
Mining Maximal Frequent Itemsets in Data Streams

Hua-Fu Li
Department of Computer Science and

Information Engineering, National
Chiao-Tung University, Hsinchu,

Taiwan 300, R.O.C.
hfli@csie.nctu.edu.tw

Suh-Yin Lee
Department of Computer Science and

Information Engineering, National
Chiao-Tung University Hsinchu,

Taiwan 300, R.O.C.
sylee@csie.nctu.edu.tw

Man-Kwan Shan
Department of Computer Science,

National Chengchi University
 Taipei, Taiwan 116, R.O.C.

mkshan@cs.nccu.edu.tw

Abstract- Mining streaming data brings not only unique
opportunities but also new difficult challenges of online algorithm
design, such as one streaming data scan, bounded memory
requirement, fast processing time, and short response time. In this
paper, we propose a single-pass algorithm, called DSM-MFI
(Data Stream Mining for Maximal Frequent Itemsets), to mine the
set of all maximal frequent itemsets (MFI) in a continuous stream
of transactions. In single one scan of incoming streaming data, an
in-memory summary data structure, called IPM-Forest (Item-
Prefix Maximal-itemset Forest), is developed to store all the
frequent information about the maximal frequent itemsets of the
data streams. In DSM-MFI, two efficient mechanisms, namely
Transaction Item-prefix Projection (TIP) and Top-Down Maximal
frequent itemset Finding (TDMF), is used to improve the
performance of mining MFI in data streams. More specifically,
TIP makes the space requirement of DSM-MFI predicable and
reconstructs the smallest parts of IPM-Forest. In addition, TDMF
finds all maximal frequent itemsets by a “MaxTo3” approach from
the IPM-Forest generated so far. Based on our knowledge, DSM-
MFI is the first algorithm for online mining maximal frequent
patterns in continuous data streams.

Keywords: Data mining, data streams, maximal frequent itemsets,
online algorithm, single-pass mining.

1. Introduction
Mining maximal frequent itemsets [2, 6, 7, 14, 25] is an essential
step in many data mining tasks. The problem of mining maximal
frequent itemsets was first proposed by Bayardo [6]. The problem
can be defined as follows. Let I = {i1, i2, …, in} be a set of literals,
called items. Let database DB be a set of transactions, where each
transaction T is a set of items, such that T ⊆ I. Each transaction is
associated with a unique transaction identifier, called TID. A set X
⊆ I is also called an itemset. Notice that, in order to simplify the
presentation, items within an itemset are kept in lexicographic
order. A k-itemset is represented by (x1, x2, …, xk), where x1 < x2
< … < xk. The support of an itemset X, denoted sup(X), is the
number of transactions in which that itemset occurs as a subset.
An itemset X is frequent if its support is no less than a user-
specified minimum support threshold MinSup; that is, sup(X) ≥
MinSup if X is a frequent itemset. We denoted FI as the set of all
frequent itemsets. An itemset is closed if there is no superset that
has the same support. Let FCI be the set of all frequent closed
itemsets. A frequent itemset is called maximal if it is not a subset

of any other frequent itemsets. We denoted MFI as the set of all
maximal frequent itemsets. Thus we have MFI ⊆ FCI ⊆ FI.

Recently, database and data mining communities have focused
on a new data model, where data arrives in the form of continuous
streams. It is often refer to data streams or streaming data. Many
applications generate large amount of data streams in real time,
such as sensor data generated from sensor networks, transaction
flows in retail chains, Web click and record streams in Web
applications, performance measurement in network monitoring
and traffic management, call records in telecommunications, etc.
Data stream mining differs from traditional data mining in two
main aspects [5]:

(1) The volume of a continuous stream over its lifetime
could be huge and fast changing.

(2) The queries require timely answers, and the response
time is short.

Hence, it is not possible to store all the data in main memory or
even in secondary storage. This motivates the design for in-
memory summary data structure with small memory footprints
that can support both one-time and continuous queries. In other
words, data stream mining algorithms have to sacrifice the
correctness of its analysis result by allowing some counting error.
The processing model of data streams is shown in Figure 1.

Therefore, data mining technologies have been studied for
traditional datasets cannot be easily solved for the data stream
domain. This is because these algorithms require multiple scans of
data which is unrealistic for streaming data. More importantly, the
characteristics of the data stream can change over time and the
evolving pattern needs to be captured. As a consequence, in this
paper, we called an algorithm stream-efficient if it satisfies the
following performance requirements.

First, each data record in streaming data should be examined at
most once. Second, memory usage for mining data streams should
be restricted finitely even though new data element are
continuously generated from the data stream. Third, each data
record should be processed as fast as possible. Finally, the results
generated by the online algorithm should be instantly available
when user requested.

