
Preventing Information Leakage within Object-Oriented Systems Using
RBAC-Based Model

Shih-Chien Chou and Chien-Jung Wu
Department of Computer Science and Information Engineering

National Dong Hwa University, Hualien 974, Taiwan
E-Mail: scchou@mail.ndhu.edu.tw

Abstract - This paper proposes a role-based access
control (RBAC) model to prevent information
leakage within object-oriented systems. It is named
MRBAC (modified role-based access control)
because it is a modification of RBAC96.

Keywords: Information security, access control,

information flow control, prevent information
leakage

1. Introduction

Access control has been recognized as important to
prevent information leakage within a system. The
control within a system is a language-based security
model [1]. That is, an access control model should be
embedded in a language to prevent information
leakage within a program implemented by the
language. The control can be achieved through
information flow control [2-25]. We involved in the
research of controlling information flows within
object-oriented systems for years and developed an
RBAC-based models for information flow control
called MRBAC (modified RBAC), because it is a
modification of RBAC96 [26]. This paper proposes
MRBAC, which can adapt to dynamic object state
change and dynamic role change as described below.

a. Adapt to dynamic object state change. An object

state is a snapshot of objects and object
relationships at a certain time point. Therefore,
object state changes when objects or object
relationships change. We use an example to
describe the need of the adaptation. Suppose an
employee may be a manager or a worker. A
manager can read the personal information of a
worker assigned to him but cannot read that
information of other workers. Assume that
initially the worker “w1” is assigned to the
manager “m1”. With this object state, “m1” is
allowed to read the personal information of “w1”.
Suppose after a period of time, “w1” is
re-assigned to the manager “m2”. With this object
state, “m1” is no longer allowed to read the
personal information of “w1”. The example
reveals that changing object state results in
changing access rights. To adapt to dynamic

object state change, access rights should be
allowed to change dynamically.

b. Adapt to dynamic role change. In an
object-oriented system, an object or object
method plays a role. Dynamic role change refers
to changing object or method’s role during
program execution. For example, a worker “w1”
may be promoted to be a manager (i.e., the object
“w1” changes role from “worker” to “manager”).
When role changes, access rights will also be
changed. For example, access rights of “w1” will
change when he changes role from “worker” to
“manager”. To adapt to dynamic role change,
access rights should be allowed to change
dynamically.

2. Related Work

Traditional access control is achieved by access
control matrix (ACM) [27]. A subject can access an
object if the required access right appears in the
matrix. ACM allows only static access control
[28-29]. On the other hand, DACM (dynamic access
control matrix) [28] dynamically grants access rights,
which allows dynamic access right allocation.

MAC is useful in access control. An important
milestone of MAC is that proposed by
Bell&LaPadula [7]. It categorizes the security levels
of objects and subjects. Access control follows the
“no read up” and “no write down” rules [7, 23].
Bell&LaPadula’s model has been generalized into the
lattice model [8-10] (see [30] for a survey of lattice
models). In the typical lattice model proposed by
Denning [8-9], the “can flow” relationship controls
information flows and the join operator avoids Trojan
horses.

The model in [11] controls information flows in
object-oriented systems. It uses ACLs of objects to
compute ACLs of executions (which may consist of
one or more methods). A message filter is used to
filter out possibly non-secure information flows.
Since the computation of an execution’s ACL takes
information propagation into consideration, Trojan
horses are avoided. Flexibility is added to the model
by allowing exceptions during or after method
execution [12-13]. More flexibility is added using
versions [25].

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1308

 1

The purpose-oriented model [16-18] proposes
that invoking a method may be allowed for some
methods but disallowed for others, even when the
invokers belong to the same object. This
consideration is correct, because the security levels
of an object’s methods may be different [23].
Different methods can thus access information in
different security levels. The model uses object
methods to create a flow graph, from which
non-secure information flows can be identified.

