
A Mechanism for Data Conversion between XML and Network Data Model

Jeang-Kuo Chen*
Department of Information Management

Chaoyang University of Technology
jkchen@mail.cyut.edu.tw

Ching-Jen Liu
Department of Information Management

Chaoyang University of Technology
s9214623@mail.cyut.edu.tw

Abstract-Recently, data exchange is essential in
business communication. XML is suitable for
carrying data with one-to-many relationship because
of its hierarchical structure. However, there are many
data with many-to-many relationship in the real
world. How to use XML to include such data
efficiently is very important. Many researches focus
on data conversion between XML and relational data
model. None studies this topic for network data
model. However, some enterprises and organizations
are still using databases of network data model to
save data with many-to-many relationship. In this
paper, we propose a mechanism to convert the data of
network data model to an XML document and vice
versa. A data exchange model is illustrated to
demonstrate how to implement the proposed
mechanism.

Keywords: XML, Network Data Model, Data
Conversion, Many-to-many Relationship

1. Introduction

Undoubtedly, data exchange takes an important

role in business transaction. Some mediums such as
SGML, HTML, XML, and PDF [7], [12], [13] are
used to perform data exchange. The famous and
popular medium is XML [1], [9], [11], [14], [15]
developed by W3C in 1998. An XML document is
self-contained in both structure and data. Therefore,
XML is quite good for saving data with one-to-many
relationship. However, data with many-to-many
relationship are widespread in the real world. For
example, in a university database, a course can be
enrolled by many students while a student can enroll
many courses. The relationship of data in a
hierarchical data model is usually one-to-many. Some
special data with many-to-many relationship may
need to be kept in an improved hierarchical structure.
This improved structure is so-called network data
model [10]. Enterprises or organizations that use
databases of network data model cannot exchange
data via XML documents because XML is difficult to
hold many-to-many relationship. Although [2]
proposed a model for data exchange between
hierarchical database (HDB) and XML, this model
cannot be applied directly to network data model and

XML. Many researches focus on data conversion
between XML document and relational data model
[3], [6], [8], [9]. None studies this topic for network
data model.

IBM adds the logical relationship mechanism [6]
to its famous HDB: IMS. It means that a child
segment can have a logical parent segment beside the
physical parent segment. A network data model can
be performed by a hierarchical data model associated
with the logical relationship mechanism [10].
Therefore, a hierarchical data model can be used as a
network data model to hold data with many-to-many
relationship. Now IBM’s IMS is still being used in
some organizations and enterprises. They may use
IMS as network database (NDB) to save data with
many-to-many relationship. It is necessary to develop
techniques of data exchange via XML for these
enterprises or organizations. In this paper, we
propose a mechanism to convert data with
many-to-many relationship between an XML
document and an NDB. A data exchange model is
illustrated to show how the proposed method can be
applied to data exchange, via XML, between NDBs
of two enterprises or organizations. In this model,
two modules are implemented to transform data in an
NDB into an XML document and vice versa.

2. Previous Work
2.1. XML

XML is the abbreviation of eXtensible Markup

Language [16] proposed by W3C in 1998. Derived
from SGML [4], XML rapidly becomes a popular and
standard data exchange media. Not only a markup
language, XML is also a description language for
presenting both data and structure. This characteristic
makes XML suitable for data exchange via network.
The two advantages of XML are public and
self-describing [2]. An XML document is
independent of any platform; it can be shared with
any user or system.

The basic structure of an XML document is defined
in [16], [17], [18], and [19]. A well-formed XML
document must obey the following rules. There is
only one root element. Every start tag must have a
corresponding end tag. The attribute value must be
quoted. Elements must be nested properly. The

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

583

element and attribute names are case sensitive. An
example of an XML is shown in Figure 1. There are
four elements <College>, <Department>, <Teacher>,
and <Student> in this document. The root element is
<College>. Element <Department> is the parent
element of element <Teacher>. Element <Student> is
the child element of element <Teacher>. The string
“tid” is an attribute of element <Teacher>. To
attribute “tid,” the string “tid” is the attribute name
while “T001” is the attribute value. In this XML
document, the elements constitute a hierarchical
architecture to establish a one-to-many relationship
among these elements.

