
A Two-Stage Approach to Modular Access Control
For Java-Based Web Applications

Kung Chen
Dept. of Computer Science, National Chengchi University, Taipei, Taiwan

chenk@cs.nccu.edu.tw

Abstract-Web applications are usually structured
into three logical tiers: presentation, business logic,
and data processing. In most of current access
control frameworks for Web applications, the
control is enforced at business logic or data
processing level. In contrast, this paper presents a
two-stage approach where the enforcement of access
control is divided between presentation level and
business-logic level. A flexible menu generator is
used to achieve presentation-level access control by
restricting user menus to functions that a user’s
current access-privileges permit. Other fine-grained
access controls are enforced at the business-logic
level using a modular scheme based on the aspect-
oriented language AspectJ.

Keywords: access control, aspect-oriented
programming, AspectJ, Java, Web application.

1. Introduction

Like any applications, Web applications need
access to various system resources, such as files or
databases. To maintain the security of sensitive data
accessed through Web applications, it is extremely
important to enforce a certain degree of access
control at the application-level beyond the normal
protection provided by system software such as
database systems. However, it is not easy to derive a
robust access control implementation for Web
applications. Indeed, “broken access control” is
listed as the second critical Web application security
vulnerability on the OWASP’s top ten list [10].

The principle difficulty in designing security
concern such as access control into an application
system is that it is a concern that permeates through
all the different modules of a system. As a result,
security concerns in an application are often
implemented with scattered and tangled code, which
is not only error-prone but also makes it difficult to
verify its correctness and perform the needed
maintenance.

A better way to address this problem is to treat
security as a separate concern and devise a
framework where the access control logic is
encapsulated and separated from the core of
application [16]. This will not only improve the
application’s modularity but also make the task of

enforcing comprehensive access control more
tractable. The Java Authentication and Authorization
Services (JAAS) of J2EE [13] is a well-known
attempt toward such a solution. Furthermore, it takes
one step forward to support declarative security
where access control can be specified declaratively
in a configuration file without actual coding.

While convenient and flexible for Web
application development, there are also some
shortcomings using solutions such as JAAS. In Web
application development, it is a well-accepted
practice to divide an application into three logical
tiers: presentation, business logic, and data
processing. JAAS-like frameworks for Web
applications conduct the access control along with
the invocation of an application function, hence
belonging to the area of business logic. The
following list the shortcomings of such approaches.
First, users will see functions which they are not
allowed to execute. Second, any attempted access to
unauthorized functions, whether intentionally or
unintentionally, will lead to business-logic level
security check and incur certain amount of runtime
overhead. Third, users may feel annoyed or confused
with the access violation messages from time to time.

In many situations, it is possible to determine
whether a particular function should be authorized to
a user without actually having to try to perform it.
For those operations, users should not be able to see
them on the function menu in the first place. The
business-logic level check should be applied to more
fine-grained access control requirements only.
Therefore, we argue that a two-stage approach to
access control is a better way to structure the access
control mechanisms. The first stage is conducted on
the presentation level, and the second on the
business-logic level. By dividing the enforcement of
access control into two stages, we can overcome the
shortcomings described above while retaining the
security derived from conventional access control.

This paper presents a two-stage approach to
access control for Java-based Web applications. We
begin with access control requirement modeling
using a flexible scheme. These requirements are
transformed into access control rules for the
presentation-level and the business-logic level
according to their granularity. Fine-grained rules are
those whose decisions involve data contents or

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

759

arguments passed. They are assigned to the business-
logic level. As access control is a system-wide
concern that cut across functional modules, we
choose to use the emerging techniques of aspect-
oriented programming (AOP) [8] as our design and
implementation mechanism. We devise a modular
scheme for enforcing these rules through AspectJ [9],
a Java-based aspect-oriented language. All access
control code is encapsulated and linked to functional
modules in a low coupling way.

Rules depending mainly on user information are
enforced at presentation-level using a flexible menu
generator. All user functionalities provided by an
application can be selectively removed from user
menus, either on an individual basis or as a group,
according to the rules specified in a configuration
file associated with the application. If the rules are
changed, the user interface automatically adapts to
provide the correct functionality to each user,
eliminating the need to recode the user interface.

The rest of the paper is organized as follows.
Section 2 outlines our approach. Section 3 and 4
present the mechanisms we use to enforce
presentation-level and business-logic level access
control, respectively. Section 5 describes related
work. Section 6 concludes and sketches future work.

