
Workshop on Databases and Software Engineering

A Table Presentation Language for Database Applications

Woei-Kae Chen*,1, Ping-Hung Chen**, and Wen-Tseng Huang***

*Department of Computer Science and Information Engineering,

National Taipei University of Technology, 1, Sec 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, R.O.C.;
**Computer Center, National Taipei University of Technology,

 1, Sec 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, R.O.C.; and
***Department of Electronic Engineering, National Taipei University of Technology,

1, Sec 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, R.O.C.

Abstract

Database applications often utilize a large number of reports. There are tools, report generators, as

well as programming-level supports that facilitate the generation of reports. However, these supports

are restricted to simple predefined presentation formats with limited flexibility. In general, a report

consists of one or more data sources, which are not necessarily stored in formats that are ready for

presentation. Therefore programmers must write application programs to convert query results into

suitable presentation formats. In particular, the aim is to place the right data into the right position so

that the report is easy to understand. Since the results of a query are inherently tabular, by restricting

the reports into tabular formats, the problem reduces to the transformation of data between tables.

This paper studies how the position of one data is transferred to another. We characterize and

formulate fundamental transformations into high-level transformation operations, including normal,

transpose, fill, combine, and matching. We then propose a high-level Table Presentation Language

(TPL) to realize these operations. TPL can be used to create sophisticated reports without the

overhead of writing tedious low-level programs. Therefore the complexity of generating reports is

greatly reduced. We have used TPL to construct several web-based database applications. In our

experience, it is convincing that the language is very useful and practical for creating database query

and report applications.

Keywords: Database, Report Generation, Table Presentation, Language, Web, CGI Generator

1 To whom correspondence should be addressed. E-mail: wkc@csie.ntut.edu.tw Tel: 886-2-2771-2171 x 4230

1. Introduction

It can be argued that report generation is one of the most frequently performed tasks in database

applications. A report is the results of queries, which are organized and formatted to satisfy a

particular presentation requirement. To facilitate the generation of reports, there are tools (e.g., [2],

[7], and [9]), report generators (e.g., [1] and [8]), and programming-level supports (e.g., function

libraries) that can be used. However, these supports are restricted to simple predefined presentation

formats with limited flexibility. For example report tools that offer printing of tables (the results of

SQL queries) can easily be found, with the limitation that only fixed and regular formats can be used.

In general, a report usually consists of several data sources, which are not necessarily stored in

formats that are ready for presentation. Therefore, before printing, programmers must write

application programs to convert different data sources into suitable presentation formats for each

report. In particular, the aim is to place the right data into the right position so that the report is easy

to understand. Although these conversion programs are not difficult to write, they are very tedious

and require the intervention of programmers.

As an example, Figure 1 shows the transformation from the information of reservations into a

seat arrangement of a theater. In this example, there are two input tables (data sources):

RESERVATIONS and PRICES. The RESERVATIONS table contains information for each reservation,

e.g., the seat for Mr. A is reserved at row 1 and column 1. The PRICES table contains information for

the price of the seats, e.g., a seat in row 1 costs 100 dollars. The report of this example is the table

SEATS, which is a presentation that shows the actual layout of the theater, the price of each row, and

the location that everyone sits.

For the generation of the SEATS table, there are two transformation operations to be done. The

first is to transfer the information of each row of the RESERVATIONS table into the correct position of

the SEATS table, which shows the layout with a two-dimensional presentation. The next is to transfer

the price of each row from the PRICES table into corresponding position of the SEATS table. It is easy

to see that writing programs to perform these transformations is not difficult. In fact, simple loops

suffice to accomplish these operations. It is also possible to simplify coding efforts by using

 2

libraries that supports these transformation operations. However, writing programs such as

embedded C++ or 4GL (4th generation language) to perform these conversions is considered a

low-level solution, which is very tedious and inflexible.

