
Browser-Oriented Data Extraction

*I-Chen Wu, *Jui-Yuan Su, and †Loon-Been Chen
* Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan
† Department of Computer Science and Information Engineering, Tunghai University,

Taichung, Taiwan
{icwu,rysu,lbchen}@csie.nctu.edu.tw

Abstract: Traditionally, most researchers used
the URL-oriented data extraction model for data
extraction. In this model, the systems extract URLs
from pages and then use the extracted URLs to
access next pages. However, more and more pages
currently use script functions to access next pages.
Since it is hard to extract URLs from script
programs, it is inappropriate to use this model for
such pages.

For solving this problem, this paper proposed a
new data extraction model, named the browser-
oriented data extraction model. In this model, the
system built on top of browsers accesses pages by
simulating users’ operations on browsers, which can
also trigger script functions.

Besides, this paper defines a scripting language,
named the BODED (Browser-Oriented Data
Extraction Description) Language, which instructs
the system to do data extraction.

Keywords: data extraction, Internet, BODED.

1. Introduction

With the rapid development of World Wide Web
(WWW) recently, more and more information is
published in WWW. Hence, it becomes significant
for many users to collect useful information over
Internet. Usually, these users simply want to extract
some needed segments from web pages, instead of
retrieving the whole web pages. For example,
customers want to extract products’ data (e.g., names
and prices) from different web sites for price
comparison; managers need to retrieve business
news regularly for business analysis; and researchers
want to extract references of academic articles from
some archive sites. Since most of the data to be
extracted are usually regularly located inside or
among web pages, it becomes possible and helpful to
automate the process of data extraction from these
pages.

<TABLE>
 <TR>
 <TD>Databases</TD>
 <TD>Algorithms</TD>
 . . .
 </TR>
</TABLE>

Figure 1. The main category page.
<TABLE>
 <TR>
 <TD>Data Extraction
 </TD>
 <TD>Data Mining
 </TD>
 . . .
 </TR>
</TABLE>

Figure 2. The databases subcategory page located at
db.html.

<TABLE border=1 width="100%">
 <TR>
 <TD>BODED: A Data Extraction Service
 Description Language</TD>
 <TD>I-C. Wu, J.-Y. Su, L.-B. Chen </TD>
 <TD>Submitted to ICS 2004.</TD>
 </TR>
 <TR>
 <TD> Managing Web-based data - Databases
 models and transformations </TD>
 <TD> Atzeni, P., Mecca, G., Merialdo,
 P.</TD>
 <TD> IEEE Internet Computing 6(4):
 33-37 2002</TD>
 </TR>
 . . .
</TABLE>
next

Figure 3. A paper list page at de.html.

Consider an example of data extraction: a
simplified bibliography archive site including two-
level category pages. Figure 1 (below) shows the
HTML file of the main category page that links to
subcategory pages, one of which is shown in Figure
2. Subcategory pages link to a list of paper list pages,
one of which is shown in Figure 3. A paper list page
lists author names, titles, and publishers of article
references. At the end of the paper list page, a URL
links to the next paper list page for more references
in the same subcategory.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

589

Data extraction for the above example is to extract
all article references in the whole bibliography
archive. In order to extract all article references, the
data extraction system needs to traverse all the paper
list pages in the archive and then extracts the article
references from each paper list page.

Traditionally, for traversing the web pages, the
approach of most researchers [1][2][3][4][5][6] is to
extract URLs from web pages and then use these
extracted URLs to retrieve next pages via the HTTP
protocol. For example, after extracting the URLs,
say db.html from the main category page in
Figure 1, the system uses these URLs to read the
next subcategory pages, as shown in Figure 2, for
more data extraction. Such a data extraction model
is called the URL-oriented data extraction model,
since all pages are accessed via given URLs.

However, more and more current web pages
include scripting languages, such as JavaScript or
VBScript, to make the presentation of web pages
more flexible and friendly. If scripts are used, it
becomes much harder to do data extraction by using
the URL-oriented data extraction model.
<SCRIPT language=Javascript>
 function DirectToNext(name){
 window.open(name+“.html”)
 }
</SCRIPT>
<TABLE border=1 width="100%">
 . . . <!-- The same as those in Figure 3 -->
</TABLE>
next

Figure 4. A paper list page with a Javascript function.

