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Abstract-An enhanced authentication key 

exchange protocol was proposed to exchange 

multiple session keys between two participants at 

a time. This paper shows that this enhanced 

protocol is insecure under the known session key 

attack, the known long-term private key attack, 

and the signature forgery attack.  
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1. Introduction 

 

In order to achieve secret communication over 

an insecure channel, the messages must be 

transmitted in cipher. Therefore, two participants 

must agree on a shared session key before starting 

to transmit/receive messages. The shared session 

key is used to encrypt plaintext or decrypt 

ciphertext. The famous Diffie-Hellman key 

exchange protocol [1] is often used to establish a 

shared session key for every protocol execution. 

However, this protocol does not authenticate the 

participants engaging in exchanging their session 

keys. This gives chance to an adversary to 

impersonate one of the participants. Thus, this 

protocol is suffered from the middleman attacks.  

An enhanced protocol is proposed in [2], 

henceforth called H-protocol. To resist the attack 

of middleman, H-protocol has been furnished with 

the capability of authenticating participants. In 

addition, the participants can exchange multiple 

session keys at one execution of the H-protocol. 

Therefore, the users of H-protocol have an 

efficient way to share a set of session keys.  

However, H-protocol lacks rigorous treatment 

on security. Section 3 will present three attacks on 

the H-protocol, i.e., the known session key attack, 

the known long-term private key attack, and the 

signature forgery attack. The first two attacks 

concern information leakage when losing session 

keys and long-term private key. The third attack 

considers forging the signatures without the 

knowledge of user’s signing key. The paper show 

that H-protocol cannot withstand any of these 

attacks.  

 

2. Review of H-protocol 
 

The system authority chooses a large prime p to 

initialize the system. Let g be the generator of the 

finite field GF(p). Assume the participants Alice 

and Bob have registered at the system. Therefore, 

Alice has a long-term private key xa, long-term 

public key ya = axg mod p, and a certificate 

cert(ya). The certificate cert(ya) is a signature of a 

trust third party (TTP) on the public key ya. 

Similarly, Bob has a long-term private key xb, 

long-term public key yb = bxg mod p, and a 

certificate cert(yb). After registering on the system, 
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these two participants can exchange a set of 

authenticated Diffie-Hellman keys by executing 

the H-protocol. The following steps describe the 

details of the H-protocol. 

 

Step 1. Alice randomly selects two elements, ka1 

and ka2, from the finite field GF(p). The quantities 

ra1 = 1akg mod p, ra2 = 2akg mod p, and sa = xa 

(ra1 ⊕ ra2) + ka1 ra2 mod p-1 are computed, 

respectively. Then, the initiator Alice sends the 

message ma1 = {ra1, ra2, sa, cert(ya)} to the 

recipient Bob. 

Step 2. Upon receiving the message ma1, Bob first 

verifies the certificate cert(ya). Then he starts on 

verifying the validity of ma1 by checking asg  = 

2ar1ar
ay ⊕ 2ar

1ar  mod p. A valid verification leads 

Bob to construct a response message mb1; 

otherwise, Bob stops this instance of H-protocol.  

To form a response message, Bob picks two 

random elements, kb1 and kb2, from the finite field 

GF(p). The quantities rb1 = 1bkg mod p, rb2 = 

2bkg mod p, and sb = xb (rb1 ⊕ rb2) + kb1 rb2 mod 

p-1 are computed, respectively. Then, Bob sends 

the response message mb1 = {rb1, rb2, sb, cert(yb)} 

to Alice. While constructing a response message, 

Bob also computes a set of Diffie-Hellman keys, 

i.e., the shared session keys K1 = 1bk
1ar  mod p, K2 

= 1bk
2ar  mod p, K3 = 2bk

1ar mod p, and K4 = 2bk
2ar  

mod p.  

Step 3. Alice verifies the certificate cert(yb) when 

receiving the message mb1. In order to certify that 

mb1 is sent from Bob, Alice must check whether 

bsg = 2br1br
by ⊕ 2br

1br  mod p holds true. Alice stops 

the execution if the check is invalid; otherwise, 

Alice also computes a set of shared session keys 

K1 = 1ak
1br mod p, K2 = 2ak

1br mod p, K3 = 1ak
2br  

mod p, and K4 = 2ak
2br  mod p. 

      Therefore, Bob and Alice have agreed on a set 

of four session keys after executing the protocol 

cooperatively. If both participants have chosen n 

random elements from the finite field GF(p) 

during executing the protocol, then they will agree 

on a set of n2 session keys. In order to achieve 

perfect forward secrecy, only n2-1 session keys are 

available to participants. 

 

3. Cryptanalysis 
 

In order to investigate the security of 

H-protocol, three famous attacks are mounted to 

attack it. The details are shown in the following 

subsections. 

 

3.1 Known session key attack 

The known session key attack considers what 

are the side effects if some previous session keys 

are disclosed. No secret information of the 

participants or system must be revealed by the 

disclosure of previous session keys. In the 

followings, we show how to compute the 

long-term Diffie-Hellman key yab = bxaxg mod p if 

the session key K1 is compromised. Express sa and 

sb in (1) and (2).  

sa = xa (ra1 ⊕ ra2) + ka1 ra2 mod (p-1)        (1) 

sb = xb (rb1 ⊕ rb2) + kb1 rb2 mod (p-1)        (2) 

xa xb (ra1 ⊕ ra2) (rb1 ⊕ rb2) = (sa sb - ka1 ra2 sb - 

 kb1 rb2 sa + ka1 ra2 kb1 rb2) mod (p-1)  (3) 
)2br1br)(2ar1ar(

aby ⊕⊕ = bsasg bs2ar
1ar
− as2br

1br
− 2br2ar

1K  

mod p                (4) 

u = 1 / ((ra1 ⊕ ra2) (rb1 ⊕ rb2)) mod (p – 1)     (5) 

yab = ( bsasg bs2ar
1ar
− as2br

1br
− 2br2ar

1K )u mod p    (6) 

 

Equation (3) is obtained by multiplying (1) by 

(2). Raising both sides of (3) to the exponentials of 

the generator g, (4) is obtained. As can be seen in 

(5) and (6), given the quantity of the session key 
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K1, the long-term Diffie-Hellman key yab is 

derived, where the quantities sa, sb, ra1, ra2, rb1, and 

rb2 are obtained by listening on the public channel. 