RESERVATIONS

Row Column Name

1 1 A
1 2 B
2 3 C
3 2 D
3 4 E
4 3 F
: : :

PRICES

Row Price

1 100

2 200

3 300

4 250

 SEATS
 1 2 3 4 Price
1 A B 100
2 C 200
3 D E 300
4 F 250

Figure 1. An example of transferring reservations into seats

This paper studies a restricted form of report, i.e., reports in tabular format. Using a tabular

format to present a report is frequently used, because the data shown in a table is easy to understand,

and can easily be used, analyzed, and compared. In fact, many non-tabular presentations can also be

considered as tables without part or all of the borders. Since the results of an SQL query is inherently

tabular, by restricting the target reports also into tabular formats, the problem of writing programs is

reduced to the transformation of data between tables. In this paper, we study the problem of

transferring data from one table to another with emphasis on how the positions of the data are

rearranged. We characterize and formulate fundamental transformations into high-level transformation

operations. These operations include normal, transpose, fill, combine, and matching. We show that

by using combinations of these operations, reports of sophisticated formats can be created.

We propose a Table Presentation Language (called TPL) to support these operations. TPL is

designed as a scripting language and is both high-level and concise. The language also supports

several output formats for different applications. Users of TPL can generate sophisticated reports

 3

without writing tedious low-level programs. Therefore the complexity of generating reports is

greatly reduced.

TPL supports both client/server and web-based applications. For web-based applications, our

TPL system can be considered as a CGI (Common Gateway Interface) generator. TPL has a strong

instruction sets that can perform transformation operations, which makes TPL different form the other

CGI generators (e.g., [2], [7], and [9]). That is TPL is capable of presenting reports of arbitrary

format; the other tools cannot.

The rest of this paper is organized as follows. Section 2 describes researches and tools that are

related to this paper. Section 3 discusses the transformation operations. Section 4 defines the TPL

language. The implementation and applications of TPL is given in Section 5, and a conclusion is

given in Section 6.

2. Related Works

There are researches studying the generation of reports. In particular, Tarassenko [8] proposed a

“reporter” system that can produce sophisticated read-to-use reports. By using the reporter system,

the development of a report is focusing at describing tables with column/rows, rules of data selection

and summarization, and formatting the report in destination document. Chan [1] proposed a

document-driven approach to report generation, which is more flexible than the traditional

schema-driven approach. Contents of a report can be specified using a transformation language

together with queries that retrieve data from different databases.

A natural application of the TPL language is a dynamic web-page generator for database

applications. There are several possibilities in writing dynamically generated web pages. The most

fundamental solution is the writing of CGI scripts. These are programs, when invoked, running on

HTTP servers that dynamically construct web pages in HTML format. Scripting languages (e.g., Perl)

are usually used to code CGI programs. However, for web-based database applications, CGI

programs tend to be too low-level to code. Therefore, CGI generators, which automate or simplify

the process of writing web-based database applications, become important.

 4

There are researches and tools (e.g., [2][7] and [9]) address CGI generators for database

applications. The fundamental insight of these researches is based on the fact that the content of a

dynamic web page is the result of SQL queries with additional HTML formats. Therefore by

substituting the SQL statement and HTML templates, different web pages can be created. For

example, the Microsoft IDC (Internet Database Connectivity) [7] accompanied with IIS (Internet

Information Server) use an “idc” file for SQL source and an “htx” file for HTML templates. The

major disadvantage of these tools is that they are all limited to simple formats without flexibility.

Although, they are good for certain fixed-format database applications, extensions are usually difficult

or impossible. Therefore, as a replacement, using HTML-embedded language becomes the current

trend.

With the support of HTTP servers, using HTML-embedded languages is usually more efficient

than CGI scripts both in terms of execution and development time. As an example, using PHP

(Hypertext Preprocessor) [3], an HTML-embedded scripting language, web developers can write

dynamically generated web pages quickly. Since PHP is strong with database support, generating a

database report by PHP scripts is also easy. However, using PHP exhibits the same problem as using

C++ or 4GL discussed in the previous section. Other tools such as ASP (Active Server Page of

Microsoft) [6] and JSP (Java Server Page) [5] also have the same problem.

3. Transformation Operations

This section discusses the transformation operations that can be performed between two tables. A

transformation operation is composed of three major factors: (1) the source, (2) the target, and (3) the

type of transformation to be performed. We will discuss these factors for each of these

transformations.