2.2. Logical Relationship in IMS

IMS is a database of hierarchical data model. The
one (parent segment)-to-many (child segment)
relationship of data is implemented in the earlier
versions of IMS. In 1970, IBM enhanced the purely
hierarchical approach in IMS by adding the concept
of the logical relationship mechanism and induced
IMS/2. With this mechanism, many-to-many
relationship can be established in the data of IMS. In
the hierarchical data model, each individual entity
type is implemented as a segment [5]. The logical
relationship mechanism facilitates segments
interrelated from the same or different databases. If
two different databases are involved, they are called
physical and logical databases, respectively [6].
Three major segment types must be defined for the
logical relationship mechanism. The logical child
segment [6] is a child segment, in the logical
database, of a parent segment in the physical database.
The logical parent segment [6] is a parent segment,
in the logical database, of a child segment in the
physical database. The physical parent segment [6] is
a parent segment of a child segment and both are in
the same physical database.

IMS provides five pointers to implement the
logical relationship mechanism. The five pointers are
called hierarchical forward (HF), physical parent
(PP), logical parent (LP), logical child first (LCF),
and logical twin forward (LTF), respectively [6]. The
HF pointer is used to point to the next segment in
hierarchical sequence retrieval. The PP pointer is
used to point to a physical parent segment. The LP
pointer is used to point to a logical parent segment.
The LCF pointer is used to point to the first
occurrence of a logical child segment of a parent
segment. The LTF pointer is used to point form a
specific logical twin to the logical twin stored after it.
An example of an NDB with data of many-to-many
relationship is shown in Figure 2. Figure 2(a) shows
the logical structure of the NDB. The physical
structure of the NDB is shown in Figure 2(b). The
root segment “Department” containing two instances
has two child segments “Teacher” and “Project.” As a
bridge segment, “Participation” has “Teacher” and
“Project” as its physical and logical parents,

respectively. By the segment “Participation,” there is
a many-to-many relationship between segment
“Teacher” and “Project.” A teacher can participate in
many projects such that Eric has two projects
“internet” and “database.” Likewise, a project can be
performed by many teachers such that project
“database” has two participators Eric and Tom.

3. Data Exchange Model

A data exchange model is illustrated to demonstrate
how an enterprise (or organization) can exchange
data with another enterprise (or organization). A
many-to-many relationship exits in the exchanged
data. The architecture of the data exchange model is
shown in Figure 3. In the model, the extracted data of
an NDB in the source unit is converted into an XML
document by the NtoX module. Then, the XML
document is transmitted to the destination unit via
network. The XtoN module next converts the XML
document into the original data and saves the
recovered data to the NDB in the destination unit.
The modules NtoX and XtoN are described as
follows.

3.1. The NtoX module

The NtoX module is used to convert the data in an
NDB to an XML document. The segment structure of
NDB is shown in Figure 4. There are two portions,
prefix portion and data portion, in the segment
structure. The prefix portion contains level and
pointer fields. The level field is used to present the
level of a particular segment. The pointer fields are
composed of HF, PP, LP, LCF, and LTF pointers.
These pointers are used to implement the logical
relationship mechanism. The data portion saves the
real data.

A segment called n will be transformed into an
element named n. The dependent segments of
segment n will be transformed into the child elements
of element n. The name and value of each field in a
segment are transformed into the name and value of
the corresponding attribute in an element,
respectively. Duplicate elements may occur in an
XML document in order to keep the information of
many-to-many relationship of data. When the LP
pointer is not null in a segment instance i which is a
logical child in a logical relationship, the absolute
path (i.e., the string from the root to the related
segment instance) of the logical parent segment
instance pointed by the LP pointer in the segment
instance i must be saved as an additional attribute
into the element instance corresponding to the
segment instance i. When the LCF pointer is not null
in a segment instance i which is a logical parent in a
logical relationship, the absolute path of the logical
child segment instance pointed by the LCF pointer in
the segment instance i must be saved as an additional
attribute into the element instance corresponding to

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

584

the segment instance i. The algorithm for
implementing the NtoX module is listed as follows.
Algorithm NtoX(NDB_TREE N, XML_DOC X)
// Transform the data of a network database into an
XML document. //
input: N // a pointer to a network database //
output: X // an XML document //
begin

STACK S; // a stack for saving temporary data //
POINTER lt_ptr; //a pointer to a logical twin
segment instance//
if X is empty, then write the database name as the
start tag of the root element to X;
else

get the name of N as the name of an element start
tag and write to X;
get the names and values of fields in N as the
names and values of attributes of the element
corresponding to N and write to X;

endif;
//check whether N is a logical child node or not //

if LP pointer in N is not nil, then
add PP_path as an attribute name to the element
corresponding to N and get the absolute path of
N.PP as the value of attribute PP_path, then
write to X;
add LP_path as an attribute name to the element
corresponding to N and get the absolute path of
N.LP as the value of attribute LP_path, then
write to X;

if LTF pointer in N is not nil, then
add LTF_path as an attribute name to the
element corresponding to N and get the
absolute path of N.LTF as the value of
attribute LTF_path, then write to X;

endif;
endif;

