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Abstract- Mining streaming data brings not only unique 
opportunities but also new difficult challenges of online algorithm 
design, such as one streaming data scan, bounded memory 
requirement, fast processing time, and short response time. In this 
paper, we propose a single-pass algorithm, called DSM-MFI 
(Data Stream Mining for Maximal Frequent Itemsets), to mine the 
set of all maximal frequent itemsets (MFI) in a continuous stream 
of transactions. In single one scan of incoming streaming data, an 
in-memory summary data structure, called IPM-Forest (Item-
Prefix Maximal-itemset Forest), is developed to store all the 
frequent information about the maximal frequent itemsets of the 
data streams. In DSM-MFI, two efficient mechanisms, namely 
Transaction Item-prefix Projection (TIP) and Top-Down Maximal 
frequent itemset Finding (TDMF), is used to improve the 
performance of mining MFI in data streams. More specifically, 
TIP makes the space requirement of DSM-MFI predicable and 
reconstructs the smallest parts of IPM-Forest. In addition, TDMF 
finds all maximal frequent itemsets by a “MaxTo3” approach from 
the IPM-Forest generated so far. Based on our knowledge, DSM-
MFI is the first algorithm for online mining maximal frequent 
patterns in continuous data streams.    

Keywords: Data mining, data streams, maximal frequent itemsets, 
online algorithm, single-pass mining. 
 
1. Introduction 
Mining maximal frequent itemsets [2, 6, 7, 14, 25] is an essential 
step in many data mining tasks. The problem of mining maximal 
frequent itemsets was first proposed by Bayardo [6]. The problem 
can be defined as follows. Let I = {i1, i2, …, in} be a set of literals, 
called items. Let database DB be a set of transactions, where each 
transaction T is a set of items, such that T ⊆ I. Each transaction is 
associated with a unique transaction identifier, called TID. A set X 
⊆ I is also called an itemset. Notice that, in order to simplify the 
presentation, items within an itemset are kept in lexicographic 
order. A k-itemset is represented by (x1, x2, …, xk), where x1 < x2 
< … < xk. The support of an itemset X, denoted sup(X), is the 
number of transactions in which that itemset occurs as a subset. 
An itemset X is frequent if its support is no less than a user-
specified minimum support threshold MinSup; that is, sup(X) ≥ 
MinSup if X is a frequent itemset. We denoted FI as the set of all 
frequent itemsets. An itemset is closed if there is no superset that 
has the same support. Let FCI be the set of all frequent closed 
itemsets. A frequent itemset is called maximal if it is not a subset 

of any other frequent itemsets. We denoted MFI as the set of all 
maximal frequent itemsets. Thus we have MFI ⊆ FCI ⊆ FI. 

Recently, database and data mining communities have focused 
on a new data model, where data arrives in the form of continuous 
streams. It is often refer to data streams or streaming data. Many 
applications generate large amount of data streams in real time, 
such as sensor data generated from sensor networks, transaction 
flows in retail chains, Web click and record streams in Web 
applications, performance measurement in network monitoring 
and traffic management, call records in telecommunications, etc. 
Data stream mining differs from traditional data mining in two 
main aspects [5]: 

(1) The volume of a continuous stream over its lifetime 
could be huge and fast changing. 

(2) The queries require timely answers, and the response 
time is short. 

Hence, it is not possible to store all the data in main memory or 
even in secondary storage. This motivates the design for in-
memory summary data structure with small memory footprints 
that can support both one-time and continuous queries. In other 
words, data stream mining algorithms have to sacrifice the 
correctness of its analysis result by allowing some counting error. 
The processing model of data streams is shown in Figure 1.  

Therefore, data mining technologies have been studied for 
traditional datasets cannot be easily solved for the data stream 
domain. This is because these algorithms require multiple scans of 
data which is unrealistic for streaming data. More importantly, the 
characteristics of the data stream can change over time and the 
evolving pattern needs to be captured. As a consequence, in this 
paper, we called an algorithm stream-efficient if it satisfies the 
following performance requirements. 

