
 1

1. Workshop on Databases and Software Engineering

2. An XML-based Software Requirement Document for System Development
This paper proposes an approach to change the procedure of the system development in the past by introducing the

technique of XML. Under the framework, the developers write the results from requirements analysis down as a

XML-based software requirement document in the initial period of the system development, and expect to turn software

requirement documents into one of the system operation components through the machine readable XML documents. In

other words, the developers only need to embed software requirement document into program in the implementation

phase and then systems will operate according to the definition of software requirement documents.

This approach not only makes user’ requirements come true completely, but also raises the convenience of software

maintenance in the future. In view of it, if the systems need to be altered because of changes in business rules, we will

just need to modify XML-based software requirement documents and then the systems will update the interior functions

immediately.

4. Author
Yu-Liang Chi,
Assistant Professor
Dept. of MIS, Chung Yuan Christian University
No.22 Pu-Jen,Pu-chung Li, Chung-Li (32023), Taiwan, R.O.C
Email: maxchi@cycu.edu.tw
TEL : 886-3-4563171 ext.5408
FAX : 886-3-466-0094

Kuo- Ming Lo
Dept. of MIS, Chung Yuan Christian University
Email: callmes@mail2000.com.tw
TEL : 886-3-4563171 ext.5408
FAX : 886-3-466-0094

5. Contact Author: Kuo- Ming Lo,

6. Keywords: Software Requirement, XML-based Software Requirement, and Application System Development

 2

An XML-based Software Requirement Document for System Development

Yu-Liang Chi and Kuo- Ming Lo
Dept. of MIS, Chung Yuan Christian University, Taiwan, R.O.C.

maxchi@mis.cycu.edu.tw, callmes@mail2000.com.tw

Abstract

This paper proposes an approach to change the procedure of the system development in the past by introducing the

technique of XML. Under the framework, the developers write the results from requirements analysis down as a

XML-based software requirement document in the initial period of the system development, and expect to turn software

requirement documents into one of the system operation components through the machine readable XML documents. In

other words, the developers only need to embed software requirement document into program in the implementation

phase and then systems will operate according to the definition of software requirement documents.

This approach not only makes user’ requirements come true completely, but also raises the convenience of software

maintenance in the future. In view of it, if the systems need to be altered because of changes in business rules, we will

just need to modify XML-based software requirement documents and then the systems will update the interior functions

immediately.

1. Introduction:
 As business activities change with each passing day and business operating environments become more complex,

the business model must be changed dynamically and flexibly. The enterprises can change their operating model to

follow the consumers’ demand easily, but the information system can’t be change easily. Consequently, the enterprises

hope the information system can possess the abilities to suit for the changeful information requirement and the shortest

developmental time flexibly.

 In the period of the information system development and maintenance, business rules in the information system are

often modified. “Business Rules”, it means the real rules and procedure used to operate the business comprehensively.

Business rules define what needs to do in the program on software level. It conducts the program how to solve the

problem that it aimed at [1]. But most system developmental ways write the business rule in the codes [2]. When the

rules need to be changed by following the business policies and benefits in the future, the information system won’t

satisfy with what the users need. As a result, this study brings up a new idea. It is to draw out the business rules that the

system operation needs from the system and save them as an independent file. In other words, we can make the system

read the business rules to replace writing the business rules in the system internal part (codes). When the business must

change the business rules because of external factors, users just need to alter the file they need. In fact, software

requirement documents record the business rules that the system operation needs. The business rules are compiled via

conversing with customers in the initial period of system development. Then, in the implementation phase, the

programmers write them down as the system (codes) repeatedly. Therefore, if we can make the system read software

requirement documents directly, it will reach the idea of causing the business rules and the system (codes) apart.

How do we let the system read the software requirement documents? XML can resolve the problem depending on

the present techniques. For the reason, this study plans to write the software requirement documents by using XML

made by W3C, and expects to let the system possess the ability of reading the software requirement documents through

the XML characteristics of human-machine readable.

 3

In view of the above-mentioned mentioned motivation, this study will improve the software requirement

documents in the requirement engineering. The major work is to use XML as the language to describe the software

requirement. The method not only enables the system to read and implement requirements that it defines but also to

replace the restriction that the software requirement documents just can regard as human reading in the past, and then

achieves the major four purposes of this study.