2. Overview of Our Approach

The section outlines the main ideas behind our
approach. First, it describes how we model access
control requirements into rules of two different
levels. Second, it illustrates how we enforce these
rules in Web applications.

2.1. Access control modeling

For access control purpose, we model the
interaction between a user and a Web application as
a sequence of access tuples of three elements: <user,
function, data>, indicating a user’s request to
execute the function on a specific data object. The
access control rules of an application determine
which access tuples are allowed and which must be
denied. They are derived from user access control
requirements.

The elements in an access tuple will be modeled
as three objects, User, Fun, Data, with various
attributes that access control rules can refer to.
Typical attributes for the User object include user’s
name, title, and roles in the organization. The
attributes of the Function object include the
function’s full name and the arguments passed to it,
while the fields of a data object being requested are
the standard attributes of the Data object. Yet the
specific set of attributes depends on individual
application’s needs. For instance, roles are usually
the major attribute for the User object, as role-based
access control (RBAC) [12] is the most often cited

guiding principle underlying all the approaches to
modeling application-level security.

To accommodate a wider range of access control
requirements, we also include an application object
(App) and a context object (Cxt) for specifying the
constraints. The application object is instantiated
from the static properties stored in a dedicated Java
property file. These properties serve as specific
parameters to an application for access control
purpose. For example, certain functions are
accessible only during working days and from
specific machines. We can supply the definitions of
working days and selected machines through two
name-value pairs in the property file as follows.
 WorkingDays=Mon, Tue, Wed, Thu, Fri
 DedicatedMachines = 10.1.1.2, 10.1.2.2
The context object provides method to retrieve the
time and location of access. This is the most often
used contextual information for access control.
Hence following the spirit of RBAC, our access
control rules are expressed as follows:
 <userRole, methodName, className, Constraint>
The userRole stands for the role authorized to this
access tuple and the methodName denotes the Java
method to be constrained. The className is the type
of the data object to be protected; usually it is the
same with the class of the constrained method. The
constraint is a Boolean expression over the attributes
of the three objects listed above, together with those
of the application and context objects.

Example: the following is a set of access control
requirements and corresponding rules for an online
order management system.

C1: Only sales managers working at headquarters
can delete order objects1.

 <“Sales” delete, Order,
 contains(User.getRoles(), ”Manager”)
 && equals(User.getOfficeLocation(), “HQ”)>

C2: Orders can be printed in batch mode by sales

from dedicated machines during office hours.

 <“Sales”, batchPrint, Order,
 contains(App.getOfficeHours(), Cxt.getHour())
 && contains(App.getDedicatedMachines(),

 User.getclientIP())>

C3: Customers can list (view) their own orders.

 <“Customer”, ListOrders, Order,
 equals(User.getName(), Data.getOwner())>

C4: Only VIP customers can create orders whose

total amount exceed $10,000.

 <“Customer”, create, Order,

1 Note that a user can have multiple roles; here it requires a user
have both Sales and Manager in his role set to be authorized.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

760

 User.getVIP() &&
 lessEq(Fun.getArgument(“total”), 10000)>

This form of access control rules is very flexible

and can model a multitude of security requirements,
from simple RBAC to sophisticated instance level
constraints [6]. Furthermore, in our model, it is clear
that rules with constraints that refer to the argument
attribute of the Fun object or any attributes of the
Data object must be assigned to business-logic level
and get enforced during execution, while rules
involve only attributes of the User object can be
enforced at the presentation level.

2.2. Web Application Architecture and
Access Control

We follow the popular three-tier architectural
principle and divide a Web application into three
logical tiers: presentation, business logic, and data
processing. Furthermore, we structure the
presentation tier according to the well-known
Model-View-Controller (MVC) design pattern [4],
and in particular follows the popular Struts
framework [1]. The model components, called
actions in Struts, encapsulate the application
components in the business logic and data tiers, and
the view components are those pieces of an
application that display the information provided by
model components and accept input. These view
components are built using page-based scripting
tools, JSP [14]. The controller is a special Java
Servlet [15] that dispatches user requests and
coordinates all the activities of the model and view
components. It is the central point of control within
an application. The advantages to a single controller
include ease of access control, and consistent
interface and flow between the tiers of our
applications.

 Figure 1: Web application architecture

Our presentation-level access control is achieved
through a flexible menu generator. It is invoked by
the controller, after verifying the user’s identity, to
generate a tailored function menu according to the
access control rules specified in an XML
configuration file. This is the first stage of control
and the second stage is conducted at business-logic
level by special security modules, called aspects in
AspectJ. These aspects intercept the method calls in
action classes and then enforce the access control
demanded by rules derived from prior modeling
stage. Figure 1 depicts the general architecture for
Web applications using our approach.