With years of research into this area, several researchers have
been developed for mining data streams, such as frequent itemset
mining [12, 8, 13, 20, 22], frequent closed structures [19],
statistics [24], data clustering [3, 15, 21], decision tree
construction and data classification [1, 10, 16, 23], change
detection and mining [12, 11, 17], and regression analysis [9],
mining streaming Webclicks [18], etc.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

559

In this paper, we focus on the problem of mining maximal
frequent itemsets in data streams and present a space-predicable
and stream-efficient algorithm DSM-MFI to mine all maximal
frequent itemsets in streaming data. Moreover, DSM-MFI has two
main features, namely one scan of streaming data for itemsets’
support collection and an extended prefix tree-based compact
pattern representation. The comprehensive experiments show that
DSM-MFI is efficient on both sparse and dense datasets, and
scalable to the continuous streaming data. Based on our
knowledge, this problem has never been discussed in the literature.

The remainder of the paper is organized as follows. Section 2
defines the problem of mining maximal frequent itemsets in data
streams. Section 3 introduces the stream-efficient algorithm DSM-
MFI. In Section 4, the proposed algorithm is evaluated
experimentally, and Section 5 concludes this paper.

Data Streams
Mining Data

Streams Engine

In-Memory
Summary

Data Structure

…

User/Application

Data Streams

Continuous Queries
Approximate

Answers
(Deterministic Bound)

* Single
Streaming
Data Scan

* Bounded
Main Memory
Requirement* Massive

Sequence Arrive
at Rapid rate

Figure 1. Processing model of data streams

2. Problem statement
Let Ψ = {i1, i2, …, im} be a set of literals, called items. Let data
stream DS = B1, B2, …, BN, …, be an infinite sequence of blocks,
where each block is associated with a block identifier i, and N is
the identifier of the “latest” block BN. In this paper, the processing
model of data stream we used is also called a landmark model.
Each block Bi consists of a timestamp tsi, and a set of transactions;
that is, Bi =[tsi, T1, T2, …, Tk], where k ≥ 0. A transaction T is a set
of items, such that T ⊆ Ψ. Each transaction is associated with a
unique transaction identifier, called TID. The current length CL of
the data stream is |B1|+|B2|+…+|BN|. A set X ⊆ Ψ is also called an
itemset, where items within an itemset are kept in lexicographic
order. An itemset X with k items is denoted as (x1x2…xk), such that
X ⊆ Ψ. The current length of data stream with respect to itemset X,
denoted as CLX, is |Bj|+|Bj+1|+…+|BN|, where Bj is the block where
the itemset X appears in, from the first, where N ≥ j ≥ 1. The
support of an itemset X, denoted as sup(X), is the number of
transactions in which that itemset occurs as a subset. An itemset X
is frequent if sup(X) ≥ MinSup*CLX, where MinSup ∈ (0, 1) is a
user-specified minimum support threshold. A frequent itemset is
called a maximal frequent itemset if it is not a subset of any other
frequent itemset.

Given a user-specified minimum support threshold MinSup and
a continuous stream of transactions DS, the problem of mining
maximal frequent itemsets in data streams is to discover the set of
all maximal frequent itemsets in one streaming data scan.

3. The proposed algorithm
In this section, we describe the proposed method, named DSM-
MFI (Data Stream Mining for Maximal Frequent Itemsets), for

mining maximal frequent itemsets in data streams. Algorithm
DSM-MFI uses two methods, namely Transaction Item-prefix
Projection (TIP) and Top-Down Maximal frequent itemset Finding
(TDMF), to further improve the performance of mining MFI in
data streams. In Section 3.1, we illustrate the principles of
algorithm DSM-MFI by mining an example data stream.
Moreover, the space complexity of DSM-MFI is discussed in
Section 3.2, and the guarantees of the accuracy and completeness
of DSM-MFI are discussed in Section 3.3.

3.1 Mining MFI over data streams by DSM-MFI
First of all, we define the in-memory summary data structure
IPM-Forest and describe the construction process of IPM-Forest.
Then we use a running example to explore it.
Definition 1 An Item-Prefix Maximal-itemset Forest (or IPM-
Forest for short) is an in-memory extended prefix-tree-based
summary data structure defined as follows.

1. IPM-Forest consists of a Dynamic Header Table (or DHT
for short), and a set of item-prefix Maximal itemset trees (or
item-prefix.M-trees for short).

2. Each entry of the DHT consists of four fields: item-id,
support, block-id, and head-link, where item-id registers the
identifier of item, support records the number of transactions
containing the item carrying the item-id, the value of block-id
assigned to a new entry is the identifier of current block, and
head-link points to the root node of item-id.M-tree. Notice
that the root node of item-id.M-tree is item-id; that is, each
entry i of DHT is an item-prefix and it is also the root node of
i.M-tree.