 

3.2 Perfect forward secrecy (Known long-term 

secret key attack) 

A very desirable security property of key 

exchange protocol is the perfect forward secrecy. 

Communications are usually among insecure 

channels. The insecure channels have many 

unacceptable properties, e.g., the adversaries can 

eavesdrop on, intercept, and modify data over the 

channels. Therefore, the shared session keys are 

used to encrypt the confidential messages before 

putting them in an insecure transmission channel. 

Suppose that a secure encryption function is used. 

Then, the adversaries cannot learn any information 

about the confidential messages since they do not 

know the session keys used.  

Assume that an adversary has recorded some 

ciphertext from an insecure channel; and further, 

the exposure of participant’s long-term secret key 

lead the session keys to be revealed. Thus, the 

adversary is able to decrypt those intercepted 

ciphertext and thereby reads the confidential 

messages that were sent in the past sessions. This 

result would be undesirable. Hence, a stronger 

security property is required. This is the property 

of perfect forward secrecy. It requires that the 

session keys should be concealed even the 

participant’s long-term secret key is disclosed. 

From (4), anyone can compute the session key 

K1 if yab is available.  

From (7), the adversary listening on the public 

channel can compute the session key K1 if yab is 

available. The details are as follows. 

 

v = 1 / (ra2 rb2) mod (p–1)                        

K1 = ( )2br1br)(2ar1ar(
aby ⊕⊕ bsasg − bs2ar

1ar
as2br

1br )v  

           mod p                    (7) 

 

From (1), the adversary can compute the 

quantity ka1 if Alice’s private key xa is available. 

Thus the session keys K1 and K3 are computed. 

Similarly, From (2), the adversary can compute the 

quantity kb1 and the session keys K1 and K2 if 

Bob’s private key xb is available.  

Therefore the H-protocol does not satisfy the 

requirement of perfect forward secrecy, since the 

disclosure of either Alice’s or Bob’s long-term 

private keys xa or xb enables an adversary to 

compute the shared session key K1, K2, or K3. 

 

3.3 Signature forgeries attack 

Bob verifies the received message ma1 = {ra1, 

ra2, sa, cert(ya)} by checking asg  = 2ar1ar
ay ⊕ 2ar

1ar  

mod p. Similarly, Alice certifies the received 

message mb1 = {rb1, rb2, sb, cert(yb)} by the 

verification equation bsg = 2br1br
by ⊕ 2br

1br  mod p. 

Essentially, {ra1, ra2, sa} and {rb1, rb2, sb} are one of 

variants of ElGamal signatures [3]. The following 

steps show how to counterfeit signatures so as to 

pass the verification equation. Assume that an 

adversary wants to construct a message ma1 = {ra1, 

ra2, sa, cert(ya)}. 

 

Step 1. The certificate cert(ya) is obtained from a 

previous intercepted message. 

Step 2. Let ra1 = gv ya
u mod p, where v is chosen 

randomly from Z(p – 1) and -u = 2 mod (p – 1). 

Step 3. Substituting ra1 = gv ya
u mod p into 

verification equation (8), (9) is obtained. 

Equations (10) and (11) are obtained by 

combining the terms with the same base in (9).  

 

asg  = 2ar1ar
ay ⊕ 2ar

1ar  mod p               (8) 
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asg  = 2ar1ar
ay ⊕ 2avrg 2aur

ay  mod p         (9) 

ra1 ⊕ ra2 = -u ra2 = 2 ra2  mod (p–1)       (10) 

sa = v ra2 mod (p–1)                     (11) 

    

Step 4. Assume that the most significant bit of ra2 

is 0 such that the quantity 2 ra2 is derived by 

merely left shifting one bit on all bits of ra2 (the 

least significant bit of the result is filled by 0). 

Please note that this assumption occurs with high 

probability. Then, ra2 can be solved from (10) by 

the following equations. Let ra2[1] and ra2[|p|] 

denote the least significant bit and the most 

significant bit of ra2.  

 

ra2[1]= ra1[1], 

ra2[2]= ra1[2] ⊕ ra2[1],..., 

ra2[j]= ra1[j] ⊕ ra2[j-1],...,  

ra2[|p|]= ra1[|p|] ⊕ ra2[|p|-1]. 

If ra2[|p|] ≠ 0, redo Step 2.  

 

Therefore, without knowing Alice’s long-term 

private key the adversary has constructed a 

message ma1 = {ra1, ra2, sa, cert(ya)}, which would 

pass the verification equation asg = 2ar1ar
ay ⊕ 2ar

1ar  

mod p. Although the adversary cannot compute the 

shared session keys, this undesired result may still 

cause problem, if the shared session keys are used 

to encrypt random messages and no further key 

confirmation protocol is used.  

 

4. Conclusion 
 

It is shown that H-protocol is vulnerable to the 

known session key attack, known long-term secret 

key attack, signature forgery attack.  
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