3. Presentation-Level Access Control

This section shows how we enforce access
control at the presentation level by a flexible menu
generator. Due to space limitation, the reader are
referred to [3] for a full description of the menu
generator.

3.1. Overview

The menu generator consists of three major
components: menu rendering, menu service, and rule
engine, as illustrated in Figure 2.

Figure 2: Menu generator structure

The menu rendering component is the driver of

the generator. It is invoked by the controller servlet
after the login module. Its major task is to render the
XML function menu it gets from the menu service
component into HTML and send it back to client
browser. The menu service component is responsible
for processing the menu configuration file and
application property file to generate the menu
contents. The specific menu items available to a user
are determined by the access control rules stated in
the configuration file. These rules may refer to user
and application specific attributes as well as context
information, but not any data-specific attributes. The
menu service component extracts the rules and
related information from the configuration file and
then passes them to the rule engine for evaluation.
The results dictate what to be included in a menu for
a user. The rule engine is a JavaScript interpreter

Menu
rendering

Menu
service

Rule
engine

Menu
config.
file

Application
property
fil

Session
 B

row
ser

Login
module

 Controller

View

Model
(Action)

Menu
generator

Config.File

Security
aspects

 MVC

DB

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

761

enhanced with some utility functions and classes for
implementing access control constraints.

3.2. Function grouping and menu
configuration

In our design, all the functions of an application
system are organized into a hierarchy and
represented by a tree-based menu to a user. One
access control rule can be associated with an
individual function or a group of functions organized
under the same ancestor node. The constraints in a
rule determine the accessibility of the associated
function or functions; only functions whose rule
constraints are satisfied will be displayed in a user’s
menu. The tree structure of an application system’s
functions and the associated access control rules are
both specified in an XML-based menu configuration
file. Table 1 shows the major parts of the DTD for
the menu configuration file.

 Table 1: Major parts of the menu.dtd

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT MenuTree

 (GlobalDeclaration? ApplicationSystem) >

<!ELEMENT ApplicationSystem (Application*) >

<!ELEMENT Application

　 (Display, (FunctionGroup | Function)*, Rules) >

<!ELEMENT FunctionGroup

　 (Display, (FunctionGroup | Function)*) >

<!ELEMENT Function (Display) >

<!ELEMENT Rules (Rule*) >

<!ELEMENT Display (DisplayText*)>

<!ELEMENT GlobalDeclaration (#PCDATA) >

<!ELEMENT DisplayText (#PCDATA) >

<!ELEMENT Rule (#PCDATA) >

<!ATTLIST Rule path CDATA #REQUIRED>

…

The MenuTree is the root element of the menu
configuration. Under it, there is one mandatory
ApplicationSystem element and one optional
GlobalDeclaration element. If present, the
GlobalDeclaration element defines global objects
that can be referenced in all rules in this
configuration. For example, the application property
object (app) should be declared here if needed. Our
menu configuration models a four level hierarchy
comprising ApplicationSystem, Application,
Function Group, and Function. There must be only
one ApplicationSystem element, though we can
define multiple Application elements under
ApplicationSystem. In turn, we can define multiple
FunctionGroups and/or Functions under each

Application Element. Functions are the leaf nodes in
the menu tree, yet FunctionGroups can be nested to
support a deep hierarchy of functions.

In addition, Application Element has a child
element Rules that is comprised of multiple Rule
elements. The path attribute of the Rule element
refers to the hierarchical path of element(s) that the
rule tries to govern. The accessibility of an element
(Function or FunctionGroup) is defined in a
cascading manner:

• If the accessibility of the element is
explicitly defined in the configuration, use
the defined accessibility;

• Otherwise uses the accessibility of the
nearest ancestor that is explicitly set.

• If no ancestor has accessibility explicitly
defined, make the element always
accessible.

This is a very flexible approach for grouping
related functions for access control purpose.

3.3. Access control rules and constraint
evaluation

An access control rule element in the menu
configuration file contains two parts: a function path
and a constraint. The function path refers to a single
function or a group of functions organized as a tree.
The constraint is derived from the rules of the access
control modeling described in Section 2, and
transformed into a JavaScript expression which
evaluates to true or false. False constraints imply
inaccessibility of the specified function or functions.
For instance, constraints C1 and C2 are transformed
to the following form.