An entry in a table is called a cell. The position of a cell is denoted as , where is the

column index and is the row index of the cell. We use to indicate the cell that is located

at the top-left corner of a table. A rectangular block of cells is denoted as . We use

“

yx RC

11 ..yx RC

x−

xC

yR 00RC

22 yx RC

*” to denote the last row or the last column of a table; an expression of ∗ is also allowed.

 5

Figure 2 shows cells of six different shapes, including single cell, single column, multiple columns,

single row, multiple rows, and block. Figure 3 gives the block expressions for each shape of the

example shown in Figure 2. For simplicity, we also use simplified expressions, which are

abbreviations of block expressions.

 0 1 2 3 4 5 6 . . n-2 n-1
0
1
2
3
4
5
:

m-2
m-1

Figure 2. Cells with different shapes

Type Block Expression Simplified Expression
single cell C0R0..C0R0 C0R0

single column C2R0..C2R* C2
multiple column C4R0..C5R* C4..C5

single row C0R1..C*R1 R1
multiple row C0R3..C*R4 R3..R4

block C6R6..C*R*-1 C6R6..C*R*-1
entire table C0R0..C*R* C0..C* or R0..R*

Figure 3. Expressions for cells with different shapes shown in Figure 2

We now turn our attention to how cells are transferred from one position to another. In the

following subsections, we discuss each of the five different transformations, namely normal, transpose,

fill, combine, and matching.

3.1 Normal Transformation

The most fundamental transformation is to translate the position of a cell (or a block of cells) to

another position. Figure 4 gives an example that translates to C . We use

the notation Target to express a transformation, where Source indicates the

cells to be transformed, Target indicates the target position, and specifies the

transformation operation to be performed with an optional option. For the operation of Figure 4, it

can be expressed as C . Note that a normal transformation does not

2411 .. RCRC 1401 .. RCR

option

 optionoperationSource

2411 .. RCR

→

operation

01RCnormal →

 6

change shapes. Therefore, we do not need to specify the entire range of the target cells. Only the

target position, which indicates the top-left corner of the target block, must be specified.

SOURCE
 0 1 2 3 4 . . j

0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 A B C D
1 E F G H
2
3
:
m

Figure 4. An example of normal transformation (C) 012411 .. RCRCR normal →

3.2 Transpose Transformation

A transpose transformation alters the position of a cell by interchanging the row and column indices of

the cell. A block of cells can be transformed simultaneously. During a transpose transformation, a

target position can be assigned, resulting a normal transformation at the same time. For example,

Figure 5 performs a transpose transformation for with a target position C . The

result of the transformation is the block . By using transpose transformations, vertical

presentations can be switched to horizontal ones, and vice versa.

2411 .. RCRC

3

02R

302 .. RCRC

SOURCE
 0 1 2 3 4 . . j

0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 A E
1 B F
2 C G
3 D H
:
m

Figure 5. An example of a transpose transformation (C) 022411 .. RCRCR transpose →

3.3 Fill Transformation

The fill transformation is used to alter the presentation layout in order to fit certain height and/or width

constraints. A fill transformation with row major ordering reads cells sequential form the source

block and places the cells in a row-major ordering (zigzag) into the specified target position. For

example, Figure 6 shows a fill transformation with row-major ordering and number of columns set as

 7

3. Figure 7 is another example with column-major ordering. Note that the source cells are always

processed in row major ordering. In case that a column major ordering for the source is required, a

transpose transformation should be performed first.

SOURCE
 0 1 2 3 4 . . j

0 A B C D E
1 F G H I J
2
3
4
:
i

 DESTINATION
 0 1 2 3 4 . . n

0
1 A B C
2 D E F
3 G H I
4 J
:
m

Figure 6. A fill transformation with row major ordering () 111400
3.. RCRCRC columnfill → =

SOURCE
 0 1 2 3 4 . . j

0 A B C D E
1 F G H I J
2
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 A E I
1 B F J
2 C G
3 D H
:
m

Figure 7. A fill transformation with column major ordering (C) 021400
4.. RCRCR rowfill → =

3.4 Combine Transformation

A combine transformation performs merging of cells. It can be used to merge two or more cells into

a single cell, two or more columns into a single column, two or more rows into a single row, or a block

into a cell. There are three kinds of merge options, namely column combine, row combine, and

column and row combine. Figure 8, 9, and 10 show the result of combine transformation with

different options. Note that for the column and row combine option, the cells of the first row in the

source are combined first. This is because the source cells are considered as the result of database

queries. Therefore the data cells of the same row contain information that is closely related. After

a column and row combine transformation, the result becomes a single cell.