The decentralized label approach [2-5] marks the
security levels of variables using labels. A label is
composed of policies, which should be
simultaneously obeyed. A policy in a label is
composed of an owner and zero or more readers that
are allowed to access the data. Both owners and
readers are principals, which may be users, group of
users, and so on. Principals are grouped into
hierarchies using the act-for relationships. Join
operation is used to avoid Trojan horses.
Declassification is allowed. Write access is
controlled [5]. The approach in [14] also applies the
label approach. Every file, device, pipe, and process
in a UNIX system is attached with a label to control
the access. Join operation is used to avoid Trojan
horses. Declassification is allowed.

Section 1 states that RBAC is useful in
information flow control because it is a super set of
DAC and MAC. Since the original design of RBAC
is not for access control within object-oriented
systems, most features mentioned in section 1 are not
offered by the general cases of RBAC. The model in
[15] applies RBAC for access control within
object-based systems. It classifies object methods
and derives a flow graph from method invocations.
From the graph, non-secure information flows can be
identified.

3. The Model

We first describe RBAC96, which is the basis of
MRBAC and then describe MRBAC in this section.

3.1 RBAC96

RBAC96 [26] is composed of a set of permissions, a
set of roles, a set of users, a set of sessions, a set of
permission to role assignment, a set of user to role
assignment, a function that maps sessions to users, a
function that maps sessions to roles, a role hierarchy,
and a set of constraints. Among the components, a
role is composed of a set of permissions. Roles are
structured using the “ ≥ ” relationship. If a
relationship “x ≥ y” exists, “x” possesses all the
permissions of “y”. A user is a human being or an
agent. Users can create sessions, during which a user
playing a role possesses the permissions of the role.
The permissions will be revoked when the session

ends or the user does not play the role. Since
permissions are not assigned to users, adjustment of
user permissions can be achieved through role
assignment.

3.2 MRBAC

A difficult job to solve by MRBAC is adapting to
dynamic object state change. We found that class
relationships [31-32] are useful in the adaptation. In
using class relationships for the adaptation, every
relationship should be associated with an access
control policy. Objects linked by a relationship
should obey the relationship’s access control policy.
When the relationship linking two or more objects
changes, the access control policy to obey by the
objects changes. This corresponds to adapting to
dynamic object state change. For example, in the
manager/worker example mentioned in section 1, we
can define two reflexive relationships for the class
“employee”, which are “assigned” and
“not_assigned”. When the worker employee “w1” is
assigned to the manager employee “m1”, they are
linked by an “assigned” relationship. In this
relationship, the access control policy allows “m1” to
read the personal information of “w1”. When “w1” is
re-assigned to another manager, the “assigned”
relationship instance between “w1” and “m1” should
be removed and a “not_assigned” relationship should
be established to link them. In this relationship, the
access control policy disallows “m1” to read the
personal information of “w1”.

MRBAC defines an instance of a class
relationship as a session. When a class relationship is
instantiated to link objects, a session is established
among the objects. With this definition, changing
object state corresponds to changing sessions. When
objects change session, the access control policy for
the objects to obey changes. This change
accomplishes the adaptation of dynamic object state
change.

As described above, every class relationship is
associated with an access control policy. The access
control policies of all class relationships in a system
constitute the access control policy of the system. In
MRBAC, information flows within a session is
allowed whereas those among sessions are prohibited.
Moreover, information flows among objects within a
session should obey the policy of the class
relationship from which the session is instantiated.

After defining sessions and their access control
policies, permissions and roles should be defined. A
permission is composed of a variable and its access
rights. The access right of a variable may be “R” (for
“read”), “W” (for “write”), or “RW” (for both “read”
and “write”). A role is a set of permissions. It is
played by an object method because methods
manipulate variables. An object is a composite role

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1309

 2

because objects consist of methods. Since roles in
MRBAC are object methods, dynamically changing a
role within an object causes other roles (i.e., methods)
in the same object to change. For example, when a
worker becomes a manager, every method in the
worker object change role. Therefore, changing role
in MRBAC corresponds to changing composite role.