<rule path=”/OrderManagement/delete”>

 contains(User.getProperty(“roles”), “Sales”) &&
 contains(User.getProperty(“roles”), “Manager”) &&
 equal(User.getProperty(“officeLocation”), “HQ”) ;
</rule>

<rule path=”/OrderManagement/batchPrint”>
 contains(User.getProperty(“roles”), “Sales”) &&

 contains(App.getProperty(“OfficeHours”),
 Cxt.getHour()) &&
 contains(App.getProperty(“dedicatedMachines”),
 User.getProperty(“clientIP”);
</rule>

To evaluate the constraints, we developed a rule

engine out of an open source JavaScript interpreter,
Rhino [11]. The menu service component will pass
the constraint expression of a rule to the rule engine

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

762

for evaluation. There are a few utility functions and
classes implemented as a library of the rule engine to
assist the specification of access control constraints.
The functions, “contains”, “equals” shown above are
such utility functions. We have also provided a Cxt
object to supply date-time functions.

4. Business-Logic Level Access Control

After reviewing the concept of AOP and basics of
AspectJ, this section illustrates our scheme for
enforcing business-logic level access control through
encapsulated code in AspectJ.

4.1. AOP and AspectJ

AOP addresses the issues of implementing a
crosscutting concern through a new kind of modules,
called aspect, and new ways of module composition.
In AOP, a program consists of many functional
modules, e.g. classes in OOP, and some aspects that
captures concerns that cross-cuts the functional
modules, e.g. security. The complete program is
derived by some novel ways of composing
functional modules and aspects. This is called
weaving in AOP. Weaving results in a program
where the functional modules impacted by the
concern represented by the aspect are modified
accordingly. Figure 3 illustrates the weaving process
for AspectJ [9]2.

 Figure 3: Aspect weaving in AspectJ

To facilitate the weaving process, a set of
program join points are introduced to specify where
an aspect may cross-cut the other functional modules
in an application. Typical join points in AspectJ are
method execution and field access. A set of join
points related by a specific concern are collected into
a pointcut. Code units called advices in an aspect are
tagged with a pointcut and determine how the
application should behave in those crosscutting
points. There are three kinds of advices in AspectJ:
before, after, and around. The before advice and the

2 Since version 1.1, AspectJ also supports byte-code weaving.

after advice are executed before and after the
intercepted method, respectively. The case for the
around advice is more subtle. Inside the around
advice, we can choose to resume the intercepted
method or skip it. A single piece of advice can be
woven into multiple modules of an application
through a pointcut and thus implement a crosscutting
concern.

4.2. Access control using AspectJ

From the description above, it is clear that AOP
lays a very good foundation for implementing highly
adaptable yet fine-grained access control. The basic
idea is as follows. Given the rules of the form:
<userRole, methodName, className, constraint>,
transform the constraints into Java code using the
advices of security aspects, and choose proper
pointcuts corresponding to the program points
around executing the method specified in the rule.
Since we are dealing with fine-grained access
control requirements depending on function
arguments or data contents, we will use around
advices to enforce the constraints. For example, the
constraints C3 and C4 in Section 2 can be enforced
by the following aspect with two pointcuts and two
around advices.

 aspect OrderManagement

 pointcut ListOrders():

 execution(public List Order.ListOrders());

 pointcut VIPOrder(double total):

 execution(public

 boolean Order.createOrder(double total))

 && args(total);

 List around(): ListOrders() { // only one’s own order

 Set roles = sessionStore.getUserRoles();

 if (!roles.contains(“Customer”))…//throws exception;

 String uname = sessionStore.getUsername();

 List orderList = proceed(); // get the orders

 Iterator i = orderList.iterator();

 while (i.hasNext()) { // order filtering

 Order o = (Order) i.next();

 if (!(uname.equals(o.getOwner())) i.remove();

 }

 return orderList;

 }

 boolean around(total): VIPOrder(total) {

 … // role checking similar to the code above

 if (! roles.contain(“VIP”) && total > 10000)

 return false; // not VIP, creation fails

where
(pointcut)

do what
(advice) aspect

crosscutting
concern class class

weaving

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

763

 else return proceed(); // resume execution

 }

 }

Note that “args(total)” is also an AspectJ pointcut
that captures the argument(s) passed to the
intercepted method, and the call to “proceed()” in an
around advice resumes the intercepted method.

5. Related Work

Most access control frameworks for distributed
client/server systems focus on enforcing the control
on server-side components [2]. As far as we know,
only Goodwin et al. [6] also proposed two levels of
access control: command-level and resource-level.
However, both are conducted at the business-logic
tier; and it does not use aspect-oriented programming.
Applying AOP to security concerns is pioneered by
[16][17]. Georg et al.[5] focuses on the use of
aspects for modeling and weaving in security
concerns.