 8

SOURCE
 0 1 2 3 4 . . j

0
1 A E
2 B F
3 C G
4 D H
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 AE
1 BF
2 CG
3 DH
4
:
m

Figure 8. An example of a column-combine transformation (C) 034211 .. RCRCR columncombine →

SOURCE
 0 1 2 3 4 . . j

0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 AE BF CG DH
1
2
3
:
m

Figure 9. An example of a row-combine transformation (C) 012411 .. RCRCR rowcombine →

SOURCE
 0 1 2 3 4 . . j

0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0
1
2
3 ABCDEFGH
:
m

Figure 10. An example of a column and row combine transformation

() 324211
,.. RCRCRC rowcolumncombine →

3.5 Matching Transformation

The matching transformation is a lot different from the other transformations described in the previous

sections. For the normal, transpose, fill, and combine transformations, the final position of a cell

depends only on the type of transformation to be performed and the target position that is assigned.

For matching transformations, the final position of a cell, however, depends also on the content of the

 9

source cells. For example, the seat of a person, shown in Figure 1, is determined by its row and

column index of the RESERVATIONS table.

To perform a matching transformation, keys must be assigned for both the source and the

destination tables. A matching operation transfers the cells of the source table with a certain key into

the position of the destination table that matches the key. Figure 11 is an example of a row matching.

In this example, the block is to be transferred from the SOURCE table to the

DESTINATION table with of the SOURCE table and of the DESTINATION table assigned as

keys (denoted as). For row 0 of the SOURCE table, the key of the cells labeled A and F is 1.

Therefore, the cells A and F are transferred to row 4 of the DESTINATION table where the keys match.

Where does the key value of the destination tables come from? They can either be assigned

manually or be transformed from the source tables.

4403 .. RCRC

1C 0C

01 :CC

SOURCE
 0 1 2 3 4 . . j

0 1 A F
1 2 B G
2 3 C H
3 4 D I
4 5 E J
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 5 E J
1 4 D I
2 3 C H
3 2 B G
4 1 A F
:
m

Figure 11. An example of using row-matching transformation () 24403
0:1.. CRCRC ccmatching →

Note that the key of the source table must be expressed in , where is the column to be

matched. The key of the destination table, on the other hand, can be either , , or both. The

reason is that, for the source tables (data obtained from databases), the data cells of the same row

constitute a record of information. Therefore, for the cells within the same row, it is natural to set

one of the cells as the key and to transfer the other cells according to the key. Hence the key of the

source table must always be a column. In case that the data cells of the source table must be

processed in a column major format, a transpose translation should be performed first.

xC x

xC yR

For the destination table, the key may either be a column or a row, which results in different

matching strategies. Therefore, the keys of a matching may either be or , which yx CC : yx RC :

 10

are called row matching and column matching respectively. It is possible to perform both column

matching and row matching simultaneously. Figure 12 gives an example. Note that, since both the

column and row indices of a target cell are determined by matching, no target position should be

specified.

SOURCE
 0 1 2 3 4 . . j

0 1 1 A
1 1 2 B
2 2 3 C
3 3 2 D
4 3 4 E
5 4 3 F
: : : :
i : : :

 DESTINATION
 0 1 2 3 4 . . n

0 1 2 3 4 . .
1 1 A B
2 2 C
3 3 D E
4 4 F
: :
m

Figure 12. An example of using column and row matching () → 0:2,0:0
*404 .. RCCCmatchingRCRC

After matching transformation, it is possible that two or more cells end up with the same target

position. These cells are combined as the previous section described.