(1) Make business rules and programming logic divided.

(2) Software requirement documents can be read and implemented by machines.

(3) Software requirements specification pattern can be reused repeatedly.

(4) Software requirement documents can change the system functions.

2. Background
The purpose of the software requirements specification is to record the user’s requirement for the system software.

It is the bridge between developers and customers, the basis of the software development and maintenance, and the

criterion of gauging the system quality during the system check. Hence, the software requirements specification is the

most important one of all the system documents. [3]

Software requirement documents (are also named as software requirement specifications, SRS, sometimes) record

the requirement that the system need to possess, including requirement definitions, requirement specifications and

detailed software specifications [4]. Davis (1990) summarizes, compares with the different methods of describing

requirement specifications and classifies them for five sections:[5]

(1) Structural natural language: such as software requirement document outlines announced by Institute for

Information Industry.

(2) Design descriptive language: such as PDL

(3) Requirement specification languages: such as PSL, PSA and RSL.

(4) Graphical Notations: such as SADT.

(5) Mathematical Specifications.

3. XML-based Software Requirement Document
XML-based software requirement documents brought up by this study are the composite of the three specifications.

XML-based software requirement documents are the executable document using XML to describe the above-mentioned

specifications. It changes the role of software requirement documents in the former software evolutional process and

turns the software requirement documents into the data resources of the system operation. The data resources are such

as the functions for the system operation, business rules and the procedure. The XML-based software requirement

documents can not only provides for the readers from the different levels but also make the system read and implement

the content of requirement documents.

3.1 XML-based Software Requirement Document for System Development

The evolutional process of XML-based software requirement specifications for system development can be divided

into four stages: requirement analysis, requirement document design, programming design and system maintenance.

(1) Requirement Analysis

It includes requirement collection, requirement definition, requirement specification and software specification in

requirement analysis phase. It is different from the present way. In this phase, XML is used as the language for

 4

analysis, and all the documents from every step are XML document. Consequently when system analysts set up the

requirement or software, they can enter into the repository first to seek for the finished requirement specifications and

then treat them as a part of new specification so as to obtain the most benefits by reusing software requirement

specification levels.

(2) Requirement Document Design

In requirement document design phase, the main is to compile XML documents (requirement definition,

requirement specification and software specification) from the first phase, and portray as the human-machine readable

XML-based software requirement documents.

(3) Programming design

In this phase, the main is to parse in accordance with the Software requirement document. Programmers make

program can read software requirement documents and implement dynamically to replace keying the requirement

document definition in the codes. In other words, the system will do everything of whatever system architecture or

business rules that requirement documents define.

(4) System Maintenance

The main is to update the system by altering software requirement documents to substitute for modifying the

internal codes. Hence, people who maintain the system don’t need to be familiar with the codes.

Figure 1 : XML-based Software Requirement Document for System Development

Software Requirement Spec.
Repository

Programming
Design

System Maintenance

Requirement Analysis Requirement Document Design
Programming

Design

Requirement
Collection

Described by XML

Described by XML

Requirement
Definition

Requirement
specification

software
specification

Reuse

Use

Xml

Schema

Software Requirement Document

 5

3.2 Constructing XML-based software requirement documents

The processes for writing the XML-based software requirement documents are as follows:

Each step could be subdivided into two steps：

(1) Definition of schema

Schemas are used as stipulating the arrangement of tags and the format of content. We can save for the defined XML

schemas in a particular repository. When we want to develop a new system, we can consult the pervious schemas to

write XML documents and then shorten making time. Besides we can write schemas by ourselves, we can use others’

schemas to define the structure of XML documents. Hence, in order to write XML software requirement documents in a

uniform format, this research will define schemas in the above-mentioned nine steps so as to establish a XML-based

software requirement.

(2) Writing the real data

After defining XML schemas, we can fill the real data in one by one according to the defined document structure.

3.3 Using XML-parser to read XML-based software requirement documents.

After establishing XML software requirement documents, it comes to the program design because XML

documents have the machine-readable character, the information system can read XML-based software requirement

documents and operate in terms of the content. How do we design a system that can read XML documents? Due to we

design the system by using Java, we will combine with JAXP provided by Sum and take it for the parse tool of XML

documents.