For example, let the paper list page in Figure 3 be
rewritten with a JavaScript function, as shown in
Figure 4. The system based on the URL-oriented
data extraction model can easily access the next page
for the page in Figure 3, by extracting the URL
nextpage.html from the attribute href of the
element A. However, for the page in Figure 4, the
URL of the next page is hidden in the JavaScript
program. Since script programs are usually less
regular or harder to predict when compared with
HTML/XML structures, data inside programs are
harder to be extracted than those in the structures of
HTML/XML. Thus, traditional systems in the URL-
oriented data extraction model can rarely process the
pages with script programs.

In order to solve the above problem, this paper
presents a new data extraction model, called the
browser-oriented data extraction model. In this
model, the system accesses web pages by simply
simulating human operations, such as a click
operation on the browser. Obviously, it is easy for
the case to work in this new model, but hard or
almost impossible in the traditional URL-oriented
data extraction model.

In this paper, Section 2 presents the browser-
oriented data extraction model. Based on the model,
Section 3 defines the scripting language, named the
BODED (Browser-Oriented Data Extraction
Description) Language, which instructs the data
extraction system to do data extraction. Section 4
discusses some related issues and gives a conclusion.

2. Browser-Oriented Data Extraction

Model

In a browser-oriented data extraction model, the
system uses a set of browsers for data extraction.
First, Subsection 2.1 briefly reviews commonly used
browsers, such as Internet Explorers and Netscape.
Then, we describe the browser-oriented data
extraction model in the rest of this section.
Subsection 2.2 describes the extraction model inside
browsers, while Subsection 2.3 describes the
interaction model between browsers. The former is
called the intra-browser model, and the latter the
inter-browser model. Finally, Subsection 2.4
introduces services that control the operations of
browsers.

2.1. Browsers

Given a URL, a browser uses the HTTP protocol
to retrieve the page file in HTML located at URL,
and then display the page after retrieval. In an
HTML page, each tag is called an element and each
element has several attributes, each of which may or
may not have a value. In Figure 1, the anchor
element A is a hyperlink and its attribute href has a
URL value, indicating the location of the linked page.
When the user clicks on the element, the browser
uses the HTTP protocol to access the linked page
located at the URL.

In order to make the presentation of pages more
flexible and friendly, most commonly used browsers
support JavaScript or VBScript in an event-driven
model. When events are issued, the script functions
specified in the events will be called. Events include
mouse click (on some element), mouse down, mouse
over, content change or filling (of an element),
loading (of a page), timer, etc.

Events can be classified into external events and
internal events, in the sense of issuing sources.
External events are those issued by external users,
such as mouse click or typing texts into some text
areas. If users directly type URLs to trigger the
system to access the corresponding page, this is
called a URL event, also an external event. Internal
events are those issued or caused by other script
programs internally. For example, the timer events
are usually issued by other script functions, and the
corresponding script functions are called after

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

590

designated times; and the content change events are
issued when the content of some element or some
attribute is changed (normally caused by other script
functions).

For simplicity, the browser in our model, in
principle, follows the above, but with some slightly
modification for data extraction as described in the
rest of this section. In the rest of this section, unless
explicitly specified, the term browser implicitly
indicates the browser in our model, not the
commonly used browsers, such as Internet Explorers
and Netscape.

2.2. Intra-Browser Model

Initially, browsers display no pages and are called
empty, or in the empty state. The current displayed
pages of browsers, if not empty, are called the active
pages of the browsers.

Inside a browser, the data extraction system in our
model uses a script or expression to locate and
extract elements inside the active pages. The well-
known examples are the Document Object Model
(DOM), and the XPath language. In this paper, we
choose the XPath language, since XPath has
advantages over the DOM as mentioned in.

Using an XPath expression, we can locate a set of
elements or extract the content of these elements. In
our model, it is very important to locate elements,
since this allows the system to issue events, such as
mouse click, on the located elements.

A problem with locating elements is: if some
elements were already located but are being changed
(e.g., relocated or simply gone) due to running some
script functions, then it will become unexpected to
issue events on these elements. In this case, these
elements are called volatile elements in this paper. A
data extraction system without volatile elements is
said to be consistent.

In our model, we will prevent elements from being
volatile, so that the data extraction system in our
model is consistent. In order to avoid the problem,
the model needs to include the following two
restrictions. One is to locate elements or issue
events on located elements when no script programs
are running. We will describe it in the rest of this
subsection. The other is to prevent from issuing
events on the browser including some located
elements that will be used later, as described in next
subsection.