3.6 Replace, Append, and Separator

In general, to generate a report, many transfer operations must be performed. Therefore, it is possible

that the destination table is non-empty before a transfer operation is performed. If a source cell s is

transferred to a target cell t that is non-empty, there are two possibilities to handle the situation:

replace and append. The default behavior is the replace option, which simply replace t with s. An

append option, on the other hand, replaces t with the concatenation of s and t.

DESTINATION
 0 1 2 3 . . n

0
1 A B
2 C D
3
:
m

Figure 13. A non-empty destination table

 11

SOURCE

0
0 1 2 3 . . j

E
F

 DESTINATION
 .

0
0 1 2 3 . n
 E
 A F
 C G
 H

1 1
2 G 2
3 H 3
: :

m i

Figure 14. An example of using a replace option (C) 023101 .. RCRCR normal →

SOURCE

0
0 1 2 3 . . j

E
F

 DESTINATION
 0 2 3

0
 1 . . n

 A F
 C G

1
E

1
2 G

B
2

3 H
D

3
:

H
:
m i

Figure 15. An example of using an append option (C) 023101 .. RCRCR appendnormal →

Figure 13 shows a non-empty DESTINATION table. In Figure 14, a block of cells is transferred

from the SOURCE table into the DESTINATION table shown in 13. It can be seen that the cells labeled

F and G replaces the original cells. In Figure 15, the same operation is performed with an append

option, which results concatenation of B and F, and D and G.

Sometimes, it is useful to concatenate related data in a single cell, but leave them distinguishable

for later use. For example, a report may print out a cell that contain two values with a line break to

distinguish the two values. In this paper, we propose the concept of using separators to resolve this

problem. A separator is a special tag that is inserted between two values that are concatenated. If

the separator option is enabled, a separator is inserted automatically when a concatenate operation is

performed.

Figure 16 is an example that specifies the separator option. In this figure, we use the “• ”

notation to denote a separator, which is supposedly invisible. TPL is designed to recognize the

existence of separators. In practice, users of TPL may replace the separators into meaningful

notations or control characters before the resulting table is outputted. It should be noted that the

 12

append and separator options also apply to other transfer operations, such as combine and matching.

SOURCE

0
0 1 2 3 . . j

E
F

 DESTINATION
 0 2 3

0
 1 . . n

 A B• F
 C D•G

1
E

1
2 G

2

3 H

3
:

H
:
m i

Figure 16. An example of using both append and separator options

(C) 023101
,.. RCRCR separatorappendnormal →

3.7 Cooperation of Transformation Operations

It is possible to perform two transformation operations simultaneously. However, not every pair of

operations can be used together. To avoid ambiguity, we have to define whether a certain

combination is allowed so that the semantics of the operations makes sense. Figure 17 gives whether

one operation is allowed to cooperate with another. In the Figure, a “Yes” denotes that the

cooperation of two operations is allowed. It is easy to see that only combine and matching can be

executed simultaneously. The other pair of operations does not produce meaningful results.

 normal transpose fill combine matching
normal No No No No

transpose No No No No
fill No No No No

combine No No No Yes
matching No No No Yes

Figure 17. The cooperation of transformation operations

4. The Table Presentation Language

In this paper, we propose a table presentation language (called TPL) to realize the transformation

operations described in section 3, and to support various input and output formats. TPL is

deliberately designed to be as simple as possible. As shown in Figure 18, there are only 10

instructions, which are classified as the input, transfer, and output operations. A typical TPL script

applies the input instructions to obtain information from databases, processes inputs with the transfer

operations, and then generates reports (outputs) with the output instructions.

 13

Group Instruction Usage
SetDatabase Assign database connectivity
CreateTable Create a table
Execute Execute an SQL

Input

Set Assign the content of cells
ClearTable Clean up the content of a table
Copy Perform transfer operations Transfer
ChangeSeparator Replace separator with strings
SetHTML Assign output table in HTML formats
Output Output a table Output
Print Print a string

Figure 18. TPL instruction set

TPL is designed as a scripting language. Except for tables, no declaration of identifiers is

required. The language itself is case insensitive. The following grammar diagram defines TPL.