Figure2 : Using XML-parser to read XML-based software requirement documents.

3.4 Present XML-based software requirement documents by using XSL

XSL is the abbreviation of “extensible stylesheet language”. Its main function is to set the appearing way of XML

documents. Besides the documental appearance, it can select the appearing content from XML documental data. Hence,

it can change the appearing form depending on users’ requirement. For example, it can change the appearing order of

data. Through the different XSL, it can show the whole content in the same documents. Some content or turning it into

the form of HTML. Consequently, we can make the software requirement documents suit for executive officer or

programmers in accordance with the different XSL not to make two distinct documents.

Step1 : using XML to describe the flowchart of each function.

Step2 : using XML to describe the data glossary.

Step3 : using XML to describe the system architecture.

Step4 : using XML to describe each model.

Step5 : using XML to describe database.

Step6 : using XML to describe each process.

Step7 : using XML to describe each sub-process.

Step8 : using XML to describe the procedure of each process.

Step9 : using XML to describe the rules of each procedure.

Step10 : integrating XML-based software requirement

Schema

1. General Spects.
2. AP Interface
3. Executable Logic

XML
 Information System XML

Parser

 6

Figure3 : Present XML-based software requirement documents by using XSL

4. XML-based software requirement specification repository
4.1 XML-based software requirement spec. Repository

XML-based Software requirement specification repository is to store the relative specifications of the drafted

software system such as the system architecture specifications, the descriptive specifications of flowcharts and the

business logic specifications. The purpose is to help the developers get data they need by way of the feature and

advantage of XML in requirement analysis phase. We expect to define a complete software requirement documents via

a standard requirement specifications. “XML-based Software requirement specification repository” includes the

following seven components of XML schema now.

(1) Schema of flowcharts

(2) Schema of data glossary

(3) Schema of the system architecture

(4) Schema of database description

(5) Schema of the mutual relation between system models and database

(6) Schema of process’s procedure.

(7) Schema of business rules.

The system developers can use the service provided by XML-based software requirement specification repository

through browser and downloading XML schemas for writing requirement specifications of software requirement

documents.

4.2 . Introduction of the internal components in repository

(1) Schema of flow charts

It describes the flow of the system operation like the order process, purchase process…etc.

(2) Schema of data glossary

It is to describe the blueprint for the system operation such as the blueprints of order, sending bills, bill of asking

for outlay.

(3) Schema of the system architecture

It describes the whole functional structure in the system such as models, process functions and operations included

in the system.

(4) Schema of database description

It describes the data repository so-called database, such as the basic data of customers order data product

data…etc.

(5) Schema of the mutual relation between system models and database

It describes the interactive relation between models and database.

Accounting

Manager

Developer

User

XSL 1

XSL 2

XSL 3
XML-Based software Requirement documents

 7

(6) Schema of business rules

It describes the business rules included in the system.

5.Example
We describe the developmental methodology according to XML software requirement documents by using a

business process system named “EZIT” for short in the following sections.

5.1. Writing XML-based software requirement documents

EZIT is a trade company that manages the commerce of the cars and motorcycles component. It has two plants and

manufactures some parts of components by itself. The scope covered in the system includes three parts: “Sales

Management Model”, “Operations Management Model” and “Purchase Management Model”. In the analytical process,

because many steps and principles are similar, we select “Sales Management Model” for an illustration.

Sales Management Model can be divided into ten steps for writing XML-based software requirement documents. The

application for nine steps is as follows.

Step1: using XML describes the operative flowchart of each function

In accordance with the outcome from requirement analysis, “sales management” can be divided into order process,

sending process, and returned process. We completely imitate “Schemas of flowcharts description” designed to describe

its flowchart. The flowcharts (order process, sending process) are shown as follows.

Figure4 : using XML describes the operative flowchart of each function

Order Order Process

inventory?