In our model, after an external event is issued, the
corresponding script functions are invoked, and the
browser is called to enter the volatile state. The
external event may issue more internal events that in
turns may also invoke more internal events

repeatedly. The volatile state ends when the external
event as well as all these internal events has been
completed. Note that when one timer event was just
issued but not executed yet, the browser is still in the
volatile state. The period from entering to ending a
volatile state is called the lifetime of the external
event.

A browser is called to enter the steady state when
the volatile state ends. In the steady state, there are
no script programs to be called. This implies that the
browser changes no more page content or structure
in this state (unless more internal events are issued to
enter volatile states again). So, in our model,
operations such as extracting data, locating elements
and issuing external events must be done in the
steady state, not in the volatile state.

In our model, the lifetime of an external event
must be finite, that is, the script programs triggered
by the event ends eventually. Unfortunately, there
are several ways to let the programs not end
eventually. For example, the timer function is issued
every one second, or an infinite loop is hidden in a
script program. Since it is proved that there are no
ways to detect whether programs will end eventually,
our data extraction model works only for those
external events with finite lifetimes.

2.3. Inter-Browser Model

In our model, it is assumed that the data extraction
system includes an infinite number of browsers. All
the browsers are mutually independent, that is, any
two different browsers do not share the same data,
objects, or status. Initially, all the browsers are
empty (i.e., have no active pages) and available for
initiation in the following two ways. First, for an
empty browser, the system can issue a URL event on
the browser to load the web page located at the URL.

Second, for an empty browser, the system can
replicate from another designated browser to this
empty browser, when the original browser is in the
steady state. After replication, the active page and
all the associated data (including variables in a
JavaScript or VBScript) and status of the replicated
browser are the same as those of the original. Thus,
the behavior of issuing an external event to some
element node of the replicated would be the same as
that to the corresponding element node of the
original.

Browser replication is an important technique to
prevent the located elements from being volatile.
Consider the following example. For the main
category page in Figure 1, we first use an XPath
expression to locate those links to the subcategory
pages and then issue mouse click events on these
located links to access the subcategory pages,

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

591

respectively. Accessing multiple pages from a
browser is called multi-way navigation in this paper.

Now, suppose to use one browser only for the
above multi-way navigation. Then, we will use the
following steps, as also shown in Figure 5 (below).

1. Locate the elements linking to subcategory pages
in the browser.

2. Issue a mouse click event on the first element
node (linking to the page at db.html).

3. Load the page, “db.html”, into the browser.

4. Process the page.

5. Go back to the main category page.

Figure 5. Data extraction on two pages with one
browser only.

If the mouse click event in Step 2 triggers a
JavaScript function which may change the content of
the main category page as shown in Figure 5, then
issuing an event in Step 2 makes the located
elements volatile, e.g., the node linking to the next
subcategory page “al.html” disappears and the
node linking to “db.html” appears in a different
place. Thus, data extraction for other subcategory
pages becomes hard to be predicted. In this case, the
system becomes inconsistent.

In order to make the system consistent for multi-
way navigation, our model forces browser
replication before each external event is issued. In
our model, the following steps, also shown in Figure
6 (below), are used to prevent the located links from
being volatile.

1. Locate the elements linking to subcategory pages
in the current browser, B1.

2. Replicate the current browser to a new browser,
B2.

3. Issue a mouse click event on the element of B2,
corresponding to the first located element of B1.

4. Load a new page into B2.

5. Process the page of B2.

Figure 6. Data extraction on two pages with browser
replication.

For browser replication as above, after Step 5, the
elements located in Step 1 are still in the original
browser B1 without any change. Thus, the system is
still consistent.

In order to make the system consistent, our model
simply forces browser replication before each
external event is issued. Thus, we obtain the
following property.

Property 1. The browser-oriented data extraction
system described above is consistent.

Since the system always does browser replication
upon issuing an external event, all the browsers have
at most three periods. The first period is in the
empty state, the second in the volatile state (due to
an external event), and the third in the steady state.

2.4. Services for Browsers

In our model, services are to process the
operations of browsers, e.g., extract data from the
active pages, locate the elements, initiate new
browsers, and issue external events on elements of
the page. When a browser is initiated, one and only
one service must be assigned to the browser.
Similarly, when the system initially initiates an
empty browser via a URL event, an initial service
also needs to be assigned to the browser.

