
A Conceptual Model for Business-Oriented Management of Web Services

Jyhjong Lin/Yu-Ying Hsu/Chun-Yu Hsu
Department of Information Management

Ming Chuan University
Kweishan, Taoyuan County, Taiwan 333

E-mail: jlin@mcu.edu.tw, s2750234@ss24.mcu.edu.tw, s2750040@ss24.muc.edu.tw
 Fax: 886-3-3593875

Abstract

Web services have been developed in recent years as a
fundamental technique for the new generation of
business-to-business (B2B) or enterprise application
integration (EAI) applications. As perceived, the current
development research about them is focusing on their
underlying infrastructures such as SOAP, UDDI, WSDL,
WSCL, BPEL, BPML, and among others. However, once
such technical issues get matured and more Web services
become available, the attention will naturally shift from
deploying these services to managing them. From the
perspective of business management, this means that these
services are monitored and controlled for fulfilling business
objectives. In this paper, we propose an object- oriented
modeling approach that addresses this issue by dividing
required mechanisms into three layers: business objective,
service agent, and service composition ones. With this
architecture, Web services are managed via the recognition
of a business objective, the employment of a service agent
that arranges a composition of demanded Web services for
achieving the objective, and the confirmation of
interactions/coordination among these services in achieving
the objective. For specification, an object-oriented model is
presented for each layer that describes the working detail of
that layer. To illustrate, these models are applied in the
fulfillment of a business travel plan that involves a set of
business objectives to be achieved by various Web services
offered by different providers.

Keywords: Web service, business management,
object-orientation, conceptual modeling

1 Introduction

Conceptual modeling is an important technique for
representing (part of) a complex situation in an abstract
manner with concise notations. It has been commonly used,
for example, in analyzing and specifying user requirements
of a computer-based application, as well as collecting and
representing information required for dealing with complex
technical and/or managerial issues to be resolved. In general,
conceptual modeling can be achieved by using function-,
data-, or object-oriented ways where the development of
object-oriented ones is particularly motivated by the
drawbacks and problems in the other two kinds: the
significant features and benefits of object- oriented
approaches would make the resultant models more abstract
and hence easier to be understood, maintained, and reused.

For the rapid advances of Internet technologies in recent
years, Web services have been developed as a fundamental

technique for the new generation of
business-to-business (B2B) or enterprise application
integration (EAI) applications. As perceived, the
current development research about them is focusing on
their underlying infrastructures such as XML [1,2],
SOAP [3], UDDI [4], WSDL [5], WSCL [6], BPEL [7],
BPML [8], and among others. However, once such
technical issues get matured and more Web services
become available, the attention will naturally shift from
deploying these services to managing them. From the
perspective of business management, this means that
these services are monitored and controlled for
ensuring the fulfillment of a business objective (or goal
used interchangeably in the literature [9]). In our
knowledge, this managerial issue is needed in order to
specifically deal with such a dynamic and changeable
environment on the business/Internet nowadays. As
stated above, in order to address this complex issue
with an abstract conceptual modeling mechanism, it is
not uncommon to think of the powerful object-oriented
paradigm that possesses such features as encapsulation
of an object’s specifics and interacted/coordinated
nature of its behaviors with other objects; these features
make an object-oriented approach easier to be
configured for an extensive support of addressing this
issue. To account for this, we propose in this paper
such an object-oriented method for modeling and
specification of the business management issue of Web
services.

As clarified in [10], business management of Web
services refers to what service clients really care about
that includes the recognition of a business objective and
how the objective is specified and achieved by required
Web services under a commitment mechanism (i.e.,
engaging the achievement of these objectives through
the executions of these Web services). A traditional
way to deal with these needs includes
specifying/directing the executions of these services
with such languages as BPEL [7] and WSCL [6], and
then mapping the execution effects into meaningful
metric values that are inspected for checking the
satisfaction of the business objective. As one may see,
this approach does not address on the mapping with a
holistic manner from what objective is expected to how
services collaborate to support it; instead, focus is put
by an ad hoc code that maps the execution descriptions
into business metrics.
For this limitation, the authors in [10] proposed a
systematic approach with both a metric model that
describes business expectations (i.e., objectives) and a
Service model that depicts how Web services
collaborate to achieve these expectations. Although this