Delivery Process Delivery

Production
Process

Customer Business Production

<?xml version="1.0" encoding="big5"?>
<FlowChart Name="Order-Delivery Process">

<Node Name="Order" Type="Document">
<To Nodename="Order Process"> </To>
<Actioner Name="Customer"></Actioner>

</Node>
<Node Name="Order Process" Type="Process">

<From Nodename="Customer"> </From>
<To Nodename="Inventory Check"> </To>
<Actioner Name="Business"></Actioner>

</Node>
<Node Name="Inventory" Type="check">

<From Nodename="Order Process"> </From>
<To Flag="Y" Nodename="Delivery Process"> </To>
<To Flag="Y" Nodename="Production Process"> </To>
<Actioner Name="Business"></Actioner>

</Node>
<Node Name="Delivery Process" Type="Process">

<From Nodename="Invertory Check"> </From>
<To Nodename="Delivery"> </To>
<Actioner Name="Business"></Actioner>

</Node>
<Node Name="Delivery" Type="Document">

<From Nodename="Delivery Process"> </From>
<Actioner Name="Customer"></Actioner>

</Node>
</FlowChart >

Described By XML

 8

Step2: using XML to describe the data glossary

The orders in the sending process should have a fixed form of the blueprint. The order blueprint can view the present

order forms as the basis. Hence, we can completely imitate “schemas of the data glossary description” designed to

portray the order blueprint as XML It is shown as follows:

Figure 5 : using XML describes the Order’s data glossary

Step3: using XML to describes the system architecture

We can use XML-based schema system architecture designed to describe the system architecture diagram as XML. It is

shown as follows:

Figure 6 ：using XML describes the system architecture

<DataVocabulary>
<Vocabulary name="Order Data Glossary">
<Attribute Name="Name" NO="A" Length="20" Style="C" Example="xxx">
<Attribute Name="Address" NO="B" Length="40" Style="C" Example="Taipei">
<Attribute Name="TEL" NO="C" Length="10" Style="C" Example="2123635" >
<Attribute Name="OrderID" NO="D" Length="8" Style="N" Rule="YYMMDD99" Example="02050301" >
<Attribute Name="Delivery_Date" NO="E" Length="8" Style="D" Rule="YYYYMMDD" Example="20020503" >
<Attribute Name="ProductID" NO="F" Length="8" Style="C" Rule="999999" Example="000001" >
<Attribute Name="ProductName" NO="G" Length="10" Style="C" Example="screw" >
<Attribute Name="Quan" NO="H" Length="10" Style="N" >
<Attribute Name="Unite" NO="I" Length="4 Style="C" >
<Attribute Name="Price" NO="J" Length="10 Style="N" >
<Attribute Name="Sum" NO="K" Length="10" Style="N" >
<Attribute Name="Total" NO="L" Length="10 Style="N" >
</Vocabulary>
<DataVocabulary>

<?xml version="1.0" encoding="big5"?>
<System_framework Name="EZIT">
<Model Name="Sale" ShowText="SaleMang">

<Fun Name ="OrderProcess" ShowText=" OrderProcess " OBJName="OrderProcess"></ Fun >
< Fun Name =" DeliverProcess " ShowText =" DeliverProcess " OBJName ="DeliverProcess"></ Fun >
< Fun Name=" ReturnProcess " ShowText =" ReturnProcess" OBJName ="ReturnProcess"></ Fun >

</ Model >
< Model Name =" productionMang" ShowText=" productionMang ">

<Fun Name =" MaterialReceive " ShowText=" MaterialReceive " OBJName=" MaterialReceive " ></ Fun >
< Fun Name =" MaterialReturn " ShowText=" MaterialReturn " OBJName=" MaterialReturn " ></ Fun >
< Fun Name =" WareHouseProcess " ShowText=" WareHouseProcess " OBJName="WareHouseProcess">< Fun >

< Fun Name =" CheckProcess " ShowText=" CheckProcess " OBJName="CheckProcess" ></ Fun >
</Model>
<Model Name ="SaleMang" ShowText=" SaleMang ">

<Fun Name ="Order" ShowText="Order" OBJName="Order" ></Fun>
<Fun Name ="Stock" ShowText="Stock" OBJName="Stock" ></Fun>
<Fun Name ="Back" ShowText="Back" OBJName="Back" ></Fun>

</Model>
</ System_framework>

EZIT

Sale

production

purchase

OrderProcess

DeliverProcess

：

ReturnProcess

MaterialReceive

MaterialReturn

Described By XML

 9

Step 4: using XML to describe each model

According to the interactive components between XML-based system model and database, the interactive diagram

relationship can be shown in XML as follows.