If service S1 assigned to browser B1 initiates a
browser B2 and assigns service S2 to B2, we call S1
the parent of S2 and B1 the parent of B2. Since a
service may initiate several browsers each associated
with one service, all the services form a service tree.
Similarly, all initiated browsers form a navigation
tree. The initial browser is the root of the navigation
tree and the initial service is the root of the service
tree.

3. BODED

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

592

This section defines a script language, named
Browser-Oriented Data Extraction Description
(BODED) Language, an XML-based language. The
BODED language describes the operations in a
browser-oriented data extraction system, described
in the previous section.

A BODED script is enclosed by the element
BODED. This element contains two types of elements,
INIT and SERVICE. Each SERVICE element
specifies the operations of a class of services, named
in the attribute name. As defined in Section 2, when
a browser is initiated, a service is instantiated and
assigned to the browser to process the active page of
the browser, e.g., extract data from the associated
pages, process these data, and initiate other services.

The element INIT designates the URL of the
initial web page in the attribute url and the name of
the initial service in the attribute service. Based
on the description in Section 2, the data extraction
system initiates a browser by issuing a URL event
with the given URL and assigns to the browser the
service, named in the attribute service. In our
system, we only consider one initial web page, so
that there is only one navigation tree and the initial
browser becomes the root of the navigation tree.
<BODED>
 <INIT service="PaperList"
 url=http://boded.csie.nctu.edu.tw/de.html />
 <SERVICE name="PaperList">
 <VAR name="Title"
 xpath="//TABLE[1]/TR/TD[1]" />
 <VAR name="Author"
 xpath="//TABLE[1]/TR/TD[2]" />
 <VAR name="Publication"
 xpath="//TABLE[1]/TR/TD[3]" />
 <BODEDLET code=SavePaperList.dll />
 </SERVICE>
</BODED>

Figure 7. A BODED script to extract data from the
HTML file in Figure 3.

For the paper list page, in Figure 3 (in Section 1),
a BODED script in Figure 7 is used to extract
papers’ titles, authors, and publications of the page.
In this script, the element INIT indicates that the
BODED system initially loads a web page at the
URL http://boded.csie.nctu.edu.tw/de.html

and then uses the service, named PaperList
(specified in the attribute service), to process the
page. The service PaperList is specified in the
SERVICE element named PaperList.

Intra-Browser

This subsection describes intra-page data
extraction of BODED. In the BODED language,
XPath is used as the format of query expressions to
extract data or locate elements inside the associated
page, since XPath is a standard intra-page data
extraction language defined by W3C and supported
as packages in many systems. Inside the element

SERVICE, the attribute xpath of the elements VAR
specifies an XPath expression that locates the data.

For example, the service PaperList in Figure 7
is used to extract papers’ titles, authors, and
publications of the paper list page in Figure 3. The
VAR element named Title extracts papers’ titles,
according to the XPath expression
“//TABLE[1]/TR/TD[1]” specified in the
attribute xpath, and then sets the extracted data into
a variable named Title. More specifically, this
XPath query expression follows the XPath standard
to extract data in the page as follows: locate the first
TABLE element and then extract the first TD element
of all the TR elements. The variable Title is an
array of two TD elements locating the two papers’
titles in Figure 3. Similarly, the other two VAR
elements extract both papers’ author names and
publications into two variables named Author and
Publication, respectively.

Inter-Browser

This subsection describes inter-browser data
extraction of BODED. When accessing a new page
via a given URL, a service will initiate a browser, as
described in Section 2. Hence, the service needs to
designate the URL and the corresponding service to
serve the new browser.
<SERVICE name=AccessNext>
 <EVENT service=Next xpath=“//A[1]/@href”

type=URL />
</SERVICE>

Figure 8. The service AccessNext.

Consider the service AccessNext in Figure 8
(above), which serves the browser with the page in
Figure 3. This service contains an element EVENT,
specifying an external event. In the EVENT element,
the attribute xpath includes an XPath expression by
which the system extracts the href attribute of the
first A element, the link to the next bibliography page.
The attribute type with the value URL indicates to
issue a URL event with a URL specified in xpath.
From above, the element EVENT finds the URL link
to the next page and then issues a URL event on the
newly replicated browser.