The copy instruction, which performs transfer operations as described in Section 3, is probably the

most complicated instruction. As shown in the output instruction, currently TPL supports three

different output formats: text, CSV, and HTML. The other instructions are self-explanatory; we will

skip the explanations for each instruction.

password

SetDatabase driver ;
String
Value

source

user

=

CreateTable tableName ;
Execute SQLstatement ;tableNameInto

Set Into
Source
Range

String
Value

tableName

;

Increase RowMajor

Decrease ColumnMajor

.

-

Note : The String Value must can be converted to integer
 while using Increase or Decrease option.

ClearTable tableName ;

Copy Source
Range sourceTableName

;

Into

Target
Index targetTableName

Operation
Options

 14

C hangeSeparator
Source
R ange

String
V alue

tab leN am e ;In to

Output

(*)
n+

-

Table
Index

. m .

m, n : integer, m >= 0, n >= 0.

;

CSV

HTM L

W ithAnchor

tableName Text

paramTableName

String
Value=Separator

-

.

-

Print
String
Value

;

S e tH T M L In to

S o u rc e
R a n g e

H T M L
O p tio n

ta b leN a m e ;

H T M L
O p tio n

A lig n =
S tr in g
V a lu e

,

A n c h o r
B G C o lo r

B o r d e r
C e llP a d d in g
C e llS p a c in g

C e llT y p e
C o lS p a n

F o n tC o lo r
F o n tS iz e

F o n tS ty le
F r a m e
H e ig h t
P r e f ix

R o w S p a n
R u le s

S u m m a r y
V A lig n
W id th

P r e f ix

.

Source
Range

[C
Table
Index

]

C
Table
Index

R
Table
Index

R
Table
Index

R. .
Table
Index

C. .
Table
Index

R
Table
Index

. . R
Table
Index

@

 15

T a rg e t
In d ex

[C
T a rg e t

C o lu m n
In d ex

]R
T a rg e t

R o w
In d ex

@

(C)i

T a b le
In d ex

. .

i : C o lu m n in d e x o f S o u rc e ta b le , in te g e r, i > = 0
j : R o w in d e x o f T a rg e t tab le , in te g e r , j > = 0

T a rg e t
C o lu m n

In d ex

: R j

,

(C)i

T a b le
In d ex

. .

i : C o lu m n in d e x o f S o u rc e ta b le , in te g e r, i > = 0
j : C o lu m n in d e x o f T a rg e t ta b le , in te g e r, j > = 0

T a rg e t
R o w

In d ex

: C j

,

O p e r a tio n

O p tio n s

T r a n sp o se

F il l =C o lu m n
R o w

k

C o lu m n C o m b in e
R o w C o m b in e W ith S e p a r a to r

W ith S e p a r a to r

R e p la c e

A p p e n d

. .

. .

. .

..

k : in te g e r , k > 0 .

. 1
1

String
Value

character

" "

" "

Note : character is any ASCII character.

In addition to the ability of acquiring data from databases, TPL is capable of using parameters

from its execution environments, e.g., command line arguments and environment variables. This is

especially important for web-based applications, where a POST or a GET request stores parameters in

standard input and environment variables. Typically, these parameters are used to customize part of

the SQL queries in a TPL script so that different results can be generated with the same script. Our

TPL system offers a mechanism called parameter substitution. A “foo” within a string indicates a

request of using parameter substitution for the variable foo. That is all occurrences of “foo” is

replaced with the actual value given by the execution environment.

 16

5. The Implementation and Applications of TPL

The TPL system architecture is shown in Figure 19. We implemented a TPL interpreter (called TPLI)

to process TPL instructions. The main input of TPLI is a TPL source file, which contains TPL

instructions to obtain data sources from database servers and to perform transformation operations.

The operation of the TPLI can be described as follows.