//check whether N is a logical parent node or not //
if LCF pointer in N is not nil, then

add LCF_path as an attribute name to the
element corresponding to N and get the absolute
path of N.LCF as the value of attribute
LCF_path, then write to X;
assign N.LCF to lt_ptr;

while lt_ptr is not nil, do
get the name of lt_ptr as the name of an
element start tag and write to X;
get the names and values of fields in lt_ptr
as the names and values of attributes of the
element corresponding to lt_ptr and write to
X;
add PP_path as an attribute name to the
element corresponding to lt_ptr and get the
absolute path of lt_ptr.PP as the value of
attribute PP_path, then write to X;
add LP_path as an attribute name to the
element corresponding to lt_ptr and get the
absolute path of lt_ptr.LP as the value of
attribute LP_path, then write to X;
if LTF pointer in lt_ptr is not nil, then

add LTF_path as an attribute name to the
element corresponding to lt_ptr and get the
absolute path of lt_ptr.LTF as the value of
attribute LTF_path, then write to X;

endif;
assign lt_ptr.LTF to lt_ptr;

end while;
endif;
if N.HF is not nil, then

if N.level < N.HF.level, then push(N, S);
else

write the close tag of N to X;
if N.level > N.HF.level, then

for the number (N.level -N.HF.level) of
top items in the stack S, do

pop up an item i from S;
write close tag of i to X;

end for;
endif;

endif;
else

write the close tag of N to X;
for all items in the stack S, do

pop up an item i from S;
write the close tag of i to X;

end for;
write the close tag of the root element to X;
return X;

endif;
call NtoX(N.HF, X); // recursive call NtoX //

end NtoX.

3.2. The XtoN module

The XtoN module is used to transform an XML
document into an NDB. The root element of an XML
document is transformed into the database name of
an NDB. Every non-root element is transformed into
a segment, except for the duplicate elements. All
segments derived from the XML elements are stored
orderly and their names are the same as those of these
XML elements. An element and its child elements are
transformed into a parent segment and its child
segments, respectively. All child elements of the
same parent element in an XML document are stored
at the same level. Except for the special four
attributes PP_path, LP_path, LCF_path, and
LTF_path, the attributes of an XML element are
transformed into the fields of the segment derived
from the same XML element. The values of the
attributes PP_path, LP_path, and LTF_path are used
to set the pointers PP, LP, and LTF, respectively, in a
logical child segment (i.e.,“bridge” segment) of a
logical relationship. The value of attribute LCF_path
is used to set the pointer LCF in a logical parent
segment of a logical relationship. If an element
instance is a bridge instance, it occurs twice in the
XML document. One of the two bridge instances
should be ignored to avoid creating duplicate
segment instances in the NDB. The details algorithm

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

585

of the XtoN module is listed as follows.
Algorithm XtoN(XML_DOC X , NDB_TREE N)
// Transform an XML document to a network
database. //
input: X // an XML document //
output: N // a pointer to a network database //
begin

STRING data_string; //a string variable for saving
a tag//
STACK S; //a stack for saving a tag as a parent
element//
INTEGER level_count; //initial value is -1//
read total data of the root element of X and use the
start tag as the database name of N;
while X is not empty, do

read a tag from X to data_string;
if data_string is a start tag, then
push(data_string, S);

if the current element instance is a sub-element
of the element on the top of S, then

push(the current element, S);
increase the value of level_count by 1;

endif;
if the value of attribute LP_path in the current
element instance is not nil and the value of
attribute PP_path in the current element is the
same with the absolute path of the parent of
the current element, then

create a current segment instance, pointed
by the HF pointer of the previous created
segment instance, for the corresponding
current element instance;
copy all the attributes in current element
instance as corresponding fields to current
segment instance excluding the four special
attributes PP_path, LP_path, LTF_path, and
LTF_path;
assign the level number to the level field of
current segment instance by counting the
levels of the path in PP_path of current
element instance;
save the values of attributes PP_path and
LP_path to the pointers of PP and LP,
respectively, in current segment instance;

