter, we

assumed that each block in a quick filter contained four signatures. Let q and o be

the average number of signatures accessed per query by the quick filter method and

by our method, respectively. The reduction ratio is defined as e = [(q−o)/q]×100%.

This ratio represents the improvement of our method over the quick filter method.

Table 2 shows the experimental results of our method as compared to the quick

filter method. As we can see, our method is always superior to the quick filter method

in terms of the average number of signatures accessed per query. For example, in the

case of 5-7 objects in a query picture, the average number of signatures accessed per

query by the quick filter method is 70.16 while our method is 40.6. The reduction

ratio is 42.13%. In the case of 8-10 objects in a query picture, the average number of

signatures accessed per query by the quick filter method is 17.34 while our method

is only 7.28. The reduction ratio is 58.02%. On an average, 58.89 signatures are

accessed per query by the quick filter method while 35.98 signatures are accessed per

query by our method. Therefore, a 50.53% reduction ratio was achieved.

6. CONCLUSIONS

Similarity retrieval is one of the most important functions in image database

systems. Computing the similarity (or dissimilarity) between a query picture and the

database pictures is a very time-consuming process. To speed up the query processing

time, a signature file containing the signatures associated with the database images is

11



frequently used as a filter to prune non-promising images at the early stage of query

processing.

In this paper, we proposed a novel indexing structure for organizing the signatures

associated with the database images to improve the efficiency of its usage as a spatial

filter. Algorithms of generating and using this indexing structure were also discussed

in details in this paper. Our experimental results show that the number of signatures

examined per query by using our method is much less than that of using the quick

filter. Only 35.98% of signatures are examined by using our indexing structure while

58.89% of signatures need to be examined by using the quick filter method. In a

multimedia database, the signatures always have high weights (i.e. many number of

1’s in a signature). Our approach is particularly suitable for multimedia databases.

For signatures with high weight, we showed that the reduction ratio of the search

space of searching qualified signatures approaches to (3/4)w where w is the length of

a signature.

References

[1] Chang, C.C., Jiang, J.H., 1996. A Spatial Filter for Similarity Retrieval, Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, 10(6), 711-730.

[2] Chang, C.C., Lee, C.F., 1998. A Two-Level Signature File Based on a Block-

Oriented Data Model for Spatial Match Retrieval, Journal of the Chinese Insti-

tute of Engineers, 21(4), 467-478.

[3] Chang, S.K., Shi, Q.Y., Yan, C.W., 1987. Iconic Indexing by 2-D Strings, IEEE

Trans. on Pattern Analysis and Machine Intelligence, 9(3), 413-428.

[4] Christodoulakis, S., Faloutsos, C., 1984. Signature files: An access method for

documents and its analytical performance evaluation, ACM Trans. on Info. Syst.,

2(4), 267-288.

[5] Christodoulakis, S., Theodoridov, M., Ho, F., Papa, M., Pathria, et. al., 1986.

Multimedia document presentation, information extraction and document for-

12



mation in MINOS: A model and a system, ACM Trans. off. Info. Syst., 4(4),

345-383.

[6] Faloutsos, C., Christodoulakis, S., 1987. Description and Performance analysis of

signature file methods for office filing, ACM Trans. off. Info. Syst., 5(3), 237-257.

[7] Huang, P.W., Jean, Y.R., 1994. Using 2D C+-Strings as Spatial Knowledge Rep-

resentation for Image Database Systems, Pattern Recognition, 27(9), 1249-1257.

[8] Huang, P.W., Jean, Y.R., 1996. Design of Large Intelligent Image Database

Systems, International Journal of Intelligent Systems, 11 , 347-365.

[9] Huang, P.W., 1997. Indexing Pictures by Key Objects for Large-Scale Image

Database, Pattern Recognition, 30(7), 1229-1237.

[10] Lee, S.Y., Shan, M.K., 1990. Access Methods of Image Database, International

Journal of Pattern Recognition and Artificial Intelligence, 4(1), 27-44.

[11] Lee, S.Y., Hsu, F.J., 1992. Spatial Reasoning and Similarity Retrieval of Images

using 2D C-String Knowledge Representation, Pattern Recognition, 25(3), 305-

318.

[12] Lee, D.L., Leng, C., 1989. Partitioned signature files: Design issues and perfor-

mance evaluation, ACM Trans. Off. Info. Syst., 7(2), 158-180.

[13] Litwin, W., 1980. Linear hashing: A new tool for files and table addressing, Proc.

6th Intl. Con. on VLDB, Montreal, 212-223.

[14] Roberts, C.S., 1979. Partial-match retrieval via the method of superimposed

codes, Proc. of the IEEE, 67(12), 1624-1642.

[15] Sacks-Davis, R., Kent, A., 1987. Multikey access methods based on superimposed

coding techniques, ACM Trans. on Database System, 12(4), 655-696.

[16] Sacks-Davis, R., Ramamohanarao, K., 1983. A two level superimposed coding

scheme for partial match retrieval, Information Systems, 8(4), 273-280.

13



[17] Zezula, P., Rabitti, F., Tiberio, P., 1991. Dynamic partitioning of signature files,

ACM Trans. Information Systems, 9(4), 336-369.

14



Table 1: Organization of a quick filter.

P0 001100

P1 100001 010001

P2 000110 100010

P3 010011

Table 2: Experimental results

Number of objects Quick Our Reduction

in a query picture filter method ratio

[3,5] 186.7 127.68 31.61%

[4,6] 107.59 69.67 35.24%

[5,7] 70.16 40.6 42.13%

[6,8] 45.35 23.75 47.63%

[7,9] 28.02 13.69 51.14%

[8,10] 17.34 7.28 58.02%

[9,11] 10.36 3.78 63.51%

[10,12] 5.63 1.41 74.96%

Average 58.89 35.98 50.53%

15



Figure 1: An example of HR graph: nodes containing real signatures are represented

by solid-line boxes and nodes containing virtual signatures are represented by dotted-

line boxes

16



Figure 2: An HR graph created by inserting signature the ”1010100”.

17



Figure 3: An HR graph and its adjacency-coded representation.

18