3. Each node in the item-prefix.M-tree consists of four fields:
item-id, support, block-id, and node-link, where item-id is the
identifier of the inserting item, support registers the number
of transactions represented by a portion of the path reaching
the node with item-id, the value of block-id assigned to a new
node is the identifier of current block, and node-link links to
the next node carrying the same item-id in the same item-
prefix.M-tree. If no such node, the node-link is null.

4. Each item-prefix.M-tree has a specific item-prefix Dynamic
Header Table (or item-prefix.DHT for short), and four fields
is associated with the item-prefix.DHT, namely item-id,
support, block-id, and head-link. The item-prefix.DHT
operates the same as DHT except that node-link links to the
first node carrying the item-id in the item-prefix.M-tree.
Notice that |item-prefix.DHT|=|DHT| in worst case, where
|DHT| denotes the total number of entries in DHT.

The construction of IPM-Forest is described as follows. First of
all, algorithm DSM-MFI reads a transaction T from the current
block BN. Then, DSM-MFI projects the transaction into small
transactions and inserts these transactions into DHT and IPM-
Forest. In details, each transaction, such as T = (x1x2…xk), in the
current block BN is projected into the IPM-Forest by inserting k
item-prefix transactions in it. In other words, transaction T is
converted into k small transactions; that is, (x1x2x3…xk),
(x2x3…xk), …, (xk-1xk), (xk). These small transactions are called
item-prefix transactions, since the first item in each small
transaction is an item-prefix of original transaction T. We called
this step Transaction Item-prefix Projection (or TIP for short), and
denoted it as TIP(T) = {x1|T, x2|T, …, xk|T}, where x1|T =
(x1x2…xk), x2|T = (x2x3…xk), …, xk-1|T = (xk-1xk), xk|T = (xk)}, and T

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

560

= (x1x2…xk). DSM-MFI drops transaction T after TIP(T). Next, the
set of items in these item-prefix transactions are inserted into the
item-prefix.M-trees as a branch, and updates the item-prefix.DHTs
according to the item-prefixes. If an itemset share a prefix with an
itemset already in the tree, the new itemset will share a prefix of
the branch representing that itemset. In addition, a support counter
is associated with each node in the tree. The counter is updated
when the next item-prefix transaction causes the insertion of a
new branch. After pruning all infrequent information in item-
prefix.M-tree and item-prefix.DHT, IPM-Forest contains all
essential information about maximal frequent itemsets of the
current stream. Let’s us examine an example as follows.
Example 1. Let the first block B1 of the data stream be (acdef),
(abe), (cef), (acdf), (cef), (df), the second block B2 be (def), (bef),
(be), and MinSup = 30%, where a, b, c, d, e, f are items in the
stream. Hence, there are six transactions in B1, and four
transactions in B2. Algorithm DSM-MFI mines the maximal
frequent patterns by the following steps. Notice that each
incoming block is processed by DSM-MFI in two steps:
constructing IPM-Forest with respect to the incoming block, and
pruning all infrequent information from the current IPM-Forest
before processing next incoming block.

Step 1 [IPM-Forest Construction]: Read first block into main
memory for constructing the IPM-Forest.

(a) First transaction acdef: First of all, DSM-MFI reads the first
transaction acdef from B1, and maintains the DHT. Now, the
content of the DHT is [a:1, c:1, d:1 e:1, f:1]. Notice that we
omits the field of block-id, since all entries in the current
DHT have the same value; that is, one. Then, DSM-MFI calls
the TIP(acdef). Therefore, DSM-MFI inserts these item-
prefix transactions, acdef, cdef, def, ef and f, into [a.M-tree,
a.DHT], [c.M-tree, c.DHT], [d.M-tree, d.DHT], [e.M-tree,
e.DHT] and [f.M-tree, f.DHT], respectively. Hence, the result
is shown in Figure 2. Notice that we use [x.M-tree, x.DHT] to
represent the construction of current IPM-Forest with respect
to item-prefix x. In the following steps, we omit the head-
links of each item-prefix.DHT in the continuous construction
process of IPM-Forest for concise representation.

(b) Second transaction abe: First, DSM-MFI reads the second
transaction abe and maintains the DHT. Now, the content of
the DHT is [a:2, c:1, d:1 e:2, f:1, b:1]. Then, DSM-MFI calls
the TIP(abe). Hence, DSM-MFI inserts these item-prefix
transactions abe, be and e into [a.M-tree, a.DHT], [b.M-tree,
b.DHT] and [e.M-tree, e.DHT], respectively. Therefore, the
result is shown in Figure 3.

(c) Third transaction cef: DSM-MFI reads the third transaction
cef and maintains the DHT. Now, the content of the DHT is
[a:2, c:2, d:1 e:3, f:2, b:1]. Then, it calls the TIP(cef).
Afterward, DSM-MFI inserts the item-prefix transactions cef,
ef and f into [c.M-tree, c.DHT], [e.M-tree, e.DHT] and [f.M-
tree, f.DHT], respectively. The result is shown in Figure 4.