Figure7 : using XML describes each model

<Relationship Name="EZIT" Level="0">
<Node Name="SaleManage" Type="Modle">

 <DataBase Name="">

<Table Name="Cust_data" ToSystem="True"></Table>
 <Table Name="Order_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Deliver_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Return_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Tax_data" ToSystem="True"></Table>
 <Table Name="Request_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Register_data" ToSystem="True" ToTable="True"></Table>

<Table Name="Product_data" ToSystem="True" ToTable="True"></Table>
 </DataBase>

 <Actioner Name="Customer" ToSystem="True" ToActioner="True">
 <Actioner Name="Business" ToSystem ="True" ToActioner ="True">
 </Node>

 <Node Name="SaleManage" Type="Modle">

 <DataBase Name="">

<Table Name="Supplier_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Order_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Return_data" ToSystem="True" ToTable="True"></Table>

 ：：

 </Node>

：：
</Relationship>

Customer

Sale

Management

Order Data

Deliver Data

Return Data

Tax Data

Customer Data

Product Data

Register Data

Request Data

Supplier

Sale

Management

Supplier Data

Order Data

Return Data

MaterialIn

Plan Data

Product Data

Minv Data

MaterialRecive

Procduction

Production

Management

Inv Data

WareDetail

Return Data
Business

Invertor

Described By XML

 10

Step 5: using XML to describe the database

Figure 8 : using XML describes the database

Step 6: using XML to describe each process

In the model of sales management, sales management includes four subsidiaries: orders, sending returned, asking for

outlay and entering in the accounts. According to the components of XML-based system architecture in chapter4, the

diagram of the interactive relationship among the subsidiaries can be shown in XML as follows.

Figure 9 : using XML describes each process

Attribute
Name

Type Length Rules PK FK
description

Snum Char 8 YYMMDD99 *
Date Date YY/MM/DD
Sum Num 99999999.99

Discount Num 99999999.99

Discountm Num 99999999.99
Total Num 99999999.99
Order Char 8 99999999.99 * 原訂單編號

:

Attribute
Name

Type Length Rules PK FK
description

Snum Char 8 YYMMDD99 * *

ProductNo Char 8 * *
Price Num 99999999.99
Quan Num 99999999.99

<DataBase>
<Table Name= "Deliver">
<Attribute Name="Snum" Type="Char" Length="8" Rule="YYMMDD99" pk="Y"></Attribute>
<Attribute Name="Date" Type="Date" Length="8" Rule ="YY/MM/DD" ></Attribute>
<Attribute Name="Sum" Type="Num" Rule ="99999999.99"></Attribute>
<Attribute Name="Discount" Type="Char" Length="8" Rule ="999999999.99" pk="Y"></Attribute>
<Attribute Name="Discountm" Type="Char" Length="8" Rule ="99999999.99"pk="Y"></Attribute>
<Attribute Name="Total" Type="Char" Length="8" Rule ="99999999.99" ></Attribute>
<Attribute Name="Order Type="Char" Length="8" Rule ="99999999.99" fk="Y"></Attribute>
</Table>
<Table Name= "DeliverDetail">
<Attribute Name="Snum" Type="Char" Length="8" Rule ="YYMMDD99" pk="Y" fk="Y"> </Attribute>
<Attribute Name="ProdNo" Type="Char" Length="8" pk="Y" fk="Y"></Attribute>
<Attribute Name="Price" Type="Num" Rule ="99999999.99" ></Attribute>
<Attribute Name="Quan" Type="Char" Length="8" Rule ="999999999.99"></Attribute>
</Table>
 ： ：
</DataBase>

Order

Process

 Tax data

 Product data

 Return data

 Customer data

 Deliver data

Customer

Business

Deliver
Process

Return
Process

Request
Process

Login

Process

 Order data

 Request data

 Register data

Sale
Management

<Relationship Name="Sale_Manage" Level="1">
<Node Cname="OrderProcess" Type="Process">

 <DataBase Name="">

 <Table Name="Order_data" ToSystem="True"></Table>
 <Table Name="Product_data" ToSystem="True" ToTable="True"></Table>
 <Table Name="Customer_data" ToSystem="True"></Table>
 </DataBase>
 <Actioner Name="Customer" ToSystem ="True">
 <Actioner Name="Business" ToSystem ="True" ToActioner="True">
</Node>