In addition to the components mentioned above,
MRBAC associates two more components with each
variable to facilitate read and write access control.
They are the senders (SENDER) and data sources
(DSOURCE) of a variable. SENDER records the
methods that pass a variable as an argument.
DSOURCE records the methods from which a
variable’s data are derived. For example, suppose the
attribute “attName” is derived from the variable
“var1” and “var2”, and “var1” and “var2” are
respectively written by the methods “mdx” and
“mdy”. Then, the DSOURCE of “attName” is the set
“{mdx, mdy}” after the derivation. MRBAC is
formally defined below:

Definition 1. MBRAC = (RELATIONSHIP, SESSION,

SESSION_OBJECT_MAPPING, CONSTRAINT,
DSOURCE, SENDER), in which
a. RELATIONSHIP is a set of class relationships.

A relationship can be instantiated to create
sessions. Definition 2 defines a class
relationship.

b. SESSION is a set of sessions. Each session is
an instance of a class relationship.

c. SESSION_OBJECT_MAPPING is a set of
functions, each of which maps a session to
the objects that are within the session.

d. CONSTRAINT is the set of constraints.
e. DSOURCE is the set of data sources.
f. SENDER is the set of senders.

Definition 2. The RELATIONSHIP component in
MRBAC is the set of class relationships. A class
relationship reli is defined below:
reli = (NAME, CLASS, METHOD, VARIABLE,

PERMISSION, ROLE,
METHOD_ROLE_MAPPING,
COMPOSITE_ROLE,
DECLASSIFICATION), in which
a. NAME is the name of the relationship.
b. CLASS is the set of classes linked by the

relationship. A composite role name is
associated with a class. Instances of the
class play the composite role.

c. METHOD is the set of class methods. A
method belongs to a class.

d. VARIABLE is the set containing attributes,
method variables, and method return
values. A variable belongs to a class.

e. PERMISSION is the set of permissions in
the relationship.

f. ROLE is the set of roles in the relationship.

A role is played by a method and is
composed of a set of permissions.

g. MEDTOH_ROLE_MAPPING is a set of
functions, each of which maps a method
to a role (which means that the method
plays the role).

h. COMPOSITE_ROLE is the set of
composite roles. A composite role is
composed of roles (i.e., methods).
Composite roles are used in role change.

i. DECLASSIFICATION is a set of special
variables for declassification.

3.3 Secure information flows in MRBAC

Information flows in a system includes direct flows
and indirect flows. Indirect flows refer to accessing
information via the third one. For example, after the
method “md1” reads the information of “var1” into
“var2”, a method that read “var2” corresponds to
indirectly reading “var1” via “md1”. Both direct and
indirect flows should be secure.

In an object-oriented system, direct information
flows includes the flows among methods and those
within a method. Information flows among methods
are induced by statements that involve messages.
Other information flows are flows within a method.
In the following discussion, we use the term “method
invocation” to replace the term “message”.

When a method invocation from “obj1.md1” to
“obj2.md2” appears, “obj1” and “obj2” should be
within a session. Otherwise, the invocation is not
allowed. Suppose “obj1” and “obj2” are within a
session and “obj1.md1” passes the argument list
“(arg1, arg2, . . ., argn)” to the parameter list “(par1,
par2, . . ., parn)” of “obj2.md2”. Then, the access
rights, DSOURCE, and SENDER of every argument
in the argument list should be copied to the
corresponding parameter in the parameter list. This
copying is necessary because a parameter receiving
an argument inherits the security level of the
argument. After the copying, the invoked method is
executed and every information flow within the
method should be secure. To ensure secure
information flows within a method, the following
secure information flow conditions should be true
when the value derived from the variables “var1”,
“var2”, . . ., “varn” is assigned to the variable
“d_var” (suppose the derivation appears in the
method “mdx” playing the role “rolemdx”).