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

595

approach supports well a holistic mapping between business-
level expectations and service-level collaborations, it has still
some deficiencies: (1) its service model is based on BPEL that
describes how services collaborate, e.g., being composed and
interacted with each other, in a rather statically structured
manner such that the compositions and interactions among
services cannot be easily extended/modified for reusing these
services in achieving various but related business objectives;
and (2) similarly, its metric model for describing business
objectives is specified structurally such that the possible
relationships, e.g., extensions, combinations, and associations,
among business objectives cannot be easily maintained for
reusing these objectives in dealing with different business
situations; in our view, making these relationships
maintainable would specifically benefit for keeping an
enterprise competitive by easy adjustment, e.g., extensions or
modifications, of her business objectives to respond to the
dynamic and changeable business environment nowadays. To
overcome these limitations, our approach takes advantage of
the object-oriented paradigm, together with the use of visual
notations and formal mechanisms, to specify business-level
objectives and their corresponding service-level collaborations.
It employs three layers of constructs: business objective,
service agent, and service composition ones; with this
architecture, the business management of Web services for an
enterprise is accomplished by recognizing a set of related
business objectives where each objective is engaged by a
service agent that arranges a composition of Web services
offered by various providers for achieving the objective. For
specification, an object-oriented model is presented for each
layer that describes the working detail of that layer: (1) a
business objective model that specifies the desired business
objectives and their relationships; (2) a service agent model
that presents the agents responsible for these objectives and
the compositions of Web services these agents arrange for
achieving these objectives; and (3) a service composition
model that describes the compositions and interactions among
those Web services within a composition.

With these three models, our specifications start from a
higher-level of business objective descriptions and end at a
lower-level of Web service compositions. It should be
particularly noted that our service composition model
imposes formal constructs based on Petri nets [11-13] such
that verification of objectives-compliance of the service
compositions can be conducted; we believe this formality is
very important for the purpose of business management,
since what service clients really care about is the
achievement of objectives by demanded Web services. For
illustration, the three models are applied in the fulfillment
of a business travel plan that involves a set of business
objectives to be achieved by various Web services offered
by different providers.
This paper is organized as follows. Section 2 overviews the
background and motivation of the proposed approach.
Section 3 presents the three models in the approach. Finally,
section 4 has the conclusions and future work.

2 Background and motivation

For an open environment as on the Internet, any business
objective that requires Web services offered by different
providers needs to be monitored and controlled for ensuring

its fulfillment. For the specification of this issue, some
approaches have been proposed as those stated in [10]
and the discussions about their limitations have already
been presented in the previous section. To address these
limitations, the author in [14] proposed a ‘Web Service
Componentization’ concept that describes in a
(object-oriented) class definition what a service
composition comprises and how its constituent Web
services interact with each other such that the
interactions and compositions of these services can be
easily amended via reuse and specialization for reusing
these services in achieving different business objectives.
In general, based on its object-oriented structures, this
concept provides a sound mechanism for easy
maintenance of the specification of a service
composition. Nonetheless, by using a textual
representation for specifying only the structural aspect
of the composition, it lacks a visual formalism for
specifying and verifying its dynamic aspect such as
how constituent services collaborate and how they
satisfy desired objectives; as commonly recognized,
however, such a visual formalism for behavioral
specification and verification is a critical conduit for
comprehension and reasoning about the composition.

In addition to the issue about service-level
compositions, for the purpose of business management,
the specification of business-level objectives that
provides a systematic mapping between objectives and
compositions is also needed such that what (how)
different objectives are achieved by what (how)
different services, and vice versa, can be easily
captured. Explicitly, this would help an enterprise in
keeping competitive by proposing critical objectives
and monitoring their accomplishments via demanded
Web services. As stated in the previous section, the
approach in [10] specifically addresses this issue by
employing a metric model that provides a holistic view
between objectives and services. However, from our
observation, its metric model is rather statically
structured such that the possible relationships, e.g.,
extensions, combinations, and associations, among
different objectives cannot be easily maintained in
order to reusing these objectives in dealing with
different business situations; this would still make it
difficult to adjust, e.g., extensions or modifications,
these objectives to respond to the dynamic and
changeable business environment nowadays (note that
many existing approaches that describe
business/software objectives such as those surveyed in
[9] actually suffer from the same limitations).
Our method is proposed to supplement the
abovementioned deficiencies in current approaches by
providing a visual formalism for easy specification
and maintenance of business objectives and their
corresponding service compositions. In order to deal
with the complexity of required mechanisms, it
supports the specification in a top-down fashion. As
results, a higher-level business objective model is
created first that describes desired business objectives

and their possible relationships without considering
detailed specification. That is, the detailed specification