 <Node Cname="DeliverProcess" Type="Process">

 <DataBase Name="">

 <Table Name="Product_data" ToSystem="True" ToTable="True"></Table>
<Table Name="Order_data" ToSystem="True"></Table>
<Table Name="Customer_data" ToSystem="True"></Table>
<Table Name="Tax_data" ToSystem="True"></Table>

 <Table Name="Deliver_data" ToSystem="True" ToTable="True"></Table>
 </DataBase>
 <Actioner Name="Customer" ToActioner ="True">
 <Actioner Name="Business" ToSystem ="True" ToActioner ="True">
 </Node>

：：

</Relationship>

Described By XML

Described By XML

 11

Step 7: using XML to describe each sub-process

Taking the sending process in sales management model as an example, the sending process can be subdivided into

five operations including addition, modification, deletion, inquiry, and print.

Figure 10：using XML describes each sub-process

Step 8: using XML to describe the procedure of each process

In “New Delivery”, it can be subdivided into six subsidiary procedures: the basic data procedure of the sending bill,

the procedure of the tax rate, the procedure of sending amount, the data detective procedure of the sending bill and the

data storing procedure of the sending bill. The process steps for each procedure are as follows.

According to “schema of the procedure” in repository, the new delivery procedure can be shown in XML as

follows:
Procedure Rule

Procedure
Of

Deliver Data

1. Input OrderNumber
2. Automatic make Deliver Number
3. Load Customer Data
4. Sending bill Process
5. Update Deliver data of Database

Procedure
Of

Tax rate

1. Load Date
2. Search Tax from Tax data

Procedure
Of

sending amount

1. ComputeSummary
2. ComputeTotal
3. SetTaxMoney
4. ComputeMoney

Errorr Process Error process
Procedure

Of
Deliver Save

1. Call Error Process
2. Make Sure Deliever data
3. Make Sure Product Inventory data
4. Make Sure Material Inventory data

New

Deivery

 Tax data

 Product data

 Customer data

 Deliver data

 Order data

Business
Update

Delivery

Delete

Delivery

Query

Delivery

<Relationship Name="Deliver Process" Level="2">

<Node Name="New Delivery" Type="Process">

 <DataBase Name="">

 <Table Name="Procuct data" ToSystem="True" ToTable="True"></Table>
<Table Name="Order data" ToSystem="True"></Table>
<Table Name="Customer data" ToSystem="True"></Table>
<Table Name="Tax data" ToSystem="True"></Table>

 <Table Name="Delivery data" ToSystem="True" ToTable="True"></Table>
 </DataBase>
 <Actioner Name="Business" ToSystem ="True" ToActioner ="True">
</Node>

<Node Name="Update Delivery" Type="Process">

 <DataBase Name="">

 <Table Name=" Procuct data " ToSystem="True" ToTable="True"></Table>
<Table Name=" Customer data" ToSystem="True"></Table>
<Table Name=" Tax data " ToSystem="True"></Table>

 <Table Name="Delivery data" ToSystem="True" ToTable="True"></Table>
 </DataBase>
 <Actioner Name="Business" ToSystem ="True" ToActioner ="True">

</Node>

：：

<Relationship>

Deliver Process

Described By XML

Described By XML

 12

Figure 11：using XML describes the procedure of each process

Step 9: using XML to describe the rules of each procedure

After subdividing the “procedures of the New Delivery”, we need to describe the rules of the bottom layer. We

continue the example-“the procedure of the sending amount” on previous step to describe the process rules as XML.
Rule Name Content

1. ComputeSummary DeliveryDetailSummary=DeliveryDetail (amount*price)

2. ComputeTotal Total=(DeliveryDetailSummary *Discount)-Discountvalue

3. SetTaxMoney Tax= Total *TaxRate

4 ComputeMoney Money= Total +Tax

Figure 12 : using XML describes the rules of each procedure

<Process name="New Delivery" >

<Procedure Cname="Delivery data process" Ename="NewDeliver">

 <Rule Name="Load order Number">

<Rule Name=" make Deliver Number ">
 <Rule Name=" Load Customer Data ">
 <Call_Procedure Name=" sending bill Process ">
 <Rule Name=" Update Deliver data of Database ">
 </Procedure>