First, each data record in streaming data should be examined at 
most once. Second, memory usage for mining data streams should 
be restricted finitely even though new data element are 
continuously generated from the data stream. Third, each data 
record should be processed as fast as possible. Finally, the results 
generated by the online algorithm should be instantly available 
when user requested. 

With years of research into this area, several researchers have 
been developed for mining data streams, such as frequent itemset 
mining [12, 8, 13, 20, 22], frequent closed structures [19], 
statistics [24], data clustering [3, 15, 21], decision tree 
construction and data classification [1, 10, 16, 23], change 
detection and mining [12, 11, 17], and regression analysis [9], 
mining streaming Webclicks [18], etc.  
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In this paper, we focus on the problem of mining maximal 
frequent itemsets in data streams and present a space-predicable 
and stream-efficient algorithm DSM-MFI to mine all maximal 
frequent itemsets in streaming data. Moreover, DSM-MFI has two 
main features, namely one scan of streaming data for itemsets’ 
support collection and an extended prefix tree-based compact 
pattern representation. The comprehensive experiments show that 
DSM-MFI is efficient on both sparse and dense datasets, and 
scalable to the continuous streaming data. Based on our 
knowledge, this problem has never been discussed in the literature. 

The remainder of the paper is organized as follows. Section 2 
defines the problem of mining maximal frequent itemsets in data 
streams. Section 3 introduces the stream-efficient algorithm DSM-
MFI. In Section 4, the proposed algorithm is evaluated 
experimentally, and Section 5 concludes this paper. 

Data Streams
Mining Data 
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Summary

Data Structure
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Figure 1. Processing model of data streams 
 

2. Problem statement 
Let Ψ = {i1, i2, …, im} be a set of literals, called items. Let data 
stream DS = B1, B2, …, BN, …, be an infinite sequence of blocks, 
where each block is associated with a block identifier i, and N is 
the identifier of the “latest” block BN. In this paper, the processing 
model of data stream we used is also called a landmark model. 
Each block Bi consists of a timestamp tsi, and a set of transactions; 
that is, Bi =[tsi, T1, T2, …, Tk], where k ≥ 0. A transaction T is a set 
of items, such that T ⊆ Ψ. Each transaction is associated with a 
unique transaction identifier, called TID. The current length CL of 
the data stream is |B1|+|B2|+…+|BN|. A set X ⊆ Ψ is also called an 
itemset, where items within an itemset are kept in lexicographic 
order. An itemset X with k items is denoted as (x1x2…xk), such that 
X ⊆ Ψ. The current length of data stream with respect to itemset X, 
denoted as CLX, is |Bj|+|Bj+1|+…+|BN|, where Bj is the block where 
the itemset X appears in, from the first, where N ≥ j ≥ 1. The 
support of an itemset X, denoted as sup(X), is the number of 
transactions in which that itemset occurs as a subset. An itemset X 
is frequent if sup(X) ≥ MinSup*CLX, where MinSup ∈ (0, 1) is a 
user-specified minimum support threshold. A frequent itemset is 
called a maximal frequent itemset if it is not a subset of any other 
frequent itemset. 

Given a user-specified minimum support threshold MinSup and 
a continuous stream of transactions DS, the problem of mining 
maximal frequent itemsets in data streams is to discover the set of 
all maximal frequent itemsets in one streaming data scan.  

3. The proposed algorithm 
In this section, we describe the proposed method, named DSM-
MFI (Data Stream Mining for Maximal Frequent Itemsets), for 

mining maximal frequent itemsets in data streams. Algorithm 
DSM-MFI uses two methods, namely Transaction Item-prefix 
Projection (TIP) and Top-Down Maximal frequent itemset Finding 
(TDMF), to further improve the performance of mining MFI in 
data streams. In Section 3.1, we illustrate the principles of 
algorithm DSM-MFI by mining an example data stream. 
Moreover, the space complexity of DSM-MFI is discussed in 
Section 3.2, and the guarantees of the accuracy and completeness 
of DSM-MFI are discussed in Section 3.3.  