1. TPLI reads instructions from TPL source file.

2. TPLI creates tables according to the number of Execute instructions.

TPLI then requests database servers to execute SQL and stores the results of these queries

into corresponding tables.

xSSS ,,, 21 K

3. TPLI sequentially executes the next TPL instruction of the input file to perform

transformations, creating intermediate tables () and/or output tables

(), if necessary.

yTTT ,,, 21 K

zOOO ,,, 21 K

4. Repeat step 3 until all instructions are executed.

TPL Interpreter

SQL

Data

Database

S1

S2

Sx

…
…

Text

CSV

HTML

TPL
Source File

T1

T2

Ty

…
…

O1

Oz

…
…

…
…

…
…

Results of SQL

Temporary
tables

Output tables

Transfer
operations

Assign output
formats

Figure 19. TPL system architecture

Several implementation issues were considered. We decide to implement an interpreter instead

of a compiler. Without the overhead of compilation, a large amount of time developing applications

 17

can be saved. It is also easier to use and to debug. The data of each data cell is considered type less;

strings are used as internal representations for all data cells. We use Java to implement TPLI,

because Java is platform independent and, with the aid of JDBC [4], it is easy to implement database

operations.

One of the applications of TPL is the web-based query application. By using TPL scripts,

dynamic web pages can be generated on the fly by TPLI. For example, TPLI can be used as a CGI

program. An URL of the form “http://machine.domain/cgi-bin/tpl?filename=tpl_script” indicates a

request to run the “tpl_script” script by TPLI (located at /cgi-bin/tpl).

In order to demonstrate the use of TPL for web-based applications, we have written a few

applications at “http://dbs.cc.ntut.edu.tw/~cbh/TPL.html” (note: to fit into our system, our URL format

for TPLI is slightly different from the one described above). This is a replacement to

“http://dbs.cc.ntut.edu.tw/~dbquery/netoffice/course.html,” which was written in Informix 4GL. A

screenshot of an example web page is shown in Figure 20. It can be seen that TPL can produce

results that are almost the same as those of 4GL, with much less coding efforts.

Figure 20. A web page produced by TPL scripts

6. Conclusions

We proposed the concept of using transformation operations to generate reports. We showed that, by

using combinations of a small set of transfer operations, sophisticated reports could be created.

Previous works such as [1] and [8] focus on the modeling of report generation. Our results contribute

to the data selection process of [8] and transformation language of [1].

We defined a simple and high-level scripting language TPL to support transfer operations. We

 18

have also implemented a TPL interpreter in Java. Our implementation supports both client/server

and web-based applications. The web-based support can be used as dynamic web-page generators

for database applications. In comparison with popular web-based solutions for databases such as [3],

[5], and [6], using TPL has the advantage of being simple and high-level. Although, TPL is not as

flexible, the reduction of developing time is significant. In comparison with CGI generators such as

[2], [7], and [9], TPL is not only more high-level, but also much more powerful in presentation

capability.

We have applied TPL scripts for a few online applications. Examples can be found in the

course description of “http://www.ntut.edu.tw/english/newpage6.htm.” According to our experience,

writing TPL scripts is indeed much easier and more efficient than writing dedicated programs. There

are limitations to TPL. For example, the output of TPL in text or CSV format is not ready for

printing. It must be post-processed by spreadsheet applications for printouts. We propose the

following improvements for future studies:

 A visual environment for the development of TPL scripts.

 Integrate TPL with JSP for performance acceleration.

 Make an HTML-embedded version of TPL.

 Enhance TPL to support other output formats such as XML and WML.

 Enhance TPL to support high-quality printouts directly.

7. References
1. Chan D.K.C., Database and Expert Systems Applications, Proceedings. Ninth International Workshop,

pp.925-930, 1998.

2. Hunter A., Ferguson R.I., Hedges S., SWOOP: An Application Generator for ORACLE/WWW Systems,

The fourth International World Wide Web Conference, pp.234-242, December 11-14, 1995.

3. Hypertext Preprocessor, http://www.php.net/.

4. Java JDBC, http://java.sun.com/products/jdbc.

5. Java Server Pages, http://java.sun.com/products/jsp.

6. Microsoft Active Server Pages, http://msdn.microsoft.com/asp/.

7. Microsoft Internet Database Connector,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iisref/html/psdk/asp/idcg0tgy.asp

8. Tarassenko P.F., Bukharova M.S., System for database reports generating, Science and Technology,

KORUS '01. Proceedings. The Fifth Russian-Korean International Symposium, pp.84-88 vol.1, 2001.

9. WebDBC, http://www.ndev.com/index.php.

 19