First secure information flow condition: ({{var1,

R}, {var2, R}, . . . , {varn, R}} ⊆ rolemdx) ∧
({var1, R} ∈ (∩ i rolesender_var1(i)) ∧ ({var2, R}
∈ (∩ i rolesender_var2(i)) ∧ . . . ∧ ({varn, R}
∈ (∩ i rolesender_varn(i))

Second secure information flow condition: ({d_var,
W} ∈ rolemdx) ∧ ({d_var, W} ∈ (∩ i,j

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1310

 3

roledsource_var(i,j))) ∧ ({d_var, W} ∈ (∩ i,j
rolesender_var(i,j)))

The permission “{var1,R}” means “var1” is allowed
to be read whereas “{d_var,W}” means “d_var” is
allowed to be written. The notation “rolesender_var1(i)” is
the role played by the ith method in the SENDER of
the variable “var1”. The notation “∩ i rolesender_var1(i)”
is the intersection of roles’ permissions, in which the
roles are played by the methods in the SENDER of
the variable “var1”. The notation “roledsource_var(i,j)” is
the role played by the jth method in the DSOURCE of
the ith variable that derives “d_var”. The notation
“rolesender_var(i,j)” is the role played by the jth method in
the SENDER of the ith variable that derives “d_var”.
The notation “∩ i,j roledsource_var(i,j)” is the intersection
of roles’ permissions, in which the roles are played
by the methods in the DSOURCEs of the variables
deriving “d_var”. The notation “∩ i,j rolesender_var(i,j)”
is the intersection of roles’ permissions, in which the
roles are played by the methods in the SENDERs of
the variables deriving “d_var”.

The first secure information flow condition
controls read access. It requires that the method
“mdx” should be allowed to read the variables
deriving “d_var” because “mdx” directly read the
variables. It also requires that the senders of a
variable should be allowed to read the variable
because the senders indirectly read the variable. The
second secure information flow condition controls
write access. It requires that the method “mdx” as
well as every method in the DSOURCEs and
SENDERs of the variables deriving “d_var” must
possess a permission to write “d_var”.

The two secure information flow conditions
ensure secure direct information flows. As mentioned
above, the security of indirect information flows
should also be ensured. Ensuring this security
corresponds to avoiding Trojan horses. We use the
join operation [2-5] (the symbol is “⊕ ”) to avoid
Trojan horses. If the value of the variable “var3” is
derived from the variables “var1” and “var2”, the
access rights of “var3” will be changed by the join
operation.

To explain the join operation, we let “Rvar1” and
“Rvar2” be respectively the sets of methods allowed to
read “var1” and “var2”; “Wvar1” and “Wvar2” be
respectively the sets of methods allowed to write
“var1” and “var2”; “DSOURCEvar1” and
“DSOURCEvar2” be respectively the DSOURCEs of
“var1” and “var2”; and “SENDERvar1” and
“SENDERvar2” be respectively the SENDERs of
“var1” and “var2”. When “var3” is derived from
“var1” and “var2”, then “Rvar3”, “Wvar3”,
“DSOURCEvar3”, and “SENDERvar3” will be set by
the result of “var1⊕ var2” as defined in Definition 3.
Here “Rvar1/Rvar2” and “Wvar1/Wvar2” can be extracted
from the permissions containing “var1/var2”. After

the join, the resulting “Rvar3” and “Wvar3” should be
used to change the permissions containing “var3”.

Definition 3: If “var3” is derived from “var1” and

“var2” within the method “mdx”, then
“var1 ⊕ var2” will set “Rvar3”, “Wvar3”,
“DSOURCEvar3”, and “SENDERvar3” as follows:

Rvar3 = Rvar1∩ Rvar2
Wvar3 = Wvar1∪Wvar2
DSOURCEvar3 =
DSOURCEvar1∪DSOURCEvar2∪ {mdx}
SENDERvar3 = SENDERvar1∪ SENDERvar2

The join operation trusts less or the same set of

readers, which will not lower down security level of
the derived data. The operation trusts more writers. It
is reasonable because a writer that can write a
variable should be considered a trusted data source
for the data derived from the variable. Below we
prove that the join operation avoids Trojan horses.