3.1 Mining MFI over data streams by DSM-MFI 
First of all, we define the in-memory summary data structure 
IPM-Forest and describe the construction process of IPM-Forest. 
Then we use a running example to explore it.  
Definition 1 An Item-Prefix Maximal-itemset Forest (or IPM-
Forest for short) is an in-memory extended prefix-tree-based 
summary data structure defined as follows. 

1. IPM-Forest consists of a Dynamic Header Table (or DHT 
for short), and a set of item-prefix Maximal itemset trees (or 
item-prefix.M-trees for short). 

2. Each entry of the DHT consists of four fields: item-id, 
support, block-id, and head-link, where item-id registers the 
identifier of item, support records the number of transactions 
containing the item carrying the item-id, the value of block-id 
assigned to a new entry is the identifier of current block, and 
head-link points to the root node of item-id.M-tree. Notice 
that the root node of item-id.M-tree is item-id; that is, each 
entry i of DHT is an item-prefix and it is also the root node of 
i.M-tree.  

3. Each node in the item-prefix.M-tree consists of four fields: 
item-id, support, block-id, and node-link, where item-id is the 
identifier of the inserting item, support registers the number 
of transactions represented by a portion of the path reaching 
the node with item-id, the value of block-id assigned to a new 
node is the identifier of current block, and node-link links to 
the next node carrying the same item-id in the same item-
prefix.M-tree. If no such node, the node-link is null. 

4. Each item-prefix.M-tree has a specific item-prefix Dynamic 
Header Table (or item-prefix.DHT for short), and four fields 
is associated with the item-prefix.DHT, namely item-id, 
support, block-id, and head-link. The item-prefix.DHT 
operates the same as DHT except that node-link links to the 
first node carrying the item-id in the item-prefix.M-tree. 
Notice that |item-prefix.DHT|=|DHT| in worst case, where 
|DHT| denotes the total number of entries in DHT.   

The construction of IPM-Forest is described as follows. First of 
all, algorithm DSM-MFI reads a transaction T from the current 
block BN. Then, DSM-MFI projects the transaction into small 
transactions and inserts these transactions into DHT and IPM-
Forest. In details, each transaction, such as T = (x1x2…xk), in the 
current block BN is projected into the IPM-Forest by inserting k 
item-prefix transactions in it. In other words, transaction T is 
converted into k small transactions; that is, (x1x2x3…xk), 
(x2x3…xk), …, (xk-1xk), (xk). These small transactions are called 
item-prefix transactions, since the first item in each small 
transaction is an item-prefix of original transaction T. We called 
this step Transaction Item-prefix Projection (or TIP for short), and 
denoted it as TIP(T) = {x1|T, x2|T, …, xk|T}, where x1|T = 
(x1x2…xk), x2|T = (x2x3…xk), …, xk-1|T = (xk-1xk), xk|T = (xk)}, and T 
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= (x1x2…xk). DSM-MFI drops transaction T after TIP(T). Next, the 
set of items in these item-prefix transactions are inserted into the 
item-prefix.M-trees as a branch, and updates the item-prefix.DHTs 
according to the item-prefixes. If an itemset share a prefix with an 
itemset already in the tree, the new itemset will share a prefix of 
the branch representing that itemset. In addition, a support counter 
is associated with each node in the tree. The counter is updated 
when the next item-prefix transaction causes the insertion of a 
new branch. After pruning all infrequent information in item-
prefix.M-tree and item-prefix.DHT, IPM-Forest contains all 
essential information about maximal frequent itemsets of the 
current stream. Let’s us examine an example as follows.  
Example 1. Let the first block B1 of the data stream be (acdef), 
(abe), (cef), (acdf), (cef), (df), the second block B2 be (def), (bef), 
(be), and MinSup = 30%, where a, b, c, d, e, f are items in the 
stream. Hence, there are six transactions in B1, and four 
transactions in B2. Algorithm DSM-MFI mines the maximal 
frequent patterns by the following steps. Notice that each 
incoming block is processed by DSM-MFI in two steps: 
constructing IPM-Forest with respect to the incoming block, and 
pruning all infrequent information from the current IPM-Forest 
before processing next incoming block. 