(d) Fourth transaction acdf: First, DSM-MFI reads the fourth
transaction acdf and maintains the DHT. Now, the content of
the DHT is [a:3, c:3, d:2 e:3, f:3, b:1]. Next, DSM-MFI calls
the TIP(acdf). Therefore, it inserts these item-prefix
transactions acdf, cdf, df and f into [a.M-tree, a.DHT], [c.M-
tree, c.DHT], [d.M-tree, d.DHT] and [f.M-tree, f.DHT],
respectively. The result is shown in Figure 5.

(e) Fifth transaction cef: At this time, DSM-MFI reads the fifth
transaction cef and maintains the DHT. Now, the content of

the DHT is [a:3, c:4, d:2 e:4, f:4, b:1]. Then, DSM-MFI calls
the TIP(cef). Thus, it inserts the item-prefix transactions cef,
ef and f into [c.M-tree, c.DHT], [e.M-tree, e.DHT] and [f.M-
tree, f.DHT], respectively. Hence, the result is shown in
Figure 6.

(f) Sixth transaction df: At this time, DSM-MFI reads the sixth
transaction df and maintains the DHT. Now, the content of
the DHT is [a:3, c:4, d:3 e:4, f:5, b:1]. Then DSM-MFI calls
the TIP(df). Accordingly, DSM-MFI inserts the item-prefix
transactions df and f into [d.M-tree, d.DHT] and [f.M-tree,
f.DHT], respectively. Consequently, the result is shown in
Figure 7.

Step 2 [IPM-Forest Reconstruction]: DSM-MFI algorithm
prunes all infrequent itemsets from the item-prefix.M-trees and
item-prefix.DHTs after processing the first block B1. At this time,
DSM-MFI prunes the b.M-tree and b.DHT, since item b is an
infrequent item-prefix; that is, sup(b) < MinSup*CLb. Then, DSM-
MFI reconstructs the a.M-tree and a.DHT by eliminating the
information about item b. The result is shown in Figure 8.
Step 3 & Step 4: Read second block B2 into main memory for
constructing the new IPM-Forest. The construction process of
IPM-Forest with respect to block B2 is the same as Step 1 and
Step2.

The result is shown in Figure 9. Notice that the block-id of
entry b in the DHT is two. This means that entry b is created by
DSM-MFI in second block. According the whole data stream, it is
not correct. The block-id of entry b is 1, since it first appeared in
the block B1. This is because of b is not a frequent item (or item-
prefix) with respect to block B1. Hence, if the block-id of an entry
i in the DHT is not just 1, there are two probabilities as follows.
First, it is really a new entry i, that is, it first appears in the
streaming data seen so far. Second, it means that entry i is not a
new entry, but it is not a frequent item with respect to the data
stream seen so far.

a:1:1

c:1:1

e:1:1

d:1:1

f:1:1

c:1:1

e:1:1

d:1:1

f:1:1

e:1:1

d:1:1

f:1:1

f:1:1e:1:1

f:1:1

a:1:1 c:1:1 d:1:1 e:1:1 f:1:1

a.M-tree

c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT f.DHTe.DHTd.DHTc.DHT

DHT

11f
11e
11d
11c

11f
11e
11d

11f
11e 11f

Figure 2. IPM-Forest construction after inserting first transaction acdef

a:2:1

c:1:1

e:1:1

d:1:1

f:1:1

c:1:1

e:1:1

d:1:1

f:1:1

e:1:1

d:1:1

f:1:1

f:1:1e:2:1

f:1:1

a:2:1 c:1:1 d:1:1 e:2:1 f:1:1

a.M-tree

c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

11f
11b

12e
11d
11c

11f
11e
11d

11f
11e 11f

b:1:1

e:1:1

b:1:1

b.M-tree

11e
b.DHT

b:1:1

e:1:1

Figure 3. IPM-Forest construction after inserting second transaction abe

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

561

a:2:1

c:1:1

e:1:1

d:1:1

f:1:1

c:2:1

e:1:1

d:1:1

f:1:1

e:1:1

d:1:1

f:1:1

f:2:1e:3:1

f:2:1

a:2:1 c:2:1 d:1:1 e:3:1 f:2:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

11f
11b

12e
11d
11c

12f
12e
11d

11f
11e 12f

b:1:1

e:1:1

b:1:1

b.M-tree

11e
b.DHT

b:1:1

e:1:1

e:1:1

f:1:1

Figure 4. IPM-Forest construction after inserting third transaction cef

a:3:1

c:2:1

e:1:1

d:2:1

f:1:1

c:3:1

e:1:1

d:2:1

f:1:1

e:1:1

d:2:1

f:1:1

f:3:1e:3:1

f:2:1

a:3:1 c:3:1 d:2:1 e:3:1 f:3:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