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

596

via service agent and service composition models starts after
all related business objectives have been described in an
abstract level. We think this provides better understanding
about critical objectives before proceeding too early to
formally specify their accomplishments using some complex
notations. Finally, due to its formal semantics of the service
composition model, behavioral verification of satisfying the
desired objectives can be conducted via formal analysis of
the model [15]. Note that due to its enhanced modeling
constructs for an extensive support of the objective, agent,
and composition issues, our object-oriented model is
different from other existing ones, including the most
well-known UML [16-18]. Although these models can also
be modified/extended to support the same specification as
ours does, for space limitations, we do not address herein
how such modifications/extensions may be conducted.

3 Modeling constructs

The modeling constructs of our approach include three
models: (1) a business objective model that specifies the
desired business objectives for an enterprise and their
possible relationships; (2) a service agent model that
presents the agents responsible for these objectives and the
compositions of Web services they arrange for achieving
these objectives; and (3) a service composition model that
describes the compositions and interactions among those
Web services within a composition.

3.1 The business objective model

In the literature, many classifications for objectives have
been proposed as those discussed in [9] where a distinct is
made between soft (non-functional) ones whose
satisfaction cannot be established in a clear-cut sense and
hard (functional) ones whose satisfaction can be
established through verification techniques. Among other
types of classification, in our knowledge, this distinct is
most often referenced such that our model focuses on the
specification of business objectives with soft and hard
object types (classes). Figure 1 shows an example model
that specifies by proper object types a ‘travel plan’
objective that is extended as ‘recommended’ and
‘un-recommended’ ones: to say, a customer would enjoy a
planned travel either through a computer- recommended
process: recommending possible travel plans, evaluating
these recommended plans, booking a selected travel plan,
and finally giving suggestions after the travel, or through
a self-organized process: booking directly a preferred
travel plan and then giving suggestions after the travel.
In these two processes, however, keeping flexibility on
recommending possible travel plans and booking a travel

plant(i.e., adjusts those plans recommended and/or
booked) is an enhanced objective for making the
customer more satisfied. As shown in the figure, a
(soft or hard) objective object is specified with (1)
attributes such as objective priority and scope; (2)
extensions into more specialized sub-types or
compositions with AND/OR/XOR constituent objects
[19,20]; and (3) associations with other objective
objects [21] such as ‘sequential’ that denotes an
achievement sequence from source to destination, and
‘contribute’ that denotes the contribution of an
achievement for source toward that for destination.
Further, it is noticed that an object that is composed of
one or more constituent soft objects is specifically
classified as a soft one. This is because an objective
that is composed of one or more constituent soft
sub-objectives should be classified as a soft one due to
its satisfaction depending on those of these constituent
sub-objectives.

3.2 The service agent model

With a business objective model, the service agent
model is used to specify more detail about the desired
agents that arranges demanded Web services for
achieving those objectives specified (note that the
reader is referred to [22-24] for employing agents for
the achievement of objectives). Its description includes
the compositions of Web services these agents arrange
and how these services may participate in achieving
various objectives (i.e., a Web service may be
demanded for achieving more than one objective). The
modeling constructs of the service agent model include
four kinds of object type: soft/ hard objective, agent,
and service ones. In particular, each agent object is
specified for realizing a desired agent that arranges a
composition of Web services for achieving a soft/hard
objective; its specification includes a name, required
properties (e.g., the effective period of its
responsibility), and a set of public interface operations
that are purposed for engaging the achievement of the
objective through invoking the operations of its
constituent service objects (that is, in our means, the
execution of each interface operation would result in
those of its constituent service operations that
collaboratively produce a final result as the output of the
interface operation). In turn, each constituent service
object is specified for modeling a Web service
demanded for achieving an objective with a description
about its provider, port type exposed, and associated
operations.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