Step 1 [IPM-Forest Construction]: Read first block into main 
memory for constructing the IPM-Forest.  

(a) First transaction acdef: First of all, DSM-MFI reads the first 
transaction acdef from B1, and maintains the DHT. Now, the 
content of the DHT is [a:1, c:1, d:1 e:1, f:1]. Notice that we 
omits the field of block-id, since all entries in the current 
DHT have the same value; that is, one. Then, DSM-MFI calls 
the TIP(acdef). Therefore, DSM-MFI inserts these item-
prefix transactions, acdef, cdef, def, ef and f, into [a.M-tree, 
a.DHT], [c.M-tree, c.DHT], [d.M-tree, d.DHT], [e.M-tree, 
e.DHT] and [f.M-tree, f.DHT], respectively. Hence, the result 
is shown in Figure 2. Notice that we use [x.M-tree, x.DHT] to 
represent the construction of current IPM-Forest with respect 
to item-prefix x. In the following steps, we omit the head-
links of each item-prefix.DHT in the continuous construction 
process of IPM-Forest for concise representation. 

(b) Second transaction abe: First, DSM-MFI reads the second 
transaction abe and maintains the DHT. Now, the content of 
the DHT is [a:2, c:1, d:1 e:2, f:1, b:1]. Then, DSM-MFI calls 
the TIP(abe). Hence, DSM-MFI inserts these item-prefix 
transactions abe, be and e into [a.M-tree, a.DHT], [b.M-tree, 
b.DHT] and [e.M-tree, e.DHT], respectively. Therefore, the 
result is shown in Figure 3.  

(c) Third transaction cef: DSM-MFI reads the third transaction 
cef and maintains the DHT. Now, the content of the DHT is 
[a:2, c:2, d:1 e:3, f:2, b:1]. Then, it calls the TIP(cef). 
Afterward, DSM-MFI inserts the item-prefix transactions cef, 
ef and f into [c.M-tree, c.DHT], [e.M-tree, e.DHT] and [f.M-
tree, f.DHT], respectively. The result is shown in Figure 4. 

(d) Fourth transaction acdf: First, DSM-MFI reads the fourth 
transaction acdf and maintains the DHT. Now, the content of 
the DHT is [a:3, c:3, d:2 e:3, f:3, b:1]. Next, DSM-MFI calls 
the TIP(acdf). Therefore, it inserts these item-prefix 
transactions acdf, cdf, df and f into [a.M-tree, a.DHT], [c.M-
tree, c.DHT], [d.M-tree, d.DHT] and [f.M-tree, f.DHT], 
respectively. The result is shown in Figure 5. 

(e) Fifth transaction cef: At this time, DSM-MFI reads the fifth 
transaction cef and maintains the DHT. Now, the content of 

the DHT is [a:3, c:4, d:2 e:4, f:4, b:1]. Then, DSM-MFI calls 
the TIP(cef). Thus, it inserts the item-prefix transactions cef, 
ef and f into [c.M-tree, c.DHT], [e.M-tree, e.DHT] and [f.M-
tree, f.DHT], respectively. Hence, the result is shown in 
Figure 6.  

(f) Sixth transaction df: At this time, DSM-MFI reads the sixth 
transaction df and maintains the DHT. Now, the content of 
the DHT is [a:3, c:4, d:3 e:4, f:5, b:1]. Then DSM-MFI calls 
the TIP(df). Accordingly, DSM-MFI inserts the item-prefix 
transactions df and f into [d.M-tree, d.DHT] and [f.M-tree, 
f.DHT], respectively. Consequently, the result is shown in 
Figure 7. 

Step 2 [IPM-Forest Reconstruction]: DSM-MFI algorithm 
prunes all infrequent itemsets from the item-prefix.M-trees and 
item-prefix.DHTs after processing the first block B1. At this time, 
DSM-MFI prunes the b.M-tree and b.DHT, since item b is an 
infrequent item-prefix; that is, sup(b) < MinSup*CLb. Then, DSM-
MFI reconstructs the a.M-tree and a.DHT by eliminating the 
information about item b. The result is shown in Figure 8. 
Step 3 & Step 4: Read second block B2 into main memory for 
constructing the new IPM-Forest. The construction process of 
IPM-Forest with respect to block B2 is the same as Step 1 and 
Step2. 