12f
11b

12e
12d
12c

13f
12e
12d

12f
11e 12f

b:1:1

e:1:1

b:1:1

b.M-tree

11e
b.DHT

b:1:1

e:1:1

e:1:1

f:1:1

f:1:1

f:1:1

f:1:1

Figure 5. IPM-Forest construction after inserting fourth transaction acdf

a:3:1

c:2:1

e:1:1

d:2:1

f:1:1

c:4:1

e:1:1

d:2:1

f:1:1

e:1:1

d:2:1

f:1:1

f:4:1e:4:1

f:3:1

a:3:1 c:4:1 d:2:1 e:4:1 f:4:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

12f
11b

12e
12d
12c

14f
13e
12d

12f
11e 13f

b:1:1

e:1:1

b:1:1

b.M-tree

11e
b.DHT

b:1:1

e:1:1

e:2:1

f:2:1

f:1:1

f:1:1

f:1:1

Figure 6. IPM-Forest construction after inserting fifth transaction cef

a:3:1

c:2:1

e:1:1

d:2:1

f:1:1

c:4:1

e:1:1

d:2:1

f:1:1

e:1:1

d:3:1

f:1:1

f:5:1e:4:1

f:3:1

a:3:1 c:4:1 d:3:1 e:4:1 f:5:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

12f
11b

12e
12d
12c

14f
13e
12d

13f
11e 13f

b:1:1

e:1:1

b:1:1

b.M-tree

11e
b.DHT

b:1:1

e:1:1

e:2:1

f:2:1

f:1:1

f:1:1

f:2:1

Figure 7. IPM-Forest construction after inserting sixth transaction df

a:3:1

c:2:1

e:1:1

d:2:1

f:1:1

c:4:1

e:1:1

d:2:1

f:1:1

e:1:1

d:3:1

f:1:1

f:5:1e:4:1

f:3:1

a:3:1 c:4:1 d:3:1 e:4:1 f:5:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT

f.DHTe.DHTd.DHTc.DHT

DHT

12f

12e
12d
12c

14f

13e
12d

13f
11e 13f

e:1:1

e:2:1

f:2:1

f:1:1

f:1:1

f:2:1

Figure 8. Current IPM-Forest after pruning any infrequent information with

respect to infrequent item b

a:3:1

c:2:1

e:1:1

d:2:1

f:1:1

c:4:1

e:1:1

d:2:1

f:1:1

e:3:1

d:5:1

f:2:1

f:7:1e:8:1

f:5:1

a:3:1 c:4:1 d:5:1 e:8:1 f:7:1

a.M-tree
c.M-tree

d.M-tree

e.M-tree

f.M-tree

a.DHT
f.DHTe.DHTd.DHTc.DHT

DHT

12f
12e
12d
12c

14f
13e
12d

14f
13e 15f

e:1:1

e:2:1

f:2:1

f:1:1

f:1:1

f:2:1

b:3:2

e:2:2

b:3:2

b.M-tree

f:1:2

d:1:2

e:1:2

b.DHT

21d
21f
23e

Figure 9. IPM-Forest construction after inserting the second incoming

block B2 = {def, bef, bde, be}

The description, as stated above, is the construction process of
IPM-Forest with respect to two incoming blocks over a continuous
stream. From this process, we can see that one needs exactly one
streaming data scan. Let us, for the moment, consider the TDMF
(Top-Down Maximal frequent itemset Finding) principle of DSM-
MFI. The principle is given below.

First of all, given an entry i (from left to right) in the current
DHT, DSM-MFI generates some MFI-candidates by a “MaxTo3”
approach for minimal enumerating the combination of maximal
frequent itemsets within the item range of iDHT. Then DSM-MFI
checks these MFI-candidates whether they are frequent ones or
not by traversing the i.M-tree. It also makes use of Apriori
property [4]: if any length k pattern is not frequent in the database,
its length (k+1) super patterns can never be frequent. The i.M-tree
traversing principle is described as follows. First, DSM-MFI
generates a candidate Maximal itemset, k+1-itemset, containing all
items within the i.DHT (assume that |i.DHT| = k). Second, DSM-
MFI traverses the i.M-tree via the node-links of the frequent item
whose support is minimal for counting this candidate. After that if
the candidate is not a frequent itemset, DSM-MFI generates sub-
candidates with k items from this k+1-itemset, that is, (x1x2 … xk-

1xk) (x1x2 … xk-1xk+1)… (x2x3 … xkxk+1). Next, DSM-MFI executes
the same tree traversing for itemset’s support counting, until it
finds the frequent “3-itemsets”. Why we stop the i.M-tree
traversing principle at 3-itemsets? It is because of that the set of
frequent 2-itemsets is generated by only combining the item-
prefix i with the frequent items within the i.DHT.