if the value of attribute LTF_path in
current element instance is not nil, then

save the value of attribute LTF_path to
the pointer LTF in current segment
instance;

endif;
else

create a current segment instance, pointed
by N or the HF pointer of the previous
created segment instance, for the
corresponding current element instance;
copy all the attributes in current element
instance as corresponding fields to current
segment instance excluding the four special
attributes PP_path, LP_path, LTF_path, and
LTF_path;

assign the value of level_count to the level
field of current segment instance excluding
the four special attributes PP_path, LP_path,
LTF_path, and LTF_path;

if the value of attribute LCF_path of
current element instance is not nil, then

save the value of LCF_path to the
LCF field of current segment instance;

endif;
endif;

else //data_string is a close tag//
pop(S); decrease the value of level_count by
1;

endif;
end while;
return N;

end XtoN.

4. A Data Exchange Scenario

A scenario is given to introduce the application of
the proposed mechanism between two schools.
Assume one school A will share its department
information to another school B. Both A and B use
the NDB to manage data and agree to exchange data
by XML. The NDB and the XML document are
shown in Figure 2(b) and Figure 5, respectively.
School A uses the NtoX module to create the XML
document of its NDB automatically. When the XML
document is transmitted to school B, the XtoN
module is used to transform the XML document into
the original NDB and the exchange work is done.
Likewise, school B can transmit its NDB data to
school A via XML.

5. Conclusion

XML is good for recording data with one-to-many
relationship. However, it is not easy for XML to hold
the information of many-to-many relationship of data.
In this paper, we propose a mechanism to solve this
problem by adding several attributes to each special
element that is derived from a logical child/parent
segment. To implement our method, we use a data
exchange model for showing how data with
many-to-many relationship can be transformed
between an NDB and an XML document. By this
model, organizations or enterprises which use NDB
can share data to each other. Besides, they also can
share data to enterprises or organizations that use
relation databases because the XML document is a
standard data medium. The proposed method not only
can convert data of NDB, but also can convert data of
object-oriented database or native XML database if
the module NtoX or XtoN is modified for converting
the data of the other data models.

References

[1] E. Bertino and E. Ferrari, “XML and data

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

586

integration,” IEEE Internet Computing, Vol. 5,
Issue: 6, pp. 75-76, 2001.

[2] J. K. Chen and M. J. Liu, "A Model for Data
Exchange between XML document and
Hierarchical Databases," proceedings of the 2002
International Computer Symposium, Dec. 18-21,
Hualien, Taiwan, ROC, Vol. 5, Session 8, E8-1,
2002

[3] J. Fong, F. Pang, and C. Bloor, “Converting
relational database into XML document,”
Proceedings of 12th International Database and
Expert Systems Applications, 2001.

[4] E. R. Harold, XML Bible, John Wiley & Sons,
2001.

[5] IBM, IMS Primer, http://www.redbooks.ibm.com
[6] IBM, IMS/ESA V5 Admin Guide: DB,

http://www-306.ibm.com/software/data/ims/v5pd
f/DFSA10C6.PDF

[7] G. Kappel, S. Rausch-Schott, S. Reich, and W.
Retschitzegger, “Hypermedia document and
workflow management based on active
object-oriented databases,” Proceedings of the
Thirtieth Hwaii International Conference,
System Sciences, Vol. 4, pp. 377-386, 1997.

[8] J. S. Kim, W. Y. Lee, and K. H. Lee, “The cost
model for XML documents in relational database
systems,” ACS/IEEE International Conference,
Computer Systems and Applications, pp.
185-187, 2001.

[9] T. Kudrass, “Management of XML documents
without schema in relational database systems,”
Information and Software Technology, Vol. 44,
Issue: 4, pp. 269-275, 2002.

[10] T. William Olle, The Codasyl Approach to Data
Base Management, John Wiley & Sons, 1978.

[11] J. Singh, “XML for power market data
exchange,” IEEE Power Engineering Society

Winter Meeting, Vol. 2, pp. 755-756, 2001.
[12] M. B. Spring, “Reference model for data

interchange standards,” Computer, Vol. 29, Issue:
8, pp. 87-88, 1996.

[13] R. Summers, J. J. L. Chelsom, D. R. Nurse, and
J. D. S. Kay, “Document management: an
Intranet approach,” IEEE the 18th Annual
International Conference, Engineering in
Medicine and Biology Society, Bridging
Disciplines for Biomedicine, Vol. 3, pp.
1236-1237, 1997.