The result is shown in Figure 9. Notice that the block-id of 
entry b in the DHT is two. This means that entry b is created by 
DSM-MFI in second block. According the whole data stream, it is 
not correct. The block-id of entry b is 1, since it first appeared in 
the block B1. This is because of b is not a frequent item (or item-
prefix) with respect to block B1. Hence, if the block-id of an entry 
i in the DHT is not just 1, there are two probabilities as follows. 
First, it is really a new entry i, that is, it first appears in the 
streaming data seen so far. Second, it means that entry i is not a 
new entry, but it is not a frequent item with respect to the data 
stream seen so far. 
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Figure 2. IPM-Forest construction after inserting first transaction acdef 
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Figure 3. IPM-Forest construction after inserting second transaction abe 
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Figure 4. IPM-Forest construction after inserting third transaction cef 
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Figure 5. IPM-Forest construction after inserting fourth transaction acdf 
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Figure 6. IPM-Forest construction after inserting fifth transaction cef 
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Figure 7. IPM-Forest construction after inserting sixth transaction df 
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Figure 8. Current IPM-Forest after pruning any infrequent information with 

respect to infrequent item b  
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Figure 9. IPM-Forest construction after inserting the second incoming 

block B2 = {def, bef, bde, be} 

The description, as stated above, is the construction process of 
IPM-Forest with respect to two incoming blocks over a continuous 
stream. From this process, we can see that one needs exactly one 
streaming data scan. Let us, for the moment, consider the TDMF 
(Top-Down Maximal frequent itemset Finding) principle of DSM-
MFI. The principle is given below. 

First of all, given an entry i (from left to right) in the current 
DHT, DSM-MFI generates some MFI-candidates by a “MaxTo3” 
approach for minimal enumerating the combination of maximal 
frequent itemsets within the item range of iDHT. Then DSM-MFI 
checks these MFI-candidates whether they are frequent ones or 
not by traversing the i.M-tree. It also makes use of Apriori 
property [4]: if any length k pattern is not frequent in the database, 
its length (k+1) super patterns can never be frequent. The i.M-tree 
traversing principle is described as follows. First, DSM-MFI 
generates a candidate Maximal itemset, k+1-itemset, containing all 
items within the i.DHT (assume that |i.DHT| = k). Second, DSM-
MFI traverses the i.M-tree via the node-links of the frequent item 
whose support is minimal for counting this candidate. After that if 
the candidate is not a frequent itemset, DSM-MFI generates sub-
candidates with k items from this k+1-itemset, that is, (x1x2 … xk-

1xk) (x1x2 … xk-1xk+1)… (x2x3 … xkxk+1). Next, DSM-MFI executes 
the same tree traversing for itemset’s support counting, until it 
finds the frequent “3-itemsets”. Why we stop the i.M-tree 
traversing principle at 3-itemsets? It is because of that the set of 
frequent 2-itemsets is generated by only combining the item-
prefix i with the frequent items within the i.DHT.  

Example 2. Let us mine the maximal frequent itemsets in the 
IPM-Forest in Figure 9. Suppose the minimum support threshold 
MinSup is set to 30%; that is, support threshold of frequent 
itemsets from B1 to B2 is 3, i.e., (|B1|+|B2|)*MinSup, but in B2 is 
only 1.2, i.e., |B2|*MinSup. Now, we start the TDMF scheme from 
frequent item a (the leftmost entry in the DHT). At this moment, 
the maximal frequent itemset is only 1-itemset (a), since the 
support of items, such as c, d, e and f, in the a.DHT are less than 
MinSup*CLa. Now, MinSup*CLa is 3. 

Next, we start the TDMF on the frequent item c (the second 
entry in DHT). DSM-MFI generates a candidate maximal frequent 
itemset, 3-itemset (cef), and traverses the c.M-tree for counting 
itemsets’ support. At a result, the candidate (cef) is a frequent 
itemset, since its support is 3. Now, DSM-MFI stores the maximal 
frequent itemset (cef) in memory for further performance 
improvement based on Apriori property.  