Example 2. Let us mine the maximal frequent itemsets in the
IPM-Forest in Figure 9. Suppose the minimum support threshold
MinSup is set to 30%; that is, support threshold of frequent
itemsets from B1 to B2 is 3, i.e., (|B1|+|B2|)*MinSup, but in B2 is
only 1.2, i.e., |B2|*MinSup. Now, we start the TDMF scheme from
frequent item a (the leftmost entry in the DHT). At this moment,
the maximal frequent itemset is only 1-itemset (a), since the
support of items, such as c, d, e and f, in the a.DHT are less than
MinSup*CLa. Now, MinSup*CLa is 3.

Next, we start the TDMF on the frequent item c (the second
entry in DHT). DSM-MFI generates a candidate maximal frequent
itemset, 3-itemset (cef), and traverses the c.M-tree for counting
itemsets’ support. At a result, the candidate (cef) is a frequent
itemset, since its support is 3. Now, DSM-MFI stores the maximal
frequent itemset (cef) in memory for further performance
improvement based on Apriori property.

Furthermore, we start on the frequent item d, and generate a
maximal candidate (def) based on the d.DHT. By traversing the
d.M-tree using f’s node-link, we find that the candidate (def) is not
a frequent itemset, since its support is 2. Hence, we directly
generate two maximal frequent 2-itemsets, (de) and (df), based on
the d.DHT without traversing d.M-tree again. At this moment,
four maximal frequent itemsets, (a), (cef), (de) and (df), are
generated by TDMF of DSM-MFI.

Moreover, on item e and f, since their maximal candidates are
the subsets of the maximal frequent itemset cef, we don’t start the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

562

TDMF process. This is because of these maximal frequent
itemsets already found by algorithm DSM-MFI.

Finally, we start the TDMF process on item b. DSM-MFI
directly generates a maximal frequent itemset (be), since the 2-
itemset is not only a candidate maximal itemset but it is also a
frequent itemset. Now, five maximal frequent itemsets, (a), (cef),
(de), (df) and (be), are generated by DSM-MFI.

From the mining process, as discussed above, we can see that
the true support of itemset (be) is 4 not just 3. This is because of
the sup(be) =1 was pruned before processing block B2. Hence,
algorithm DSM-MFI has the following guarantee, namely
estimated support are less than the true support of frequent
itemsets X by at most MinSup*(CLX’ − CLX), where CLX’ is the
actual length of data stream with respect to itemset X. For example,
the true support of itemset (be) is 4, but the estimate support is 3.
Therefore, the missing support with respect to itemset (be) is 1,
which is less than MinSup*(CLbe’ − CLbe) = 3 − 1.2 = 1.8.

3.2 Space complexity of mining MFI in data streams
Assume that there is a DHT generated by algorithm DSM-MFI.
Let the number of frequent items in the DHT be k. Therefore, we
know there are at most C ⎣ ⎦

k
k 2/

 maximal frequent itemsets in the data

stream seen so far. If we construct an IPM-Forest for all these
maximal frequent itemsets, the tree has height ⎣k/2⎦. In the first
level, there are C ⎣ ⎦ 12/

1
+k nodes, in the second level, there are C ⎣ ⎦ 22/

2
+k

nodes, in the i-th level, there are C ⎣ ⎦ ik
i
+2/ nodes, and in the last

level, the ⎣k/2⎦ level, there are C ⎣ ⎦
k

k 2/ nodes. Thus, the total number

of nodes is

 C ⎣ ⎦ 12/
1
+k + C ⎣ ⎦ 22/

2
+k + C ⎣ ⎦ ik

i
+2/ +…+ C ⎣ ⎦

k
k 2/ =

⎣ ⎦
∑
=

2/

1

k

i
C ⎣ ⎦ ik

i
+2/

□
The space requirement of DSM-MFI consists of three parts: the

working space needed to create a DHT, and the storage space
needed for the i.DHT and the set of i.M-trees, where item i is an
entry of the DHT. In worst case, the working space for DHT

requires k entries. For storage, there are at most ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ nodes

of the set of i.M-trees, and (k2−k)/2 nodes for all i.DHT. Thus, the

total space requirement of DSM-MFI is ½(k2+k)+ ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ .

3.3 Accuracy and completeness guarantee
In this section, we first discuss the accuracy guarantee of the
maximal frequent itemsets generated by DSM-MFI. Then, we
discuss the completeness of DSM-MFI.