[14] M. Sundaram and S. S. Y. Shim, “Infrastructure
for B2B exchanges with RosettaNet,” The third
International Workshop on Advanced Issues of
E-Commerce and Web-Based Information
Systems, pp. 110-119, 2001.

[15] S. Wegener and D. Davis, “XML TPS data
exchange,” IEEE AUTOTESTCON proceedings
of Systems Readiness Technology Conference, pp.
605-615, 2001.

[16] W3C, Extensible Markup Language (XML) 1.0
(second Edition) W3C Recommendation, 6
October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006,
2000.

[17] W3C, XML Schema Part 0: Primer W3C
Recommendation, 2 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-0-
20010502, 2001.

[18] W3C, XML Schema Part 1: Structures W3C
Recommendation, 2 May
2001,http://www.w3.org/TR/2001/REC-xmlsche
ma-1 -20010502, 2001.

[19] W3C, XML Schema Part 2: Datatypes W3C
Recommendation, 2 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502, 2001.

<College>
 <Department name=”IM”>
 <Teacher tid=”T001” name=”Eric”>
 <Student sid=”S001” name=”John”/>
 </Teacher>
 </Department>
 <Department name=”IE”>
 <Teacher tid=”T101” name=”Tom”>
 <Student sid=”S101” name=”Peter”/>
 <Student sid=”S102” name=”Tim”/>
 </Teacher>
 </Department>
</College>

Figure 1. An example of an XML.

Figure 2(b) Physical structure

tid name

T002 Tom

Teacher

pid name

P001 internet

Project

id tid

R01 T001

Participation

pid

P001

tid name

T001 Eric

Teacher

pid name

P002 database

Project

id tid

R02 T001

Participation

pid

P002 id tid

R03 T002

Participation

pid

P001

name

IM

Department HF pointer
LP pointer
PP pointer

LTF pointer
LCF pointer

id tid

R04 T002

Participation

pid

P002

name

IE

Department

Figure 2(a) Logical structure

Department

Project Teacher

Participation

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

587

level HF PP LP LCF LTF data

Figure 4. A segment structure of NDB.

 <Department name=”IM” >
 <Teacher name=”Eric” tid=”T001”>
 <Participation id=”R01” tid=”T001” pid=”P001”
 PP_path=”Department/Teacher/T001”

 LP_path=”Department/Project/P001”
 LTF_path=”Department/Teacher/Participation/R03”>

 </Participation>
<Participation id=”R02” tid=”T001” pid=”P002”

 PP_path=”Department/Teacher/T001”
 LP_path=”Department/Project/P002”
 LTF_path=”Department/Teacher/Participation/R04”>

 </Participation>
 </Teacher>
 <Project name=”internet” pid=”P001”

LCF_path=” Department/Teacher/Participte/R01” >
<Participation id=”R01” tid=”T001” pid=”P001”

 PP_path=”Department/Teacher/T001”
 LP_path=”Department/Project/P001”
 LTF_path=” Department/Teacher/Participation/R03”>

 </Participation>
<Participation id=”R03” tid=”T002” pid=”P001”

 PP_path=”Department/Teacher/T002”
 LP_path=”Department/Project/P001”>

 </Participation>
 </Project>
 </Department>

<Department name=” IE” >
 <Teacher name=”Tom” tid=”T002”>

<Participation id=”R03” tid=”T002” pid=”P001”
 PP_path=”Department/Teacher/T002”

 LP_path=”Department/Project/P001”>
 </Participation>

<Participation id=”R04” tid=”T002” pid=”P002”
 PP_path=”Department/Teacher/T002”

 LP_path=”Department/Project/P002”>
 </Participation>
 </Teacher>

<Project name=”database” pid=”P002”
LCF_path=” Department/Teacher/Participation/R02” >

<Participation id=”R02” tid=”T001” pid=”P002”
 PP_path=”Department/Teacher/T001”

 LP_path=”Department/Project/P002”
 LTF_path=”Department/Teacher/Participation/R04”>

</Participation>
<Participation id=”R04” tid=”T002” pid=”P002”

 PP_path=”Department/Teacher/T002”
 LP_path=”Department/Project/P002”>

 </Participation>
 </Project>

</Department>

Figure 5. An XML document of the scenario.

Destination unit

NDB

NtoX

XML document

NDB

XtoN

XML document

Source unit

Transmission

Figure 3. The architecture of the

data exchange model.

Prefix portion Data portion

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

588