Furthermore, we start on the frequent item d, and generate a 
maximal candidate (def) based on the d.DHT. By traversing the 
d.M-tree using f’s node-link, we find that the candidate (def) is not 
a frequent itemset, since its support is 2. Hence, we directly 
generate two maximal frequent 2-itemsets, (de) and (df), based on 
the d.DHT without traversing d.M-tree again. At this moment, 
four maximal frequent itemsets, (a), (cef), (de) and (df), are 
generated by TDMF of DSM-MFI. 

Moreover, on item e and f, since their maximal candidates are 
the subsets of the maximal frequent itemset cef, we don’t start the 
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TDMF process. This is because of these maximal frequent 
itemsets already found by algorithm DSM-MFI.  

Finally, we start the TDMF process on item b. DSM-MFI 
directly generates a maximal frequent itemset (be), since the 2-
itemset is not only a candidate maximal itemset but it is also a 
frequent itemset. Now, five maximal frequent itemsets, (a), (cef), 
(de), (df) and (be), are generated by DSM-MFI.  

From the mining process, as discussed above, we can see that 
the true support of itemset (be) is 4 not just 3. This is because of 
the sup(be) =1 was pruned before processing block B2. Hence, 
algorithm DSM-MFI has the following guarantee, namely 
estimated support are less than the true support of frequent 
itemsets X by at most MinSup*(CLX’ − CLX), where CLX’ is the 
actual length of data stream with respect to itemset X. For example, 
the true support of itemset (be) is 4, but the estimate support is 3. 
Therefore, the missing support with respect to itemset (be) is 1, 
which is less than MinSup*(CLbe’ − CLbe) = 3 − 1.2 = 1.8. 

3.2 Space complexity of mining MFI in data streams 
Assume that there is a DHT generated by algorithm DSM-MFI. 
Let the number of frequent items in the DHT be k. Therefore, we 
know there are at most C ⎣ ⎦

k
k 2/

 maximal frequent itemsets in the data 

stream seen so far. If we construct an IPM-Forest for all these 
maximal frequent itemsets, the tree has height ⎣k/2⎦. In the first 
level, there are C ⎣ ⎦ 12/

1
+k  nodes, in the second level, there are C ⎣ ⎦ 22/

2
+k  

nodes, in the i-th level, there are C ⎣ ⎦ ik
i
+2/  nodes, and in the last 

level, the ⎣k/2⎦ level, there are C ⎣ ⎦
k

k 2/  nodes. Thus, the total number 

of nodes is 

         C ⎣ ⎦ 12/
1
+k + C ⎣ ⎦ 22/

2
+k + C ⎣ ⎦ ik

i
+2/ +…+ C ⎣ ⎦

k
k 2/  =

⎣ ⎦
∑
=

2/

1

k

i
C ⎣ ⎦ ik

i
+2/         

□ 
The space requirement of DSM-MFI consists of three parts: the 

working space needed to create a DHT, and the storage space 
needed for the i.DHT and the set of i.M-trees, where item i is an 
entry of the DHT. In worst case, the working space for DHT 

requires k entries. For storage, there are at most ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ nodes 

of the set of i.M-trees, and (k2−k)/2 nodes for all i.DHT. Thus, the 

total space requirement of DSM-MFI is ½(k2+k)+ ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ .  

3.3 Accuracy and completeness guarantee 
In this section, we first discuss the accuracy guarantee of the 
maximal frequent itemsets generated by DSM-MFI. Then, we 
discuss the completeness of DSM-MFI.  

Let the true support of a maximal frequent itemset X be tsup(X). 
Let the estimated support of a maximal frequent itemset X 
generated by algorithm DSM-MFI be esup(X), where esup(X) is the 
support stored in the IPM-Forest. Let X.block-id is the block-id of 
itemset X stored in the current IPM-Forest. Moreover, we assume 
that the average size of each block is a constant value k for 
simplify discussion, that is, each block contains k transactions. Let 
current block-id of the incoming stream be block-id(N). Now, we 
have the following theorem of accuracy guarantee for DSM-
MFI’s outputs. 