597

Figure 1: desired sub-objectives for a travel plan objective

travelPlan

priority, scope

recommendedPlan unrecommendedPlan

planRecommendation planEvaluation planFlexibility travelBooking travelEvaluation

and
and

sequential sequential sequential

contribute

contribute

soft objective object type

hard objective object type

AND/OR/XOR constituent objects

extension to sub -types

association between object types

objective name
objective property

objective name
objective property

recommendationAgent
planRecommendation

responsbile

collectInfoPortType organizePlansPortType recommendPlanPortType

Figure 2: agents responsible for achieving desired objectives

service agent
object type

Web service
object type

composition of Web service objects for achieving an objective

soft objective
object type

hard objective
object type

flexibilityAgent
planFlexibility

responsbile

adjustPlanPortType adjustBookingPortType

collectInfoProvider

collect(in: cond; out: info)

organizePlansProvider

organize(in: info; out: plans)

recommendPlanProvider

recommend(in: plans; out: plan)

adjustPlanProvider

adjust(in: cond, plan; out: plan)

adjustBookingProvider

adjust(in: cond, booking; out: booking)

agent name

interface operation
agent property

port type name
provider name

operation

recommendplan(in: cond; out: plan),
adjustplan(in: cond, plan; out: plan)

adjustplan(in: cond, plan; out : plan),
adjustbooking (in: cond, booking ; out : booking)

effective period

As shown in Figure 2, two agents are identified that are
responsible for achieving respectively the two
‘planRecommendation’ and ‘planFlexibility’ sub-
objectives under the ‘travel plan’ one identified in Figure
1. Specifically, the ‘recommendation’ agent object is
specified with an ‘effective-period’ property and two
interface operations, ‘recommendplan(in: cond; out:
plan)’ and ‘adjustplan(in: cond, plan; out: plan)’ for
achieving the ‘planRecommendation’ sub-objective. For
the ‘recommendplan(..)’ operation, in particular, its
‘cond’ input parameter is received at the start of its
execution that in turn invokes some operations of the four
constituent service objects; its ‘plan’ output parameter
results at the end of its execution from the executions of
those constituent operations invoked. The specification of
how those constituent operations invoked collaborate to
get the ‘plan’ output parameter produced will be
presented in the service composition model below.

3.3 The service composition model
With a service agent model, the service composition model
is finally used to present in detail how the operations of a

service agent engage the achievement of an objective by
invoking those of its constituent service objects that
collaborate through various sequences, e.g., sequential,
alternative, and exclusive. In general, its modeling
constructs are based on Petri nets [11-13] with a set of
(normal/ control) transitions and places. Normal
transitions specify the operations that are executed for
achieving desired objectives, while control transitions
impose the control flows for those executions of normal
transitions. Likewise, places are divided into two kinds:
normal places that hold entity objects for the executions
of transitions, and control places that hold control objects
for controlling the executions of transitions. Each
transition is specified with a name, a set of interaction
places that its execution accesses, and a
pre/post-condition that its execution satisfies. With this
specification, a transition is executable if and only if each
of its input places contains an object that together makes
its pre-condition true. Once executed, objects in its input
places are consumed by the transition, and objects in its
output places are produced that make its post-condition
true.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

598

organizePlansPortType.
organize

recommendPlanPortType.
recommend

r c

r c

r c

entity object produced control object produced

entity object updated control object updated

entity object consumed control object consumedbehavioral control

info

plans

plan

recommendplan_start

plan

info

plans

cond

recommendplan_end

adjustplan_start

plan

cond

adjustplan_end

condexclusiveplan

plan

plan

enablerenablea

alter-
native

plan

service operation

service
agent/compositionFigure 3: service composition for achieving desired objectives