Let the true support of a maximal frequent itemset X be tsup(X).
Let the estimated support of a maximal frequent itemset X
generated by algorithm DSM-MFI be esup(X), where esup(X) is the
support stored in the IPM-Forest. Let X.block-id is the block-id of
itemset X stored in the current IPM-Forest. Moreover, we assume
that the average size of each block is a constant value k for
simplify discussion, that is, each block contains k transactions. Let
current block-id of the incoming stream be block-id(N). Now, we
have the following theorem of accuracy guarantee for DSM-
MFI’s outputs.

Theorem 1 tsup(X) − esup(X) ≤ MinSup*(X.block-id −1)*k.

Proof: We prove by induction. Base case (X.block = 1): tsup(X) =
esup(X). Thus, tsup(X) − esup(X) ≤ MinSup*(X.block-id −1)*k.
 Induction step: Consider an itemset (X, X.support, X.block-id)
that get deleted for some block-id(N)> 1. This pattern was inserted
in the IPM-Forest when block-id(N+1) was being processed. The
pattern X whose block-id is block-id(N+1) in the DHT could
possibly have been deleted as late as the time when esup(X) ≤
MinSup*(block-id(N+1) − X.block-id + 1)*k. Therefore, tsup(X) of
X when that deletion occurred was no more than MinSup*(block-
id(N+1) − X.block-id + 1)*k. Furthermore, esup(X) is the true
support of X since it was inserted. It follows that tsup(X) which is
the true support of X in first block though current block, is at most
esup(X) + MinSup*(block-id(N) −1)*k. Thus, we have tsup(X) −
esup(X) ≤ MinSup*(X.block-id −1)*k.

Now, we use this theorem to describe the completeness of
DSM-MFI. Based on Theorem 1, all maximal frequent itemsets
whose support is no less than MinSup*k are generated by DSM-
MFI. It is a superset of maximal frequent itemsets in mining
streaming data, and it actually contains the set of all maximal
frequent itemsets.

4. Performance evaluation
4.1 Simulation model
The parameters of synthetic data generated by IBM synthetic data
generator [4] are described as follows.
IBM Synthetic Dataset: T10.I5.D1M and T30.I20.D1M. The
first synthetic dataset T10.I5 has average transaction size T of 10
items and the average size of frequent itemset I is 5-items. It is a
sparse dataset. In the second dataset T30.I20, the average
transaction size T and average frequent itemset size I are set to 30
and 20, respectively. It is a dense dataset. Both synthetic datasets
have 1,000,000 transactions. In the experiments, the synthetic data
stream is broken into blocks with size 50K for simulating the
continuous characteristic of streaming data, where 1K denotes
1,000. Hence, there are total 20 blocks in these experiments.
Moreover, the default value of user-defined minimum support
threshold MinSup is 0.1%.

4.2 Scalability study of DSM-MFI
In this experiment, we examine the two primary factors, execution
time and memory usage, for mining maximal frequent itemsets in
a data stream environment, since both should be bounded online
as time advances. Therefore, in Figure 10, the execution time
grows smoothly as the dataset size increases from 2,000K to
10,000K. The memory usage in Figure 11 for both synthetic
datasets is stable as time progresses, indicating the scalability and
feasibility of algorithm DSM-MFI. Notice that, the synthetic data
stream used in Figure 11 is broken into 20 blocks with size 50K
for simulating the continuous characteristic of data streams.

5. Conclusions
In this paper, we address the problem of mining maximal frequent
itemsets in a streaming environment. A novel in-memory
summary data structure called IPM-Forest is developed for storing
essential information about maximal frequent itemsets of the
stream seen so far. Moreover, we propose a single-pass algorithm
DSM-MFI to find all maximal frequent itemsets from the IPM-
Forest generated so far. Experiments with synthetic data show that
DSM-MFI is efficient on both sparse and dense datasets, and

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

563

scalable to very long data streams. Based on our knowledge,
DSM-MFI is the first algorithm which satisfies the following
performance issues, such as one streaming data scan, limited
memory usage, fast processing time for each incoming transaction
and short response time of continuous queries, for mining
maximal frequent itemsets in a continuous stream of transactions.
Future work includes sliding window-based mining maximal
frequent itemsets in data streams, mining sequential patterns in
streaming data, and constraint-based frequent pattern mining in
data streams.

0

300

600

900

1200

1500

1800

2000K 4000K 6000K 8000K 10000K

Number of Incoming Transactions

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

T10.I5

T30.I20

Figure 10. Required resources (execution time) of DSM-MFI for

IBM synthetic datasets: T10.I5 vs. T30.I20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Incoming Blocks (from 1 to 20)

M
em

or
y

U
sa

ge
 (K

B)

T10.I5
T30.I20

Figure 11. Required resources (memory usage) of DSM-MFI from

block B1 to block B20

Acknowledgements
The authors thank the reviewers’ precious comments for
improving the quality of this paper. The work was supported by
the National Science Council of R.O.C. under grant no. NSC93-
2213-E009-043.