<Procedure Cname=" Tax rate " Ename="TaxProcess">

 <Rule Name="Load Date">

<Rule Name="Search Tax">

 </Procedure>

 <Procedure Cname=" Sending amount " Ename="DeliverMoneyProcess">

 <Rule Name="ComputeSummary">

<Rule Name="ComputeTotal">

 <Rule Name="SetTaxMoney">

 <Rule Name="ComputeMoney">

 </Procedure>

<Procedure Cname="Error Process" Ename="ErrorProcess">

 <Rule Name=" Error Process ">

 </Procedure>

：：
<Process>

<BusinessRulesWareHouse>

 <BusinessRule>

 <BusinessRule_header>

 <Rule_Name> ComputeSummary </Rule_Name>

 </BusinessRule_header>

 <BusinessRule_body>

 <Formula>

DeliveryDetailSummary=DeliveryDetail (amount*price)
</ Formula>

 </BusinessRule_body>

</BusinessRule>

<BusinessRule>

 <BusinessRule_header>

 <Rule_Name> ComputeTotal </Rule_Name>

 </BusinessRule_header>

 <BusinessRule_body>

 <Formula>

Total=(DeliveryDetailSummary *Discount)-Discountvalue </ Formula>

 </BusinessRule_body>

</BusinessRule>

：：

</BusinessRulesWareHouse>

Described By XML

 13

Step10: integrating XML-based software requirement

It will be a simple XML-based software requirement document, if we integrate the above-mentioned XML

documents of each step and increase the other relative information.

5.2.Reading software requirement documents though XML Parser

The operative principle of reading software requirement documents through XML parser is to turn XML documents

into individual programming objects. When the program stores or accesses these objects again, it does the same thing

for XML documents such as the system functional structure in requirement documents. After being analyzed by the

parser, its branch structure is as follows:

Figure 13 ：Reading software requirement documents though XML Parser

Through XML parser, the system functional structure defined by XML software requirement documents will be read

by program and the functional table is shown to be one of functional items included in the system.

5.3.Implementing the content in XML software requirement documents dynamitic

As above, after the program can read software requirement documents by using XML Parser, the problem now is

how to use the data and make the system operate according to them. We continue using the above instance of “the

system functional structure” to interpret how to the content defined by XML software requirement documents is

implemented dynamically.

The system functional structure defined in XML software requirement documents consist of several models and

tags. Each tag includes various function tags. It records the attributes of Name, OBName, and ShowText in the function.

Name records the Chinese name to differentiate the character of the function, ShowText records the language that the

<?xml version="1.0" encoding="big5"?>
<System_framework Name="EZIT">
<Model Name="Sale" ShowText="SaleMang">

<Fun Name ="OrderProcess" ShowText=" OrderProcess " OBJName="OrderProcess"></ Fun >
< Fun Name =" DeliverProcess " ShowText =" DeliverProcess " OBJName ="DeliverProcess"></ Fun >
< Fun Name=" ReturnProcess " ShowText =" ReturnProcess" OBJName ="ReturnProcess"></ Fun >

 ：：
</ Model >

 ：：

ShowText SaleManage

ShowText Production

XML Parser

ShowText

ShowText

ShowText

Systemframework

Model

Fun

Fun

Fun ReturnProcess

DeliverProcess

OrderProcess

Model

 14

function wants to show and its purpose is to exhibit the frame in the system functional table after the program is read.

ObName records the functional object’s name. When a chain of events is enabled in the function, the object must be

implemented. According to the chart below, we can realize that the whole system will operate step by step in terms of

the data that it reads and links up the related object.

The above chart shows that the system operates in accordance with the content defined in XML software requirement

documents so that if the enterprises need to change its functional structures because of the external environments, they

just need to alter software requirement documents. We will introduce two changeable situations for readers.

(1)Add/delete some function

If the enterprises want to add a function of entering in accounts in the above system, they need to add a description

in software requirement documents only. It is:

<function Name =”AccountProcess” OBName =”Account Process” ShowText =” AccountProcess”></function>.

And then the system will link up the object process named as “account process” to add a new system function

according to the description. On the contrary, if the enterprises want to delete some function, they just need to delete the

description of the function.