collectInfoPortType.
collect

service composition

service composition

recommendationAgent

cond

plan

collectInfoPortType.
collect

organizePlansPortType.
organize

recommendPlanPortType.
recommend

adjustPlanPortType.
adjust

In Figure 3, a service composition model is presented that
describes in detail how the executions of the two
interface operations, ‘recommendplan(..)’ and
‘adjustplan(..)’, of the ‘recommendation’ agent object
result in those of the operations of four constituent
service objects. As shown in the figure, at the start of the
execution of the ‘recommendplan(..)’ operation, some
predefined conditions, contained in a ‘cond’ entity object,
are input and then forwarded to the ‘collect()’
constituent service operation that bases on these
conditions to collect desired travel information into a
‘info’ entity object; the information is then transmitted to
the ‘organize()’ operation for organizing adequate travel
plans into a ‘plans’ entity object; finally, the
‘recommend()’ operation evaluates these organized plans
and recommends some suitable ones in a ‘plan’ entity
object that is forwarded as the output at the end of the
execution of the ‘recommendplan(..)’ operation.
Thereafter, once some travel plans are recommended, it is
however possibly needed to adjust these plans due to
some conditions changed. Hence, the ‘adjustplan(..)’
operation is then executed in case some new conditions
in another ‘cond’ entity object are provided. In this
situation, the start of the execution results in the
execution of either the ‘collect()’ constituent service
operation for re-recommending some new travel plans or
the ‘adjust()’ operation for simply adjusting those
recommended plans. It is noticed that the two alternative
paths are controlled via the access of a ‘exclusive’
control object by these two operations; in addition, for
the two sets of resultant plans from these two paths, only
one of them is actually available, via the alternative
access of a ‘alternative’ control object by the two
behavioral control operations, ‘enabler()’ and ‘enablea()’,
as the output at the end of the execution of the
‘adjustplan(..)’ operation.
Finally, with the service composition model, one may
see that since the model is based on Petri nets, its formal

 semantics can then be applied for behavioral
verification of how the two interface operations of the
‘recommendation’ agent object engage the achievement
of the ‘planRecommendation’ sub- objective by various
collaborations of the four constituent service operations
(e.g., their input/output is consistently forwarded
to/eventually derivable from the service composition).
This can be achieved via decision procedures that
traverse the reachability graph derived from the service
composition. The reader is referred to [15] for more
detail about this issue.

4 Conclusions

Software requirements specification is a key activity in
developing a computer-based application. Motivated
by the problems in other methods, object-oriented
specification methods are developed in order to
produce software more understandable and
maintainable. The method proposed in this paper is
based on the object-oriented paradigm for formal
specification about business management of Web
services. In order to deal with the modeling complexity
for the achievement of business objectives by
demanded Web services, business objectives, service
agents, and Web services are identified and specified
in a top-down fashion. As results, a higher-level
business objective model is created first that describes
effectively desired business objectives and their
possible relationships without considering detailed
specification. That is, the detailed specification with
service agent and composition models starts after all
of related business objectives have been described in
an abstract level. We think this provides better
understanding about desired business objectives before
proceeding too early to formally specify their
achievement using some complex notations. Finally,
due to its formal semantics of the service composition

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

599

model, behavioral verification of satisfying those desired
objectives can be conducted via formal analysis of the
model.

The work for business management of Web services has
already become a new discussion. Although some
researches about it have been done, but none of them
provides a complete mechanism for supporting all about
a holistic view between objectives and Web services, a
flexible reusing of these objectives and services, and a
visual formalism for their specification. Our method
presented herein provides an effort on these issues by
using object-oriented visual models for specifying
business objectives and their possible extensions and/or
constituents, employing service agents for engaging the
achievement of these objectives, and imposing verifiable
service compositions for achieving these objectives under
the arrangement of these service agents. In our
knowledge, these models are much helpful for identifying
and specifying those important requirements about
business objectives and their achievement by demanded
Web services.

As the technical issues about Web services are getting
rapidly matured in these years, more Web services are
expected to be available in the near future and hence a
comprehensive mechanism for full supports of their
business management will certainly become much more
desirable. Thus, the development of such a mechanism is
a desired field. In our view, using object-oriented
techniques together with sound modeling constructs is a
promising approach for an effective construction of the
mechanism. In our future work, we will explore further
some other key issues that our models have not addressed
yet, including effective registration and selection of Web
services before creating a business level agreement for
Web services, and desired manipulations (e.g., create,
delegate, assign, cancel, and release) on the agreement
during its lifecycle. As stated in [25,26], these issues are
critical for keeping an agreement flexible to achieve
managerial purposes. Therefore, how to specify them by
using our models’ constructs will be carefully explored.
Meanwhile, we will construct a tool to facilitate practical
application of our models. These include a design
environment for building the abstract business objective
model and then deriving the detailed service agent and
composition models. The specification method presented
in section 4 will be integrated with the tool when
constructing the three models.