References
1. C.C. Aggarwal. A Framework for Diagnosing Changes in

Evolving Data Streams. In ACM SIGMOD, 2003.
2. R. Agrawal, C. Aggarwal and V. Prasad. A Tree Projection

Algorithm for Generation of Frequent Itemsets. Journal of
Parallel and Distributed Computing, 2001.

3. C. C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A Framework for
Clustering Evolving Data Streams. In Proc. of the 29th VLDB
conference, 2003.

4. R. Agrawal and R. Srikant. Fast Algorithms for Mining
Association Rules. In Conf. of the 20th VLDB conference, pages
487-499, 1994.

5. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems. In Proc. of the 2002
ACM Symposium on Principles of Database Systems (PODS
2002), ACM Press, 2002.

6. Roberto Bayardo. Efficiently Mining Long Patterns from
Databases. In ACM SIGMOD Conference, 1998.

7. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal
Frequent Itemset Algorithm for Transactional Databases. In
International Conference on Data Engineering, Apr. 2001.

8. J. Chang and W. Lee. Finding Recent Frequent Itemsets
Adaptively over Online Data Streams. In Proc. of the 9th ACM
SIGKDD International Conference & Data Mining (KDD-2003),
2003.

9. Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-
Dimensional Regression Analysis of Time-Series Data Streams.
In Proceedings of 2002 International Conference on Very Large
Data Bases (VLDB'02), Hong Kong, China, Aug. 2002.11.

10. P. Domingos and G. Hulten. Mining High-Speed Data Streams.
In Proc. of the ACM Conference on Knowledge and Data
Discovery (SIGKDD), 2000.

11. G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang and P.S.
Yu. Online Mining of Changes from Data Streams: Research
Problems and Preliminary Results. In Proceedings of the 2003
ACM SIGMOD Workshop on Management and Processing of
Data Streams, June 2003.

12. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Data Streams
under Block Evolution. SIGKDD Exploration, 3(2):1-10, Jan.
2002.

13. C. Giannella, J. Han, J. Pei, X. Yan and P. S. Yu. Mining
Frequent Patterns in Data Streams at Multiple Time Granularities.
In Proc. of the NSF Workshop on Next Generation Data Mining,
2002.

14. K. Gouda and M. Zaki. Efficiently Mining Maximal Frequent
Itemsets. In Proc. of the IEEE International Conference on Data
Mining, 2001.

15. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
Data Streams. In Proc. of the Annual Symp. on Foundations of
Computer Science (FOCS), 2000.

16. G. Hulten, L. Spencer, and P. Domingos. Mining Time-
Changing Data Streams. In Proc. of the ACM Conference on
Knowledge Discovery and Data Mining (SIGKDD), 2001.

17. H. F. Li and S. Y. Lee. Single-Pass Algorithms for Mining
Frequency Change Patterns with Limited Space in Evolving
Append-only and Dynamic Transaction Data Streams. In IEEE
International Conference on e-Technology, e-Commerce and e-
Service (EEE-04), Mar. 2004.

18. Hua-Fu Li, Suh-Yin Lee and Man-Kwan Shan. On Mining Web-
Click Streams for Path Traversal Patterns. In Proc. of the
Thirteen International World Wide Web Conference (WWW-04),
New York, May 2004.

19. Hua-Fu Li, Suh-Yin Lee and Man-Kwan Shan. Mining Frequent
Closed Structures in Streaming Melody Sequences. In IEEE
International Conference on Multimedia and Expo (ICME-2004),
June 2004.

20. G. S. Manku and R. Motwani. Approximate Frequency Counts
Over Data Streams. In Proc. of the 28th VLDB conference, 2002.

21. L. O’Callaghan, N. Mishra, A. Meyerson, S.Guha, and R.
Motwani. High-Performance Clustering of Streams and Large
Data Sets. In Proc. of the 2002 International Conference of Data
Engineering (ICDE), 2002.

22. W.G. Teng, M.-S. Chen, and P. S. Yu. A Regression-Based
Temporal Pattern Mining Scheme for Data Streams. In Proc. of
the 29th VLDB Conference, 2003.

23. H. Wang, W. Fan, P. S. Yu, and J. Han. Mining Concept-
Drifting Data Streams using Ensemble Classifiers. In ACM
SIGKDD, 2003. Y. Zhu and D. Shasha. StatStream: Statistical
Monitoring of Thousands of Data Streams in Real Time. In Proc.
28th Int. Conf. on Very Large Data Bases, 2002.

24. Q. Zou, W. Chu, and B. Lu. SmartMiner: A Depth First
Algorithm Guided by Tail Information for Mining Maximal
Frequent Itemsets. In Proc. of the IEEE International Conference
on Data Mining, 2002.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

564