Lemma 1: The join operation avoids Trojan horses.

Proof: A Trojan horse results when a method “md2”

leaks the information retrieved from “md1” to
“md3” in which “md2” is allowed to read the
information of “md1” whereas “md3” is not. To
prove that Trojan horses are avoided, we let
“var1” be a variable in “md1” which can be read
by the methods in the set “Rvar1”. According to
the above assumption, “md2” is in the set “Rvar1”
but “md3” is not. We also let “var2” be a variable
in “md2” whose value is derived from “var1” and
other variables. After the derivation, “Rvar2” is
modified by the join operation.

Suppose that a Trojan horse exists among
“md1”, “md2”, and “md3”. Without loss of
generality, we assume that “md3” can read
“var2”. If this assumption is true, “md3” is
within “Rvar2”. However, according to the join
operation in Definition 3, “Rvar2” is the
intersection of “Rvar1” and other sets of methods
because “var2” is derived from “var1” and other
variables. Since “md3” is not in “Rvar1”, “md3”
is not in “Rvar2”. This contradicts the assumption.

4. Conclusions

This paper proposes a role-based information flow
control model for object-oriented systems. It is a
modification of RBAC96, which is named MRBAC
(modified RBAC). It uses secure information flow
conditions to ensure information flows security.
Moreover, it can adapt to dynamic object state
change and dynamic role change.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1311

 4

References

[1] A. Sabelfeld, and A. C. Myers, “Language-Based

Information-Flow Security. IEEE Journal on
Selected Areas in Communications”, vol. 21, no.
1, pp. 5-19, 2003

[2] A. C. Myers, “JFlow: Practical Mostly-Static
Information Flow Control”, Proc. 26’th ACM
Symp. Principles of Programming Language, pp.
228-241, 1999.

[3] A. C. Myers and B. Liskov, “A Decentralized
Model for Information Flow Control”, Proc.
17’th ACM Symp. Operating Systems Principles,
pp. 129-142, 1997.

[4] A. Myers and B. Liskov, “Complete, Safe
Information Flow with Decentralized Labels”,
Proc. 14’th IEEE Symp. Security and Privacy, pp.
186-197, 1998.

[5] A. Myers and B. Liskov, “Protecting Privacy
using the Decentralized Label Model”, ACM
Trans. Software Eng. Methodology, vol. 9, no. 4,
pp. 410-442, 2000.

[6] C. J. McCollum, J. R. Messing, and L.
Notargiacomo, “Beyond the Pale of MAC and
DAC - Defining New Forms of Access Control”,
Proc. 6’th IEEE Symp. Security and Privacy, pp.
190-200, 1990.

[7] D. E. Bell and L. J. LaPadula, “Secure Computer
Systems: Unified Exposition and Multics
Interpretation”, technique report, Mitre Corp.,
Mar. 1976.
http://csrc.nist.gov/publications/history/bell76.pd
f

[8] D. E. Denning, “A Lattice Model of Secure
Information Flow”, Comm. ACM, vol. 19, no. 5,
pp. 236-243, 1976.

[9] D. E. Denning and P. J. Denning, “Certification of
Program for Secure Information Flow”, Comm.
ACM, vol. 20, no. 7, pp. 504-513, 1977.

[10] D. F. C. Brewer, and M. J. Nash, “The Chinese
Wall Access control policy”, Proc. 5’th IEEE
Symp. Security and Privacy, pp. 206-214, 1989.

[11] P. Samarati, E. Bertino, A. Ciampichetti, and S.
Jajodia, “Information Flow Control in
Object-Oriented Systems”, IEEE Trans.
Knowledge Data Eng., vol. 9, no. 4, pp.524-538,
Jul./Aug. 1997.

[12] E. Bertino, Sabrina de Capitani di Vimercati, E.
Ferrari, and P. Samarati, “Exception-based
Information Flow Control in Object-Oriented
Systems”, ACM Trans. Information System
Security, vol. 1, no. 1, pp. 26-65, 1998.