Suppose that the reference to the next paper list
page is a JavaScript function, instead of a URL. We
simply modify the value of the attribute type to
other external events, such as ONCLICK, as shown in
Figure 9. In addition to ONCLICK and URL, there are
a set of event types, such as ONLOAD, ONCHANGE, etc.
If the result of the XPath expression is a string, the
default value of the attribute type is URL.
Otherwise, the default value is ONCLICK for the
located element.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

593

<SERVICE name="Next">
 <EVENT service=“Next” xpath=“//A[1]”
 type=“ONCLICK” />
</SERVICE>

Figure 9. The service Next with an external event.

In order to support multi-way navigation, BODED
contains the element FOREACH in services, in which
the attribute from is an XPath expression used to
locate an array of elements. Let the size of the array
be n. The FOREACH first replicates the current
browser, B, to n browsers (from the current browser),
Bi, where 1≤i≤n, as described in Section 2. In Bi, a
variable named in the attribute name of the FOREACH
is set to the ith element in the array. Besides, assign
a service Si to each browser Bi, for all 1≤i≤n. Each
service Si runs the script inside the element FOREACH,
independently. The original service continues to
process the following siblings of the element
FOREACH.

Now, consider the service, instantiated from
MainCategory, for the browser with the main
category page, as shown in Figure 10. The service
uses the element FOREACH to replicate browsers and
services for each of the links to the subcategory
pages, and then issues external events, ONCLICK, on
the link of each browser.
<SERVICE name=“MainCategory”>
<FOREACH name="Link"

from="//TABLE[1]/TR[1]/TD/A">
<EVENT service="SubCategory" xpath="/" />

 </FOREACH>
</SERVICE>

Figure 10. The MainCategory service.

Now, consider the whole bibliography web site
including two-level category pages. The main
category page, as shown in Figure 1, includes several
subcategory pages, such as databases and algorithms
shown in Figure 2, each of which includes a list of
articles, as shown in Figure 3. A BODED script of
extracting all the article data in the web site is shown
in Figure 11.
<BODED>
<INIT url="http://BODED.csie.nctu.edu.tw/bib/"

 service=“MainCategory” />
<SERVICE name=“MainCategory”>
 . . . <!-- See Figure 10 in detail -->
</SERVICE>
<SERVICE name="SubCategory">

 <FOREACH name="Link"
from="//TABLE[1]/TR[1]/TD/A">

 <EVENT service="PaperList"
 xpath="/" />
 </FOREACH>
</SERVICE>
<SERVICE name="PaperList">
. . . <!-- See Figure 7 in detail -->

</SERVICE>
</BODED>

Figure 11. A BODED script of extracting all the
article data.

4. Discussions and Conclusion

Traditionally, most researchers used the URL-
oriented data extraction model for data extraction.
In this model, their systems extract URLs from pages
and then use the extracted URLs to access next
pages for data extraction. However, more and more
pages currently use script functions to access next
pages. Since it is hard to extract URLs from script
programs, it is inappropriate to use this model for
such pages.

For solving this problem, this paper proposed a
new data extraction model, named the browser-
oriented data extraction model. In this model, the
system built on top of browsers accesses pages by
simulating users’ operations on browsers, which can
also trigger script functions.

Besides, this paper defines a scripting language,
named the BODED (Browser-Oriented Data
Extraction Description) Language, which instructs
the system to do data extraction.

Acknowledgements

The authors would like to thank the National Science
Council of the Republic of China for financially
supporting this research under contract No. NSC 91-
2213-E-009-114 and NSC 92-2213-E-009-116.

References

[1] G. Arocena and A. Mendelzon. “WebOQL:

Restructuring Documents, Databases, and the
Web”, In Proceedings of ICDE, Orlando,
Florida, 1998.

[2] R. Baumgartner, S. Flesca, G. Gottlob. “Visual
Web Information Extraction with Lixto”, In
Proceedings of the 27th International
Conference on Very Large Data Bases
(VLDB'01), 2001.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D.
Florescu, J. Robie, J. Siméon, “XQuery 1.0: An
XML Query Language”, W3C Working Draft,
W3C Consortium, July 2004.

[4] D. Konopnicki and O. Shmueli. “Information
gathering in the World-Wide Web: the W3QL
query language and the W3QS system”, ACM
Transactions on Database Systems (TODS),
Volume 23 Issue 4, Dec. 1998.

[5] P. Merrick and C. Allen. "Web Interface
Definition Language", W3C Note, W3C
Consortium, Sep. 1997.

[6] J. Robie, J. Lapp, D. Schach. “XQL: XML
Query Language”, Workshop on XML Query
Languages, Dec. 1998.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

594