References

[1] Extensible Markup Language (XML), http://www.w3.org/
TR/xml11.
[2] C. Goldfarb and P. Prescod, The XML Handbook,
Prentice-Hall, 1998.
[3] Simple Object Access Protocol (SOAP),
http://www.w3.org/2002/ws.
[4] Universal Discovery, Description, and Integration (UDDI),
http://www.ibm.com/services/uddi/ standard.html.
[5] Web Services Description Language (WSDL),
http://www.w3.org/TR/wsdl.
[6] A. Banerji, et al., Web Services Conversion Language (WSCL)
1.0, W3C note, March 2002.

[7] T. Andrews, et al., Business Process Execution Language
for Web Services (BPEL) 1.1, May 2003.
[8] Business Process Modeling Language (BPML),
http://www.bpmi.org.
[9] A. Lamsweerde, “Goal-Oriented Requirements
Engineering: A Guided Tour,” Proc. of 5th IEEE Int’l Conf.
on Requirements Engineering, Aug. 2001, pp. 249-262.
[10] F. Casati, et al., “Business-Oriented Management of
Web Services,” CACM, vol. 46, Oct. 2003, pp. 55-60.
[11] J. Peterson, “Petri Nets,” ACM Computer Surveys, vol.
9, no. 3, Sep. 1977, pp. 223-252.
[12] J. Peterson, Petri Net Theory and The Modeling of
Systems, Prentice-Hall, 1981.
[13] E. Yiannis and L. Thomas, “Specification and Analysis
of Parallel/Distributed Software and Systems by Petri Nets
with Transition Enabling Function,” IEEE Transaction on
Software Engineering, vol. 18, March 1992, pp. 252-261.
[14] J. Yang, “Web Service Componentization,” CACM, vol.
46, no. 10, Oct. 2003, pp. 35-40.
[15] J. Lin, et al., “Object-Oriented Specification and Formal
Verification of Real-Time Systems,” Annals of Software
Engineering, 1996, vol. 2, pp. 161-198.
[16] G. Booch, et al., The Unified Modeling Language User
Guide, Addison Wesley, 1999.
[17] M. Fowler and K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, Second Edition,
Addison Wesley, 2000.
[18] J. Rumbaugh, et al., The Unified Modeling Language
Reference Manual, Addison Wesley, 1999.
[19] A. Dardenne, et al., “Goal-Directed Concept
Acquisition in Requirements Elicitation,” Proc. of 6th Int’l
Workshop on Soft. Spec. and Design, 1991, pp. 14-21.
[20] A. Dardenne, et al., “Goal-Directed Requirements
Acquisition,” Science of Computer Programming, vol. 20,
1993, pp. 3-50.
[21] R. Darimont, et al., “GRAIL/KAOS: An Environment
for Goal-Driven Requirements Engineering,” Proc. of 20th
Int’l Conference on Soft. Eng., April 1998, vol. 2, pp. 58-62.
[22] A. van Lamsweerde, et al., “Managing Conflicts in
Goal-Driven Requirements Engineering,” IEEE Trans. on
Software Engineering, Nov. 1998.
[23] A. van Lamsweerde and L. Willemet, “Inferring
Declarative Requirements Specifications from Operational
Scenarios,” IEEE Trans. on Software Engineering, Dec.
1998, pp. 1089-1114.
[24] E. Letier and A. van Lamsweerde, “Agent-Based
Tactics for Goal-Oriented Requirements Elaboration,” in
Proc. of 24th Int’l Conf. on Software Engineering, May 2002.
[25] K. Jain, et al., “Agents for Process Coherence in Virtual
Enterprises,” Communications of the ACM, vol. 42, no. 3,
March 1999, pp. 62-69.
[26] K. Jain and M. Singh, “Using Spheres of Commitment
to Support Virtual Enterprises,” in Proc. of 4th ISPE
International Conference on Concurrent Engineering:
Research and Applications (CE), International Society for
Productivity Enhancements (ISPE), Aug. 1997, pp. 469-476.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

600