<?xml version="1.0" encoding="big5"?>
<System_framework Name="EZIT">
<Model Name="Sale" ShowText="SaleMang">

<Fun Name ="OrderProcess" ShowText=" OrderProcess " OBJName="OrderProcess"></ Fun >
< Fun Name =" DeliverProcess " ShowText =" DeliverProcess " OBJName ="DeliverProcess"></ Fun >
< Fun Name=" ReturnProcess " ShowText =" ReturnProcess" OBJName ="ReturnProcess"></ Fun >

 ：：
</ Model >

</ System_framework >

XML Parser

Read

Link Object

when a chain of events
happen in the function, the
object must be implemented

The name show
On the function Menu

ReturnProcess Object

DeliverProcess Object

OrderProcess Object

Figure14 : Implementing the content in XML software requirement documents

<?xml version="1.0" encoding="big5"?>
<System_framework Name="EZIT">
<Model Name="Sale" ShowText="SaleMang">

<Fun Name ="OrderProcess" ShowText=" OrderProcess " OBJName="OrderProcess"></ Fun >
< Fun Name =" DeliverProcess " ShowText =" DeliverProcess " OBJName ="DeliverProcess"></ Fun >
< Fun Name=" ReturnProcess " ShowText =" ReturnProcess" OBJName ="ReturnProcess"></ Fun >
< Fun Name =" LoginProcess " ShowText =" LoginProcess " OBJName="LoginProcess" ></ Fun >

 ：：
</ Model >

:

 15

(2)Update the system function

If the enterprises want to modify the order process that they deal with, they just need to amend the description of

OBJ_Name turning into one new object-Order Process2. When we restart the system, it will link up the new order

object.

6.Conclusion
This research brings up system development methodology based on XML software requirement documents to

achieve the purpose of making the business logic and the system logic divided. Because of this purpose, we probe for

writing way of traditional software requirement documents first in order to understand the meaning and inadequacy for

the whole system developmental process. Furthermore, we research in the relative XML techniques from W3C deeply.

In the research process we discover the advantages and feasibility using XML as the descriptive language of software

requirement documents, and bring up the system developmental way of software requirement documents based on XML

to accomplish the research purpose.

The development methodology is divided into four process phases: the requirement analysis, the requirement

documents design, programming design, and system maintenance.

What to do in each phase and the difference from the traditional developmental methodology is discussed as well.

In order to prove its feasibility, we also use an example of a business process system to illustrate what should be

implemented in each phase.

Reference
[1] Hsien-kai.Chiu，”Applying XML to Document Business Logic through TBCG”， Master’s paper，National Central University，

2000，P5。

[2] Chang-kuo.Huang， “A UML and Business Rule-based Business-tier Software Component Development Environment”，Master’s

paper ，National Taiwan University of Science and Technology，2000，P2。

[3] Hung-chih.Kuo、Yen-ping.Chi，System analysis and Design，Hua-tsai，1995，P107

[4] Sommerville Ian , Software Engineering 5thed , Wokingham, England ; Reading, Mass. : Addison-Wesley Pub. Co., c1996

[5] Davis,A.M.,Software Requirements:Analysis and Specification , Englewood Cliffs NJ:Prentice-Hall

 [82,123],1990.

[6]Bray,Tim,et. al.,”Extensible Markup Languag 1.0”,W3C Recommendation，1998.

[7] Avraham Leff, James T Rayfield , “Web-Application Development Using the Model/View/Controller Design Pattern” , Enterprise

Distributed Object Computing Conference, 2001. Proceedings. Fifth IEEE International , 2001.

[8]Carla Sadtler et al., “Patterns for e-business: User-to-Business Patterns for Topology 1 and 2 using WebSphere Advanced Edition,”

IBM Redbooks publication, 2000.

[9]M.J Mahemoff, L.J Johnston,Handling multiple domain objects with Model-View-Controller,” Technology of Object-Oriented

Languages and Systems, 1999. TOOLS 32. Proceedings , 1999 ,Page(s): 28 –39

[10] Roger S. Pressman,“Software Engineering: A Practitioner's Approach”,2001

[11]E. Guerrieri., “Software Document Reuse with XML,” In P. Devandu and J. Poulin, editors, Pro. 5 th Int. Conf. on Software

Reuse, pp:246-- 254, Victoria, Canada, June 1998.