Theorem 1 tsup(X) − esup(X) ≤ MinSup*(X.block-id −1)*k. 

Proof: We prove by induction. Base case (X.block = 1): tsup(X) = 
esup(X). Thus, tsup(X) − esup(X) ≤ MinSup*(X.block-id −1)*k. 
    Induction step: Consider an itemset (X, X.support, X.block-id) 
that get deleted for some block-id(N)> 1. This pattern was inserted 
in the IPM-Forest when block-id(N+1) was being processed. The 
pattern X whose block-id is block-id(N+1) in the DHT could 
possibly have been deleted as late as the time when esup(X) ≤ 
MinSup*(block-id(N+1) − X.block-id + 1)*k. Therefore, tsup(X) of 
X when that deletion occurred was no more than MinSup*(block-
id(N+1) − X.block-id + 1)*k. Furthermore, esup(X) is the true 
support of X since it was inserted. It follows that tsup(X) which is 
the true support of X in first block though current block, is at most 
esup(X) + MinSup*(block-id(N) −1)*k. Thus, we have tsup(X) − 
esup(X) ≤ MinSup*(X.block-id −1)*k. 

Now, we use this theorem to describe the completeness of 
DSM-MFI. Based on Theorem 1, all maximal frequent itemsets 
whose support is no less than MinSup*k are generated by DSM-
MFI. It is a superset of maximal frequent itemsets in mining 
streaming data, and it actually contains the set of all maximal 
frequent itemsets. 

4. Performance evaluation 
4.1 Simulation model 
The parameters of synthetic data generated by IBM synthetic data 
generator [4] are described as follows. 
IBM Synthetic Dataset: T10.I5.D1M and T30.I20.D1M. The 
first synthetic dataset T10.I5 has average transaction size T of 10 
items and the average size of frequent itemset I is 5-items. It is a 
sparse dataset. In the second dataset T30.I20, the average 
transaction size T and average frequent itemset size I are set to 30 
and 20, respectively. It is a dense dataset. Both synthetic datasets 
have 1,000,000 transactions. In the experiments, the synthetic data 
stream is broken into blocks with size 50K for simulating the 
continuous characteristic of streaming data, where 1K denotes 
1,000. Hence, there are total 20 blocks in these experiments. 
Moreover, the default value of user-defined minimum support 
threshold MinSup is 0.1%. 

4.2 Scalability study of DSM-MFI  
In this experiment, we examine the two primary factors, execution 
time and memory usage, for mining maximal frequent itemsets in 
a data stream environment, since both should be bounded online 
as time advances. Therefore, in Figure 10, the execution time 
grows smoothly as the dataset size increases from 2,000K to 
10,000K. The memory usage in Figure 11 for both synthetic 
datasets is stable as time progresses, indicating the scalability and 
feasibility of algorithm DSM-MFI. Notice that, the synthetic data 
stream used in Figure 11 is broken into 20 blocks with size 50K 
for simulating the continuous characteristic of data streams. 

5. Conclusions 
In this paper, we address the problem of mining maximal frequent 
itemsets in a streaming environment. A novel in-memory 
summary data structure called IPM-Forest is developed for storing 
essential information about maximal frequent itemsets of the 
stream seen so far. Moreover, we propose a single-pass algorithm 
DSM-MFI to find all maximal frequent itemsets from the IPM-
Forest generated so far. Experiments with synthetic data show that 
DSM-MFI is efficient on both sparse and dense datasets, and 
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scalable to very long data streams. Based on our knowledge, 
DSM-MFI is the first algorithm which satisfies the following 
performance issues, such as one streaming data scan, limited 
memory usage, fast processing time for each incoming transaction 
and short response time of continuous queries, for mining 
maximal frequent itemsets in a continuous stream of transactions. 
Future work includes sliding window-based mining maximal 
frequent itemsets in data streams, mining sequential patterns in 
streaming data, and constraint-based frequent pattern mining in 
data streams. 
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