[13] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia,
“Providing Flexibility in Information flow
control for Object-Oriented Systems”, Proc. 13’th
IEEE Symp. Security and Privacy, pp. 130-140,
1997.

[14] M. D. McIlroy and J. A. Reeds, “Multilevel

Security in the UNIX Tradition”, Software -
Practice and Experience, vol. 22, no. 8, pp.
673-694, 1992.

[15] K. Izaki, K. Tanaka, and M. Takizawa,
“Information Flow Control in Role-Based Model
for Distributed Objects”, Proc. 8’th International
Conf. Parallel and Distributed Systems, pp.
363-370, 2001.

[16] M. Yasuda, T. Tachikawa, and M. Takizawa,
“Information Flow in a Purpose-Oriented Access
Control Model”, Proc. 1997 International Conf.
Parallel and Distributed Systems, pp. 244-249,
1997.

[17] M. Yasuda, T. Tachikawa, and M. Takizawa, “A
Purpose-Oriented Access Control Model”, Proc.
12’th International Conf. Information Networking,
pp. 168-173, 1998.

[18] T. Tachikawa, M. Yasuda, and M. Takizawa, “A
Purposed-Oriented Access Control Model in
Object-Based Systems”, Trans. Information
Processing Society of Japan, vol. 38, no. 11, pp.
2362-2369, 1997.

[19] R. Graubart, “On the Need for a Third Form of
Access Control”, Proc. 12’th Nat’l Computer
Security Conf., pp. 296-303, 1989.

[20] S. Jajodia and B. Kogan, “Integrating an
Object-Oriented Data Model with Multilevel
Security”, Proc. 6’th IEEE Symp. Security and
Privacy, pp. 76-85, 1990.

[21] S. N. Foley, “A Model for Secure Information
Flow”, Proc. 5’th IEEE Symp. Security and
Privacy, pp. 248-258, 1989.

[22] S. Zdancewic, L. Zheng, N. Nystrom, and A. C.
Myers, “Untrusted Hosts and Confidentiality:
Secure Program Partitioning”, Proc. 18th ACM
Symp. Operating Systems Principles, 2001.

[23] V. Varadharajan and S. Black, “A Multilevel
Security Model for a Distributed Object-Oriented
System”, Proc. 6’th IEEE Symp. Security and
Privacy, pp. 68-78, 1990.

[24] Z. Tari and S.-W. Chan, “A Role-Based Access
Control for Intranet Security”, IEEE Internet
Computing, vol. 1, no. 5, pp. 24-34, 1997.

[25] A. Maamir and A. Fellah, “Adding Flexibility in
Information Flow Control for Object-Oriented
Systems Using Versions”, International Journal
of Software Engineering and Knowledge
Engineering, vol. 13, no. 3, 313-326, 2003.

[26] R. Sandhu, “Role Hierarchies and Constraints
for Lattice-Based Access Controls”, Proc. Fourth
European Symposium on Research in Computer
Security, pp. 65-79, 1996.

[27] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman,
“Protection in Operating Systems”,
Communications of the ACM, vol. 19, no. 8, pp.
461-471, 1976.

[28] M. S. Olivier, R. P van de Riet, and E. Gudes,
“Specifying Application-level Security in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1312

 5

Workflow Systems”, in Proceeding of the 9’th
International Workshop on Database and Expert
Systems Applications, pp 346-351, 1998.

[29] R. K. Thomas and R. S. Sandhu, “Task-Based
Authorization Controls (TBAC): A Family of
Models for Active and Enterprise-oriented
Authorization Management”, in Proceedings of
the IFIP WG11.3 Workshop on Database Security,
1997.

[30] R. S. Sandhu, “Lattice-Based Access Control
Models”, IEEE Computer, vol. 26, no. 11, pp.
9-19, Nov. 1993.

[31] G. Booch, Object-Oriented Analysis and Design
with Application, second edition, The
Benjamin/Cummings Publishing Company, 1994.

[32] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, 1991.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1313