6. Conclusion and Future Work

In this paper, we have argued the advantages of
developing a two-stage approach access control
framework for Web applications and described our
work toward this goal. We presented a flexible user
menu generator for presentation-level access control
and illustrated how AspectJ can enforce business-
logic level access control in a modular manner. By
dividing the enforcement of access control into two
stages, we can overcome the shortcomings of single-
stage approaches while retaining the same level of
security very little extra efforts.

We have built a prototype system using this
approach, and the preliminary findings show that it
is a feasible one. However, it also inspires us to
further explore the reuse mechanisms of AspectJ to
improve the organization of the security aspects.
Specifically, AspectJ allows aspect inheritance,
abstract aspect, and abstract pointcut. We can write
an aspect without any reference to a join point by
declaring the pointcut abstract. A sub-aspect then
extends the abstract aspect and defines the concrete
pointcut. We will use this ability of AspectJ to build
an aspect framework [16] for better structuring the
access control aspects. The goal is to capture the
generic part of an access control aspect using
abstract aspects, and leave the rule-specific part,
such as constraints and pointcuts, to concrete aspects
extended from the framework. This will not only
reduce the programmatic efforts of writing security
aspects, it will also greatly improve the
maintainability and extensibility of our approach.

References

[1] The Apache Struts Web Application Framework:
http://struts.apache.org/
[2] K. Beznosov, and Y. Deng., “Engineering
Application-level Access Control in Distributed
Systems,” in Handbook of Software Engineering and
Knowledge Engineering, vol. 1, S. K. Chang, ed.:
World Scientific Publishing, 2002.
[3] K. Chen and C.S. Chang, “A Flexible
Presentation Level Function Access Control
Framework Web Application”, submitted for
publication, Oct. 2004.
[4] Gamma, Helm, Johnson and Vlissides: Design
Patterns. A. W. L., 1995. ISBN 0-201-63361-2.
[5] G. Georg, I. Ray, and R. France, “Using Aspects
to Design a Secure System,” Proc. of the 8th IEEE
International Conference on Engineering of
Complex Computer Systems. December 2002.
[6] R. Goodwin, S.F. Goh, and F.Y. Wu, “Instance-
level access control for business-to-business
electronic commerce,” IBM System Journal, vol. 41,
no. 2, pp. 303-17, 2002.
[7] JavaScript : http://www.mozilla.org/js/
[8] G. Kiczales, J. Lamping, A. Menhdhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin,
“Aspect-Oriented Programming,” in ECOOP '97,
LNCS 1241, pp. 220-242.
[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W.G. Griswold, “Getting Started with
AspectJ”, Communications of ACM, vol. 44, no. 10,
pp 59-65, Oct. 2001.
[10] Open Web Application Security Project: The
Top Ten Most Critical Web Application Security
Vulnerabilities.
http://www.owasp.org/documentation/topten
[11]. Rhino: JavaScript for Java,
http://www.mozilla.org/rhino/
[12] R. Sandhu, E. Coyne, H. Feinstein, and C.
Youman. “Role-based access control models,” IEEE
Computer, 29(2):38–47, 1996.
[13] Sun Microsystems, Java Authentication and
Authorization Service (JAAS),
http;//java.sun.com/products/jaas/index.jsp
[14] Sun Microsystem, JavaServer Pages
Technology (JSP): http://java.sun.com/products/jsp/
[15] Sun Microsystem, Java Servlet Technology :
http://java.sun.com/products/servlet/
[16] B. Vanhaute, B. De Win, B. De Decker,
“Building Frameworks in AspectJ”, ECOOP 2001,
Workshop on Advanced Separation of Concerns,
pp.1-6.
[17] B. De Win, B. Vanhaute, and B. De Decker,
“Security Through Aspect-Oriented Programming,”
Advances in Network and Distributed Systems
Security, Kluwer Academic, pp. 125-138, 2001.
[18] B. De Win, B. Vanhaute and B. De Decker,
“How aspect-oriented programming can help to
build secure software,” Informatica 26(2), pp. 141-
149, 2002.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

764

http://jakarta.apache.org/struts/
http://www.mozilla.org/js/
http://www.owasp.org/documentation/topten
http://www.mozilla.org/rhino/
http://java.sun.com/products/jaas/
http://java.sun.com/products/jsp/
http://java.sun.com/products/servlet/

